
Learn

Java for Android
Development

Jeff Friesen

Learn the Java skills you will need
to start developing Android apps

SECOND EDITION

Learn Java for Android
Development

Second Edition

Jeff Friesen

Apress

Learn Java for Android Development

Copyright © 2013 by Jeff Friesen

This work is subject to copyright. All rights are reserved by the Publisher, whether the whole or part of the material
is concerned, specifically the rights of translation, reprinting, reuse of illustrations, recitation, broadcasting,
reproduction on microfilms or in any other physical way, and transmission or information storage and retrieval,
electronic adaptation, computer software, or by similar or dissimilar methodology now known or hereafter developed.
Exempted from this legal reservation are brief excerpts in connection with reviews or scholarly analysis or material
supplied specifically for the purpose of being entered and executed on a computer system, for exclusive use by the
purchaser of the work. Duplication of this publication or parts thereof is permitted only under the provisions of the
Copyright Law of the Publisher's location, in its current version, and permission for use must always be obtained from
Springer. Permissions for use may be obtained through RightsLink at the Copyright Clearance Center. Violations are
liable to prosecution under the respective Copyright Law.

Trademarked names, logos, and images may appear in this book. Rather than use a trademark symbol with every
occurrence of a trademarked name, logo, or image we use the names, logos, and images only in an editorial fashion
and to the benefit of the trademark owner, with no intention of infringement of the trademark.

The use in this publication of trade names, trademarks, service marks, and similar terms, even if they are not identified
as such, is not to be taken as an expression of opinion as to whether or not they are subject to proprietary rights.

While the advice and information in this book are believed to be true and accurate at the date of publication, neither
the authors nor the editors nor the publisher can accept any legal responsibility for any errors or omissions that may
be made. The publisher makes no warranty, express or implied, with respect to the material contained herein.

President and Publisher: Paul Manning
Lead Editor: Steve Anglin
Developmental Editors: Tom Welsh and Matthew Moodie
Technical Reviewers: Paul Connolly, Chad Darby and Onur Cinar
Editorial Board: Steve Anglin, Mark Beckner, Ewan Buckingham, Gary Cornell, Louise Corrigan, Morgan Ertel,

Jonathan Gennick, Jonathan Hassell, Robert Hutchinson, Michelle Lowman, James Markham,
Matthew Moodie, Jeff Olson, Jeffrey Pepper, Douglas Pundick, Ben Renow-Clarke, Dominic Shakeshaft,
Gwenan Spearing, Matt Wade, Tom Welsh

Coordinating Editor: Katie Sullivan
Copy Editor: Deanna K. Hegle
Compositor: SPi Global
Indexer: SPi Global
Artist: SPi Global
Cover Designer: Anna Ishchenko

Distributed to the book trade worldwide by Springer Science+Business Media New York, 233 Spring Street, 6th Floor,
New York, NY 10013. Phone 1-800-SPRINGER, fax (201) 348-4505, e-mail orders-ny@springer-sbm.com, or visit
www.springeronline.com. Apress Media, LLC is a California LLC and the sole member (owner) is Springer Science +
Business Media Finance Inc (SSBM Finance Inc). SSBM Finance Inc is a Delaware corporation.

For information on translations, please e-mail rights@apress.com, or visit www.apress.com.

Apress and friends of ED books may be purchased in bulk for academic, corporate, or promotional use. eBook
versions and licenses are also available for most titles. For more information, reference our Special Bulk Sales–eBook
Licensing web page at www.apress.com/bulk-sales.

Any source code or other supplementary materials referenced by the author in this text is available to readers at
www.apress.com. For detailed information about how to locate your book’s source code, go to
www.apress.com/source-code/.

ISBN 978-1-4302-5722-6

ISBN 978-1-4302-5723-3 (eBook)

To Amaury.

v

Contents at a Glance

About the Author .. xvii

About the Technical Reviewers ... xix

Acknowledgments ... xxi

Introduction ... xxiii

Chapter 1: Getting Started With Java ..1

Chapter 2: Learning Language Fundamentals ...21

Chapter 3: Discovering Classes and Objects ...63

Chapter 4: Discovering Inheritance, Polymorphism, and Interfaces 105

Chapter 5: Mastering Advanced Language Features Part 1 ..153

Chapter 6: Mastering Advanced Language Features Part 2 ..197

Chapter 7: Exploring the Basic APIs Part 1 ...247

Chapter 8: Exploring the Basic APIs Part 2 ...279

Chapter 9: Exploring the Collections Framework ..327

Chapter 10: Exploring Additional Utility APIs ..407

Chapter 11: Performing Classic I/O ...449

Chapter 12: Accessing Networks ..525

vi Contents at a Glance

Chapter 13: Migrating to New I/O ... 561

Chapter 14: Accessing Databases ...603

Appendix A: Solutions to Exercises ...643

Appendix B: Four of a Kind ..713

Index ...735

vii

Contents

About the Author .. xvii

About the Technical Reviewers ... xix

Acknowledgments ... xxi

Introduction ... xxiii

Chapter 1: Getting Started With Java ..1

What Is Java? ..2

Java Is a Language .. 2

Java Is a Platform .. 4

Java SE, Java EE, Java ME, and Android ... 5

Installing and Exploring the JDK ...6

Installing and Exploring the Eclipse IDE ..12

Overview of Java APIs ...16

Language-Support and Other Language-Oriented APIs ... 17

Collections-Oriented APIs .. 17

Additional Utility APIs ... 17

Classic I/O APIs .. 17

Networking APIs .. 18

viii Contents

New I/O APIs .. 18

Database APIs .. 18

Summary ...19

Chapter 2: Learning Language Fundamentals ...21

Learning Comments ..21

Single-Line Comments .. 22

Multiline Comments ... 22

Javadoc Comments ... 23

Learning Identifiers ...25

Learning Types ..26

Primitive Types .. 26

User-Defined Types .. 28

Array Types .. 28

Learning Variables ...29

Learning Expressions ..30

Simple Expressions ... 30

Compound Expressions ... 34

Learning Statements ...46

Assignment Statements .. 46

Decision Statements .. 47

Loop Statements.. 51

Break and Labeled Break Statements ... 56

Continue and Labeled Continue Statements.. 58

Summary ...60

Chapter 3: Discovering Classes and Objects ...63

Declaring Classes and Instantiating Objects ...63

Declaring Classes .. 64

Instantiating Objects with the New Operator and a Constructor ... 64

Specifying Constructor Parameters and Local Variables ... 65

ixContents

Encapsulating State and Behaviors ...69

Representing State via Fields .. 70

Representing Behaviors via Methods .. 75

Hiding Information ... 84

Initializing Classes and Objects ...89

Class Initializers ... 89

Instance Initializers.. 91

Initialization Order ... 93

Collecting Garbage ..96

Revisiting Arrays ...99

Summary ...104

Chapter 4: Discovering Inheritance, Polymorphism, and Interfaces 105

Building Class Hierarchies...105

Extending Classes ... 106

The Ultimate Superclass .. 112

Composition ... 122

The Trouble with Implementation Inheritance ... 122

Changing Form ..126

Upcasting and Late Binding ... 127

Abstract Classes and Abstract Methods .. 131

Downcasting and Runtime Type Identification... 133

Covariant Return Types .. 136

Formalizing Class Interfaces ...139

Declaring Interfaces .. 139

Implementing Interfaces .. 140

Extending Interfaces .. 144

Why Use Interfaces? .. 146

Summary ...152

x Contents

Chapter 5: Mastering Advanced Language Features Part 1 ..153

Mastering Nested Types ..153

Static Member Classes .. 153

Nonstatic Member Classes .. 157

Anonymous Classes ... 161

Local Classes ... 164

Interfaces within Classes .. 166

Mastering Packages ..167

What Are Packages? .. 168

The Package Statement... 169

The Import Statement .. 169

Searching for Packages and Types .. 170

Playing with Packages ... 172

Packages and JAR Files .. 176

Mastering Static Imports ...177

Mastering Exceptions ..179

What Are Exceptions? .. 179

Representing Exceptions in Source Code .. 179

Throwing Exceptions ... 184

Handling Exceptions .. 187

Performing Cleanup ... 190

Summary ...195

Chapter 6: Mastering Advanced Language Features Part 2 ..197

Mastering Assertions ...197

Declaring Assertions .. 198

Using Assertions .. 199

Avoiding Assertions ... 205

Enabling and Disabling Assertions .. 206

xiContents

Mastering Annotations ..207

Discovering Annotations .. 207

Declaring Annotation Types and Annotating Source Code ... 210

Processing Annotations ... 215

Mastering Generics ...217

Collections and the Need for Type Safety .. 217

Generic Types .. 220

Generic Methods .. 229

Arrays and Generics .. 232

Mastering Enums ..234

The Trouble with Traditional Enumerated Types .. 234

The Enum Alternative .. 235

The Enum Class ... 241

Summary ...245

Chapter 7: Exploring the Basic APIs Part 1 ...247

Exploring the Math APIs ..247

Math and StrictMath .. 247

BigDecimal .. 255

BigInteger .. 260

Exploring String Management ...264

String ... 264

StringBuffer and StringBuilder .. 268

Obtaining Package Information ...270

Summary ...276

Chapter 8: Exploring the Basic APIs Part 2 ...279

Exploring the Primitive Type Wrapper Classes ..279

Boolean .. 280

Character ... 281

Float and Double .. 282

Integer, Long, Short, and Byte .. 286

Number .. 288

xii Contents

Exploring Threads ..288

Runnable and Thread ... 289

Thread Synchronization ... 298

Exploring System Capabilities ...314

System ... 314

Runtime and Process ... 319

Summary ...324

Chapter 9: Exploring the Collections Framework ..327

Exploring Collections Framework Fundamentals ..327

Comparable Versus Comparator .. 328

Iterable and Collection ... 330

Exploring Lists ...337

ArrayList .. 341

LinkedList .. 342

Exploring Sets ...344

TreeSet... 344

HashSet ... 346

EnumSet .. 350

Exploring Sorted Sets ..353

Exploring Navigable Sets ...361

Exploring Queues ..364

PriorityQueue ... 365

Exploring Deques ..368

ArrayDeque .. 372

Exploring Maps ..373

TreeMap ... 377

HashMap .. 378

IdentityHashMap .. 384

EnumMap... 386

xiiiContents

Exploring Sorted Maps ..387

Exploring Navigable Maps ...390

Exploring the Arrays and Collections Utility APIs ...394

Exploring the Legacy Collection APIs ..398

Summary ...404

Chapter 10: Exploring Additional Utility APIs .. 407

Exploring the Concurrency Utilities ...407

Executors ..407

Synchronizers ...417

Concurrent Collections ...420

Locks ..422

Atomic Variables ...425

Exploring the Date Class ...426

Exploring the Formatter Class ...428

Exploring the Random Class..430

Exploring the Scanner Class..432

Exploring the ZIP and JAR APIs ...434

Exploring the ZIP API ...435

Exploring the JAR API ...442

Summary ...447

Chapter 11: Performing Classic I/O ... 449

Working with the File API ..449

Working with the RandomAccessFile API ..462

Working with Streams ...473

Stream Classes Overview ...474

OutputStream and InputStream ..475

ByteArrayOutputStream and ByteArrayInputStream ...478

FileOutputStream and FileInputStream ..479

PipedOutputStream and PipedInputStream ..482

FilterOutputStream and FilterInputStream ...485

xiv Contents

BufferedOutputStream and BufferedInputStream ... 493

DataOutputStream and DataInputStream .. 494

Object Serialization and Deserialization .. 496

PrintStream.. 510

Working with Writers and Readers ..511

Writer and Reader Classes Overview .. 512

Writer and Reader.. 514

OutputStreamWriter and InputStreamReader .. 514

FileWriter and FileReader .. 516

Summary ...524

Chapter 12: Accessing Networks ..525

Accessing Networks via Sockets ..526

Socket Addresses .. 528

Socket Options... 529

Socket and ServerSocket .. 530

DatagramSocket and MulticastSocket .. 536

Accessing Networks via URLs ...543

URL and URLConnection .. 543

URLEncoder and URLDecoder .. 547

Accessing Network Interfaces and Interface Addresses ...549

Managing Cookies ...555

Summary ...559

Chapter 13: Migrating to New I/O ..561

Working with Buffers ...562

Buffer and Its Children ... 562

Buffers in Depth ... 566

Working with Channels ...575

Channel and Its Children .. 576

Channels in Depth ... 580

xvContents

Working With Regular Expressions ..589

Pattern, PatternSyntaxException, and Matcher ..589

Character Classes ...593

Capturing Groups ..594

Boundary Matchers and Zero-Length Matches ..595

Quantifiers ..596

Practical Regular Expressions ..598

Summary ...601

Chapter 14: Accessing Databases ... 603

Introducing Java DB ..604

Java DB Installation and Configuration ...605

Java DB Demos ...607

Java DB Command-Line Tools ..609

Introducing SQLite ...611

Accessing Databases via JDBC ...613

Data Sources, Drivers, and Connections ...613

Exceptions ..616

Statements ...620

Metadata ..633

Summary ...639

Appendix A: Solutions to Exercises ... 643

Chapter 1: Getting Started with Java ..643

Chapter 2: Learning Language Fundamentals ...644

Chapter 3: Discovering Classes and Objects ...647

Chapter 4: Discovering Inheritance, Polymorphism, and Interfaces651

Chapter 5: Mastering Advanced Language Features Part 1 ..659

Chapter 6: Mastering Advanced Language Features Part 2 ..666

Chapter 7: Exploring the Basic APIs Part 1 ..671

Chapter 8: Exploring the Basic APIs Part 2 ..676

Chapter 9: Exploring the Collections Framework ..679

xvi Contents

Chapter 10: Exploring Additional Utility APIs ...686

Chapter 11: Performing Classic I/O ...689

Chapter 12: Accessing Networks...698

Chapter 13: Migrating to New I/O ..704

Chapter 14: Accessing Databases ...709

Appendix B: Four of a Kind ..713

Understanding Four of a Kind ..713

Modeling Four of a Kind in Pseudocode ..714

Converting Pseudocode to Java Code ...715

Compiling, Running, and Distributing FourOfAKind ...731

Index ...735

xvii

About the Author

Jeff Friesen is a freelance tutor and software developer with an
emphasis on Java (and now Android). In addition to writing this book,
Jeff has written numerous articles on Java and other technologies for
JavaWorld (www.javaworld.com), informIT (www.informit.com), java.net,
DevSource (www.devsource.com), SitePoint (www.sitepoint.com),
BuildMobile (www.buildmobile.com), and JSPro (www.jspro.com). Jeff
can be contacted via his web site at tutortutor.ca.

xix

About the Technical
Reviewers

Paul Connolly is the Director of Engineering for Atypon Systems’
RightSuite product line. RightSuite is an enterprise access-control and
commerce solution used by many of the world’s largest publishing
and media companies. Paul enjoys designing and implementing
high-performance, enterprise-class software systems. He is also an
active contributor in the open-source community.

Prior to joining Atypon Systems, Paul worked as a senior software
engineer at Standard & Poor’s where he designed and developed key
communications systems. Paul is a Sun Certified Java Programmer,
Sun Certified Business Component Developer, and a Sun Certified Web
Component Developer. Paul lives in Rochester, NY, with his wife Marina
and daughter Olivia.

Chád Darby is an author, instructor and speaker in the Java development
world. As a recognized authority on Java applications and architectures,
he has presented technical sessions at software development conferences
worldwide. In his 15 years as a professional software architect, he’s
had the opportunity to work for Blue Cross/Blue Shield, Merck, Boeing,
Northrop Grumman, and a handful of startup companies.

Chád is a contributing author to several Java books, including Professional
Java E-Commerce (Wrox Press), Beginning Java Networking (Wrox Press),
and XML and Web Services Unleashed (Sams Publishing). Chád has
Java certifications from Sun Microsystems and IBM. He holds a B.S. in
Computer Science from Carnegie Mellon University.

You can read Chád’s blog at www.luv2code.com and follow him on
Twitter @darbyluvs2code.

xx About the Technical Reviewers

Onur Cinar is the author of Android Apps with Eclipse, and Pro
 Android C++ with the NDK books from Apress. He has over 17 years
of experience in design, development, and management of large scale
 complex software projects, primarily in mobile and telecommunication
space. His expertise spans VoIP, video communication, mobile
 applications, grid computing, and networking technologies on diverse
platforms. He has been actively working with the Android platform
since its beginning. He has a B.S. degree in Computer Science from
Drexel University in Philadelphia, PA. He is currently working at the
Skype division of Microsoft as the Sr. Product Engineering Manager for
the Skype client on Android platform.

xxi

Acknowledgments

I thank Steve Anglin for contacting me to write this book; Katie Sullivan for guiding me through
the various aspects of this project; Tom Welsh and Matthew Moodie for helping me with the
development of my chapters; and Paul Connolly, Chád Darby, and Onur Cinar for their diligence in
catching various flaws that would otherwise have made it into this book.

xxiii

Introduction

Smartphones and tablets are all the rage these days. Their popularity is largely due to their ability to
run apps. Although the iPhone and iPad with their growing collection of Objective-C-based apps had
a head start, Android-based smartphones and tablets with their growing collection of Java-based
apps are proving to be a strong competitor.

Not only are many iPhone/iPad app developers making money by selling their apps, many Android
app developers are also making money by selling similar apps. According to tech web sites such
as The Register (www.theregister.co.uk/), some Android app developers are making lots of money
(www.theregister.co.uk/2010/03/02/android_app_profit/).

In today’s challenging economic climate, perhaps you would like to try your hand at developing
Android apps and make some money. If you have good ideas, perseverance, and some artistic
talent (or perhaps know some talented individuals), you are already part of the way toward achieving
this goal.

Tip A good reason to consider Android app development over iPhone/iPad app development is the lower
startup costs that you will incur with Android. For example, you don’t need to purchase a Mac on which to
develop Android apps (a Mac is required for developing iPhone/iPad apps); your existing Windows, Linux, or
Unix machine will do nicely.

Most important, you will need to possess a solid understanding of the Java language and
foundational application programming interfaces (APIs) before jumping into Android. After all,
Android apps are written in Java and interact with many of the standard Java APIs (e.g., threading
and input/output APIs).

I wrote Learn Java for Android Development to give you a solid Java foundation that you can later
extend with knowledge of Android architecture, API, and tool specifics. This book will give you a
strong grasp of the Java language and many important APIs that are fundamental to Android apps
and other Java applications. It will also introduce you to key development tools.

xxiv Introduction

Book Organization
The first edition of this book was organized into 10 chapters and one appendix. The second edition
is organized into 14 chapters and three appendixes. Each chapter in each edition offers a set of
exercises that you should complete to get the most benefit from its content. Their solutions are
presented in an appendix.

In Chapter 1 I introduce you to Java by first focusing on Java’s dual nature (language and platform).
I then briefly introduce you to Oracle’s Java SE, Java EE, and Java ME editions of the Java
development software, as well as Google’s Android edition. You next learn how to download and
install the Java SE Development Kit (JDK) and learn some Java basics by developing and playing
with a pair of simple Java applications. After a brief introduction to the Eclipse IDE, you receive an
overview of the various APIs covered in this book.

In Chapter 2 I start you on an in-depth journey of the Java language by focusing on language
fundamentals. You learn about comments, identifiers (and reserved words), types, variables,
expressions (and literals), and statements.

In Chapter 3 I continue your journey by focusing on classes and objects. You learn how to declare a
class and instantiate objects from the class, how to declare fields within the class and access these
fields, how to declare methods within the class and call them, how to initialize classes and objects,
and how to get rid of objects when they are no longer needed. You also learn more about arrays,
which are first introduced in Chapter 2.

In Chapter 4 I add to Chapter 3’s pool of object-based knowledge by introducing you to language
features that take you from object-based applications to object-oriented applications. Specifically,
you learn about features related to inheritance, polymorphism, and interfaces. While exploring
inheritance, you learn about Java’s ultimate superclass. Also, while exploring interfaces, you
discover why they were included in the Java language; interfaces are not merely a workaround for
Java’s lack of support for multiple implementation inheritance but serve a higher purpose.

In Chapter 5 I introduce you to four categories of advanced language features: nested types,
packages, static imports, and exceptions.

In Chapter 6 I introduce you to four additional advanced language feature categories: assertions,
annotations, generics, and enums.

In Chapter 7 I begin a trend that focuses more on APIs than language features. In this chapter I
first introduce you to many of Java’s math-oriented types (e.g., Math, StrictMath, BigDecimal, and
BigInteger) and then introduce you to its string-oriented types (e.g., String, StringBuffer, and
StringBuilder). Finally, you explore the Package class for obtaining package information.

In Chapter 8 I continue to explore Java’s basic APIs by focusing on primitive type wrapper classes,
threading, and system-oriented APIs.

In Chapter 9 I focus exclusively on Java’s Collections Framework, which provides you with a solution
for organizing objects in lists, sets, queues, and maps. You also learn about collection-oriented utility
classes and review Java’s legacy utility types.

In Chapter 10 I continue to explore Java’s utility APIs by introducing you to Concurrency Utilities, the
Date class (for representing time), the Formatter class (for formatting data items), the Random class
(for generating random numbers), the Timer and TimerTask classes (for occasionally or repeatedly
executing tasks), and the APIs for working with ZIP and JAR files.

xxvIntroduction

Chapter 11 is all about classic input/output (I/O), seen largely from a file perspective. In this chapter,
you explore classic I/O in terms of the File class, RandomAccessFile class, various stream classes,
and various writer/reader classes. My discussion of stream I/O includes coverage of Java’s object
serialization and deserialization mechanisms.

In Chapter 12 I continue to explore classic I/O by focusing on networks. You learn about the Socket,
ServerSocket, DatagramSocket, and MulticastSocket classes along with related types. You also learn
about the URL class for achieving networked I/O at a higher level. After learning about the low-level
NetworkInterface and InterfaceAddress classes, you explore cookie management in terms of the
CookieHandler and CookieManager classes and the CookiePolicy and CookieStore interfaces.

In Chapter 13 I introduce you to New I/O. You learn about buffers, channels, and regular expressions
in this chapter. I would have loved to cover selectors and charsets as well but could not do so for
lack of space. To cover selectors, I would also have had to discuss socket channels, but I could only
cover file channels. However, Chapter 11 does give you a small taste of charsets.

In Chapter 14 I wrap up the chapter portion of this book by focusing on databases. You first learn
about the Java DB and SQLite database products and then explore JDBC for communicating with
databases created via these products.

In Appendix A I present solutions to all exercises in Chapters 1 through 14.

In Appendix B I introduce you to application development in the context of Four of a Kind, a
console-based card game.

In Appendix C, which is available as a separate PDF file that’s bundled with this book’s code,
I introduce you to advanced APIs (e.g., Reflection and References) as well as APIs that might not
be as useful in an Android app context (e.g., Preferences—Android offers its own solution.)

Note You can download this book’s source code by pointing your web browser to
www.apress.com/book/view/1430257226 and clicking the Source Code tab followed by the Download
Now link.

First Edition vs. Second Edition
The first edition of this book debuted in September 2010. I’m generally pleased with the first edition,
and I thank everyone who purchased it. However, as was pointed out to me on multiple occasions,
the first edition is flawed. As well as small technical errors, there are certain organizational and other
issues that got by me during that book’s development.

For starters, I should not have introduced the Four of a Kind card game in Chapter 1. It was too
complicated for many readers to encounter at this point. As a result, I’ve moved the game to
Appendix B so as not to overwhelm Java beginners.

Also, I attempted to cover language fundamentals (e.g., statements and expressions) with the basics
of classes and objects in the same chapter. Although some people appreciated this approach, it
turned out to be too confusing for beginners; I apologize to readers who felt this way. In the second
edition I separate these aspects of the Java language to (hopefully) sort out this problem. In Chapter 2
I focus on statements, expressions, and other non-class/non-object fundamentals; in Chapter 3
I focus on classes and objects.

xxvi Introduction

Another issue was the inclusion of complex APIs that are either infrequently used when developing
Android apps or are mostly irrelevant to Android developers. Examples include References,
Reflection, Preferences, and Internationalization. I moved these APIs to Appendix C so that I could
cover simpler (and possibly more useful) APIs such as ZIP and Timer. (I also included additional new
content in Appendix C.)

While writing the first edition, I planned to go further by covering Java’s support for networking and
database access (via JDBC), security, XML, New I/O, and so on. I foolishly presented a plan to write
six free chapters, but only managed to complete portions of three chapters.

Unfortunately, my original plan for six free chapters was flawed. For instance, I planned to write a
free chapter on networking that would come after a free chapter on New I/O. That wasn’t a good
organization because New I/O includes socket channels, and so the networking chapter should have
preceded a chapter on New I/O.

Also, I’ve learned (via various blogs about Android and security) that Java’s security features aren’t
as necessary in an Android context. Because this book partly focuses on presenting the most useful
Java APIs for subsequent use in an Android context, coverage of Java’s security APIs is probably
not as important (although I could be wrong).

Note There are no free chapters to supplement the second edition. However, Appendix C is a freebie.
Also, I might eventually offer some additional material (perhaps coverage of socket channels, selectors, and
charsets) on my web site (see http://tutortutor.ca/cgi-bin/makepage.cgi?/books/ljfad).

What Comes Next?
After you complete this book, I recommend that you obtain a copy of Beginning Android 4 by Grant
Allen (Apress, 2012) and start learning how to develop Android apps. In that book, you learn Android
basics and how to create “innovative and salable applications for Android 4 mobile devices.” Rather
than give a few superficial details of Android development, Learn Java for Android Development
Second Edition concentrates on teaching you the Java language and APIs such as Collections
that you will need to use in your apps. If you don’t first understand Java, how can you proceed to
understand Android?

Note I also recommend that you check out the second edition of Android Recipes
(see www.apress.com/9781430246145). Although the content of that book largely contains independent
recipes for learning all kinds of things about Android, Chapter 1 contains a summarized and rapid introduction
to Android app development. You will learn much about Android basics from reading that chapter.

Thanks for purchasing my book. I hope you find it a helpful preparation for, and I wish you lots of
success in achieving, a satisfying and lucrative career as an Android app developer.

1

Chapter 1
Getting Started With Java

Android is Google’s software stack for mobile devices. This stack consists of applications
(or apps as they are commonly called), a virtual machine (software-based processor and associated
environment) in which apps run, middleware (software that sits on top of the operating system and
provides various services to the virtual machine and its apps), and a Linux-based operating system.

Android apps are written in Java and use various Java Application Program Interfaces (APIs).
Because you will want to write your own apps but may be unfamiliar with the Java language and
these APIs, this book teaches you about Java as a first step into app development. It provides you
with the fundamentals of the Java language and Java APIs that are useful when developing apps.

Note This book illustrates Java concepts via non-Android Java applications. It’s easier for beginners
to grasp these applications than corresponding Android apps.

An API refers to an interface that an application’s code uses to communicate with other code, which is
typically stored in some kind of software library. For more information on this term, check out Wikipedia’s
“Application programming interface” topic (http://en.wikipedia.org/wiki/Application_
programming_interface).

This chapter sets the stage for teaching you the essential Java concepts that you need to
understand before you embark on your Android app development career. I first answer the “What is
Java?” question. I next show you how to install the Java SE Development Kit (JDK), and introduce
you to JDK tools for compiling and running Java applications.

After showing you how to install and use the open source Eclipse IDE (Integrated Development
Environment) so that you can more easily (and more quickly) develop Java applications (and,
eventually, Android apps), I provide you with a high-level overview of various Java APIs that you can
access from your Java applications and Android apps. In subsequent chapters, you’ll explore these
and other useful APIs in greater detail.

2 CHAPTER 1: Getting Started With Java

Note Chapter 1 is short but intense, presenting many concepts that you’ll encounter in more detail
throughout this book. If you are new to Java, you might find yourself a little overwhelmed by these
concepts. However, any fog should clear as you progress through remaining chapters. If you still feel
somewhat confused, please contact me (jeff@tutortutor.ca) with your questions and I’ll do my
best to help you.

What Is Java?
Java is a language and a platform originated by Sun Microsystems. In this section, I briefly describe
this language and reveal what it means for Java to be a platform. To meet various needs, Sun
organized Java into three main editions: Java SE, Java EE, and Java ME. This section also briefly
explores each of these editions, along with Android.

Note Java has an interesting history that dates back to December 1990. At that time, James Gosling,
Patrick Naughton, and Mike Sheridan (all employees of Sun Microsystems) were given the task of figuring
out the next major trend in computing. They concluded that one trend would involve the convergence of
computing devices and intelligent consumer appliances. Thus was born the Green project.

The fruits of Green were Star7, a handheld wireless device featuring a five-inch color LCD screen,
a SPARC processor, a sophisticated graphics capability, and a version of Unix; and Oak, a language
developed by James Gosling for writing applications to run on Star7, which he named after an oak tree
growing outside of his office window at Sun. To avoid a conflict with another language of the same
name, Dr. Gosling changed this language’s name to Java.

Sun Microsystems subsequently evolved the Java language and platform until Oracle acquired Sun in
early 2010. Check out http://oracle.com/technetwork/java/index.html for the latest Java
news from Oracle.

Java Is a Language
Java is a language in which developers express source code (program text). Java’s syntax (rules for
combining symbols into language features) is partly patterned after the C and C++ languages to
shorten the learning curve for C/C++ developers.

The following list identifies a few similarities between Java and C/C++:

Java and C/C++ share the same single-line and multiline comment styles.
Comments let you document source code.

Many of Java’s reserved words are identical to their C/C++ counterparts (for, if,
switch, and while are examples) and C++ counterparts (catch, class, public,
and try are examples).

3CHAPTER 1: Getting Started With Java

Java supports character, double precision floating-point, floating-point, integer,
long integer, and short integer primitive types, and via the same char, double,
float, int, long, and short reserved words.

Java supports many of the same operators, including arithmetic (+, -, *, /, and %)
and conditional (?:) operators.

Java uses brace characters ({ and }) to delimit blocks of statements.

The following list identifies a few differences between Java and C/C++:

Java supports an additional comment style known as Javadoc. (I briefly
introduce Javadoc in Chapter 2.)

Java provides reserved words not found in C/C++ (extends, strictfp,
synchronized, and transient are examples).

Java doesn’t require machine-specific knowledge. It supports the byte integer
type (see http://en.wikipedia.org/wiki/Integer_(computer_science)); doesn’t
provide a signed version of the character type; and doesn’t provide unsigned
versions of integer, long integer, and short integer. Furthermore, all of Java’s
primitive types have guaranteed implementation sizes, which is an important
part of achieving portability (discussed later). The same cannot be said of
equivalent primitive types in C and C++.

Java provides operators not found in C/C++. These operators include
instanceof and >>> (unsigned right shift).

Java provides labeled break and continue statements that you will not find in
C/C++.

You will learn about single-line and multiline comments in Chapter 2. Also, you will learn about
reserved words, primitive types, operators, blocks, and statements (including labeled break and
continue) in that chapter.

Java was designed to be a safer language than C/C++. It achieves safety in part by not letting
you overload operators and by omitting C/C++ features such as pointers (variables containing
addresses—see http://en.wikipedia.org/wiki/Pointer_(computer_programming)).

Java also achieves safety by modifying certain C/C++ features. For example, loops must be
controlled by Boolean expressions instead of integer expressions where 0 is false and a nonzero
value is true. (There is a discussion of loops and expressions in Chapter 2.)

Suppose you must code a C/C++ while loop that repeats no more than 10 times. Being tired,
you specify while (x) x++; (assume that x is an integer-based variable initialized to 0—I discuss
variables in Chapter 2) where x++ adds 1 to x’s value. This loop doesn’t stop when x reaches 10; you
have introduced a bug.

This problem is less likely to occur in Java because it complains when it sees while (x). This
complaint requires you to recheck your expression, and you will then most likely specify
while (x != 10). Not only is safety improved (you cannot specify just x), meaning is also clarified:
while (x != 10) is more meaningful than while (x).

These and other fundamental language features support classes, objects, inheritance,
polymorphism, and interfaces. Java also provides advanced features related to nested types,

4 CHAPTER 1: Getting Started With Java

packages, static imports, exceptions, assertions, annotations, generics, enums, and more.
Subsequent chapters explore most of these language features.

Java Is a Platform
Java is a platform consisting of a virtual machine and an execution environment. The virtual machine
is a software-based processor that presents an instruction set. The execution environment consists
of libraries for running programs and interacting with the underlying operating system.

The execution environment includes a huge library of prebuilt classfiles that perform common tasks,
such as math operations (e.g., trigonometry) and network communications. This library is commonly
referred to as the standard class library.

A special Java program known as the Java compiler translates source code into instructions
(and associated data) that are executed by the virtual machine. These instructions are known as
bytecode.

The compiler stores a program’s bytecode and data in files having the .class extension. These files
are known as classfiles because they typically store the compiled equivalent of classes, a language
feature discussed in Chapter 3.

A Java program executes via a tool (e.g., java) that loads and starts the virtual machine and passes
the program’s main classfile to the machine. The virtual machine uses a classloader (a virtual
machine or execution environment component) to load the classfile.

After the classfile has been loaded, the virtual machine’s bytecode verifier component makes sure
that the classfile’s bytecode is valid and doesn’t compromise security. The verifier terminates the
virtual machine when it finds a problem with the bytecode.

Assuming that all is well with the classfile’s bytecode, the virtual machine’s interpreter interprets the
bytecode one instruction at a time. Interpretation consists of identifying bytecode instructions and
executing equivalent native instructions.

Note Native instructions (also known as native code) are the instructions understood by the
underlying platform’s physical processor.

When the interpreter learns that a sequence of bytecode instructions is executed repeatedly,
it informs the virtual machine’s Just in Time (JIT) compiler to compile these instructions into
native code.

JIT compilation is performed only once for a given sequence of bytecode instructions. Because the
native instructions execute instead of the associated bytecode instruction sequence, the program
executes much faster.

During execution, the interpreter might encounter a request to execute another classfile’s bytecode.
When that happens, it asks the classloader to load the classfile and the bytecode verifier to verify the
bytecode prior to executing that bytecode.

5CHAPTER 1: Getting Started With Java

The platform side of Java promotes portability by providing an abstraction over the underlying
platform. As a result, the same bytecode runs unchanged on Windows-based, Linux-based, Mac OS
X-based, and other platforms.

Note Java was introduced with the slogan “write once, run anywhere.” Although Java goes to great
lengths to enforce portability (e.g., an integer is always 32 binary digits [bits] and a long integer is
always 64 bits—see http://en.wikipedia.org/wiki/Bit to learn about binary digits), it doesn’t
always succeed. For example, despite being mostly platform independent, certain parts of Java (e.g., the
scheduling of threads, discussed in Chapter 8) vary from underlying platform to underlying platform.

The platform side of Java also promotes security by providing a secure environment (e.g., the
bytecode verifier) in which code executes. The goal is to prevent malicious code from corrupting the
underlying platform (and possibly stealing sensitive information).

Java SE, Java EE, Java ME, and Android
Developers use different editions of the Java platform to create Java programs that run on desktop
computers, web browsers, web servers, mobile information devices (e.g., feature phones), and
embedded devices (e.g., television set-top boxes):

 Java Platform, Standard Edition (Java SE): The Java platform for developing
applications, which are stand-alone programs that run on desktops. Java SE is
also used to develop applets, which are programs that run in web browsers.

 Java Platform, Enterprise Edition (Java EE): The Java platform for developing
enterprise-oriented applications and servlets, which are server programs that
conform to Java EE’s Servlet API. Java EE is built on top of Java SE.

 Java Platform, Micro Edition (Java ME): The Java platform for developing
MIDlets, which are programs that run on mobile information devices, and Xlets,
which are programs that run on embedded devices.

Developers also use a special Google-created edition of the Java platform
(see http://developer.android.com/index.html) to create Android apps that run on Android-enabled
devices. This edition is known as the Android platform.

Google’s Android platform presents a Dalvik virtual machine that runs on top of a specially modified
Linux kernel. An Android app’s Java source code is compiled into Java classfiles, which are then
translated into a special file for Dalvik to execute.

Note Learn more about the Android OS via Wikipedia’s “Android (operating system)” entry
(http://en.wikipedia.org/wiki/Android_(operating_system)) and about the Dalvik virtual machine
via Wikipedia’s “Dalvik (software)” entry (http://en.wikipedia.org/wiki/Dalvik_(software)).

6 CHAPTER 1: Getting Started With Java

In this book, I cover the Java language (supported by Java SE and Android) and various Java SE
APIs that are also supported by Android. I focus on language features through Java version 5 and on
Java APIs through Java 5, with a small amount of Java 6.

Note Google’s Android platform is based on an open source release of Java 5. It doesn’t officially
recognize language features newer than Java 5, although it’s possible to add this support
(see www.informit.com/articles/article.aspx?p=1966024). Regarding APIs, this platform
supports APIs from Java 6 and previous Java versions. Also, it provides its own unique APIs.

Installing and Exploring the JDK
The Java Runtime Environment (JRE) implements the Java SE platform and makes it possible to
run Java programs. The public JRE can be downloaded from Oracle’s Java SE Downloads page
(http://oracle.com/technetwork/java/javase/downloads/index.html).

However, the public JRE doesn’t make it possible to develop Java programs. For that task, you
need to download and install the Java SE Development Kit (JDK), which contains development tools
(including the Java compiler) and a private JRE.

Note JDK 1.0 was the first JDK to be released (in May 1995). Until JDK 6 arrived, JDK stood for Java
Development Kit (SE was not part of the title). Over the years, numerous JDKs have been released, with
JDK 7 being current at time of writing.

Each JDK’s version number identifies a version of Java. For example, JDK 1.0 identifies Java 1.0, and
JDK 5 identifies Java 5.0. JDK 5 was the first JDK to also provide an internal version number: 1.5.0.

Google doesn’t provide a JDK. What it does provide is similar to a JRE, but with an Android focus.

The Java SE Downloads page also provides access to the current JDK, which is JDK 7 Update 9 at
time of writing. Click the Download JDK link (on the page at http://oracle.com/technetwork/java/
javase/downloads/index.html) to download the current JDK’s installer program for your platform.

The JDK installer places the JDK in a home directory. (It can also install the public JRE in another
directory.) On my Windows 7 platform, the home directory is C:\Program Files\Java\jdk1.7.0_06.
(I currently use JDK 7 Update 6.)

Tip After installing the JDK, you should add the bin subdirectory to your platform’s PATH
environment variable (see http://java.com/en/download/help/path.xml) so you can execute
JDK tools from any directory. Also, you might want to create a projects subdirectory of the JDK’s
home directory to organize your Java projects and create a separate subdirectory within projects for
each of these projects.

7CHAPTER 1: Getting Started With Java

The home directory contains various files (e.g., README.html, which provides information about
the JDK, and src.zip, which provides the standard class library source code) and subdirectories,
including the following three important subdirectories:

 bin: This subdirectory contains assorted JDK tools. You’ll use only a few of
these tools in this book, mainly javac (Java compiler), java (Java application
launcher), jar (Java archive creator, updater, and extractor), and javadoc
(Java documentation generator).

 jre: This subdirectory contains the JDK’s private copy of the JRE, which lets
you run Java programs without having to download and install the public JRE.

 lib: This subdirectory contains library files that are used by JDK tools. For
example, tools.jar contains the Java compiler’s classfiles—the compiler was
written in Java.

Note javac is not the Java compiler. It is a tool that loads and starts the virtual machine, identifies
the compiler’s main classfile (located in tools.jar) to the virtual machine, and passes the name of
the source file being compiled to the compiler’s main classfile.

You execute JDK tools at the command line, passing command-line arguments to a tool. You can
learn about the command line and arguments via Wikipedia’s “Command-line interface” entry
(http://en.wikipedia.org/wiki/Command-line_interface).

Now that you have installed the JDK and know something about its tools, you’re ready to explore a
small DumpArgs application that outputs its command-line arguments to the standard output stream.

Note The standard output stream is part of Standard I/O (http://en.wikipedia.org/wiki/
Standard_streams), which also consists of standard input and standard error streams, and which
originated with the Unix operating system. Standard I/O makes it possible to read text from different
sources (keyboard or file) and write text to different destinations (screen or file).

Text is read from the standard input stream, which defaults to the keyboard but can be redirected to a
file. Text is written to the standard output stream, which defaults to the screen but can be redirected to
a file. Error message text is written to the standard error stream, which defaults to the screen but can
be redirected to a file that differs from the standard output file.

Listing 1-1 presents the DumpArgs application source code.

Listing 1-1. Dumping Command-Line Arguments via main()’s args Array to the Standard Output Stream

public class DumpArgs
{
 public static void main(String[] args)
 {
 System.out.println("Passed arguments:");

8 CHAPTER 1: Getting Started With Java

 for (int i = 0; i < args.length; i++)
 System.out.println(args[i]);
 }
}

Listing 1-1’s DumpArgs application consists of a class named DumpArgs and a method within this class
named main(), which is the application’s entry point and provides the code to execute. (You will
learn about classes and methods in Chapter 3.)

The main() method includes a header that identifies this method and a block of code located
between an open brace character ({) and a close brace character (}). As well as naming this method,
the header provides the following information:

 public: This reserved word makes main() visible to the startup code that calls
this method. If public wasn’t present, the compiler would output an error
message stating that it couldn’t find a main() method. (I discuss reserved words
in Chapter 2.)

 static: This reserved word causes this method to associate with the class
instead of associating with any objects (discussed in Chapter 3) created from
this class. Because the startup code that calls main() doesn’t create an object
from the class to call this method, it requires that the method be declared
static. Although the compiler will not report an error when static is missing,
it will not be possible to run DumpArgs, which will not be an application when the
proper main() method doesn’t exist.

 void: This reserved word indicates that the method doesn’t return a value. If you
change void to a type’s reserved word (e.g., int) and then insert a statement
that returns a value of this type (e.g., return 0;), the compiler will not report an
error. However, you won’t be able to run DumpArgs because the proper main()
method wouldn’t exist. (I discuss types in Chapter 2.)

 (String[] args): This parameter list consists of a single parameter named args
of type String[]. Startup code passes a sequence of command-line arguments
to args, which makes these arguments available to the code that executes
within main(). You’ll learn about parameters and arguments in Chapter 3.

main() is called with an array of strings (character sequences) that identify the application’s
command-line arguments. These strings are stored in String-based array variable args. (I discuss
method calling, arrays, and variables in Chapters 2 and 3.) Although the array variable is named
args, there is nothing special about this name. You could choose another name for this variable.

The block of code first executes System.out.println("Passed arguments:");, which calls
System.out’s println() method with the "Passed arguments:" string. This string is written to the
standard output stream.

From left to write, System identifies a standard class of system utilities; out identifies an object
variable located in System whose methods let you output values of various types optionally followed
by a newline character to the standard output stream; println identifies a method that prints its
argument followed by a newline character to standard output; and "Passed arguments:" is a string

9CHAPTER 1: Getting Started With Java

(a sequence of characters delimited by double quote " characters and treated as a unit) that is
passed as the argument to println and written to standard output (the starting " and ending "
double quote characters are not written; these characters delimit but are not part of the string).

Note System.out provides access to a family of println() methods and a family of print()
methods for outputting different kinds of data (e.g., sequences of characters and integers). Unlike
the println() methods, the print() methods don’t terminate the current line; subsequent output
continues on the current line.

Each println() method terminates a line by outputting a line separator string, which is defined
by system property line.separator, and which is not necessarily a single newline character
(identified in source code via character literal '\n'). (I discuss system properties in Chapter 8,
line.separator in Chapter 11, and character literals in Chapter 2.) For example, on Windows
platforms, the line separator string is a carriage return character (whose integer code is 13) followed by
a line feed character (whose integer code is 10).

The block of code next uses a for loop to repeatedly execute System.out.println(args[i]);.
The loop executes args.length times, or once for each string stored in args. (I discuss for loops
and .length in Chapter 2.)

The System.out.println(args[i]); method call reads the string stored in the ith entry of the args
array—the first entry is located at index (location) 0; the last entry is stored at index args.length - 1.
This method call then outputs this string to standard output.

Assuming that you’re familiar with your platform’s command-line interface and are at the command
line, make DumpArgs your current directory and copy Listing 1-1 to a file named DumpArgs.java. Then
compile this source file via the following command line:

javac DumpArgs.java

Assuming that that you’ve included the .java extension, which is required by javac, and that
DumpArgs.java compiles, you should discover a file named DumpArgs.class in the current directory.
Run this application via the following command line:

java DumpArgs

If all goes well, you should see the following line of output on the screen:

Passed arguments:

For more interesting output, you’ll need to pass command-line arguments to DumpArgs. For example,
execute the following command line, which specifies Curly, Moe, and Larry as three arguments to
pass to DumpArgs:

java DumpArgs Curly Moe Larry

10 CHAPTER 1: Getting Started With Java

This time, you should see the following expanded output on the screen:

Passed arguments:
Curly
Moe
Larry

You can redirect the output destination to a file by specifying the greater than angle bracket (>)
followed by a filename. For example, java DumpArgs Curly Moe Larry >out.txt stores the DumpArgs
application’s output in a file named out.txt.

Note Instead of specifying System.out.println(), you could specify System.err.println()
to output characters to the standard error stream. (System.err provides the same families of
println() and print() methods as System.out.) However, you should only switch from
System.out to System.err when you need to output an error message so that the error messages
are displayed on the screen, even when standard output is redirected to a file.

Congratulations on successfully compiling your first application source file and running the
application! Listing 1-2 presents the source code to a second application, which echoes text
obtained from the standard input stream to the standard output stream.

Listing 1-2. Echoing Text Read from Standard Input to Standard Output

public class EchoText
{
 public static void main(String[] args) throws java.io.IOException
 {
 System.out.println("Please enter some text and press Enter!");
 int ch;
 while ((ch = System.in.read()) != −1)
 System.out.print((char) ch);
 System.out.println();
 }
}

After outputting a message that prompts the user to enter some text, main() introduces int variable
ch to store each character’s integer representation. (You will learn about int and integer in Chapter 2.)

main() now enters a while loop (discussed in Chapter 2) to read and echo characters. The loop first
calls System.in.read() to read a character and assign its integer value to ch. The loop ends when
this value equals −1 (no more input data is available).

11CHAPTER 1: Getting Started With Java

Note When standard input is redirected to a file, System.in.read() reads each character from the
file (which is subsequently converted to an integer) until there are no more characters to be read. At
that point, this method returns −1. However, when standard input isn’t redirected, the loop doesn’t end
because −1 is never seen. In this case, the end of a line of text is signified (on Windows platforms) by
a carriage return character (integer value 13) followed by a line feed character (integer value 10). The
exact termination sequence is platform dependent. You must press the Ctrl and C keys simultaneously
on Windows (or the equivalent keys on a non-Windows platform) to terminate the loop.

For any other value in ch, this value is converted to a character via (char), which is an example of
Java’s cast operator (discussed in Chapter 2). The character is then output via System.out.print(),
which doesn’t also terminate the current line. The final System.out.println(); call terminates the
current line without outputting any content.

Note When standard input is redirected to a file and System.in.read() is unable to read text
from the file (perhaps the file is stored on a removable storage device that has been removed prior to
the read operation), System.in.read() fails by throwing an object that describes this problem.
I acknowledge this possibility by appending throws java.io.IOException to the end of the
main() method header. I discuss throws in Chapter 5 and java.io.IOException in Chapter 11.

Compile Listing 1-2 via javac EchoText.java and run the application via java EchoText. You’ll
be prompted to enter some text. After you input this text and press Enter, the text will be sent to
standard output. For example, consider the following output:

Please enter some text and press Enter!
Hello Java
Hello Java

You can redirect the input source to a file by specifying the less than angle bracket (<) followed by
a filename. For example, java EchoText <EchoText.java reads its text from EchoText.java and
outputs this text to the screen.

ANDROID APP ENTRY POINT

The DumpArgs and EchoText applications demonstrate public static void main(String[] args) as a Java
application’s entry point. This is where the application’s execution begins. In contrast, an Android app doesn’t require this
method for its entry point because the app’s architecture is very different.

Android apps are based on a federation of interacting components, which are known as activities, services, broadcast
receivers, and content providers. Activities provide user interface screens, services support background processing,
broadcast receivers respond to system-wide broadcasts, and content providers offer portable data access.

12 CHAPTER 1: Getting Started With Java

Consider the activity. This component is implemented as a class that inherits life cycle methods from Android’s
android.app.Activity class and has the opportunity to override them. (I discuss methods in Chapter 3 and inheritance
and overriding in Chapter 4.) For example, it could override the void onCreate(Bundle savedInstanceState)
method to construct a user interface screen when Android calls this method.

In this book, I present Java applications with public static void main(String[] args) methods. I do so
because the book’s focus is on learning Java as a preparatory step to getting into Android app development.

As well as downloading and installing the JDK, you’ll need to access the JDK documentation,
especially to explore the Java APIs. There are two sets of documentation that you can explore:

Oracle’s JDK 7 documentation
(http://docs.oracle.com/javase/7/docs/api/index.html)

Google’s Java API documentation
(https://developer.android.com/reference/packages.html)

Oracle’s JDK 7 documentation presents many APIs that are not supported by Android. Furthermore,
it doesn’t cover APIs that are specific to Android. This book focuses only on Java APIs that are
covered in Google’s documentation.

Installing and Exploring the Eclipse IDE
Working with the JDK’s tools at the command line is probably okay for small projects. However, this
practice is not recommended for large projects, which are hard to manage without the help of an IDE.

An IDE consists of a project manager for managing a project’s files, a text editor for entering and
editing source code, a debugger for locating bugs, and other features. Eclipse is a popular IDE that
Google supports for developing Android apps.

Note For convenience, I use JDK tools throughout this book, except for this section where I discuss
and demonstrate the Eclipse IDE.

Eclipse IDE is an open source IDE for developing programs in Java and other languages
(e.g., C, COBOL, PHP, Perl, and Python). Eclipse Classic is one distribution of this IDE that is
available for download; version 4.2.1 is the current version at time of writing.

You should download and install Eclipse Classic to follow along with this section’s Eclipse-oriented
example. Begin by pointing your browser to www.eclipse.org/downloads/ and accomplishing the
following tasks:

1. Scroll down the page until you see an Eclipse Classic entry. (It may refer to
4.2.1 or a newer version.)

2. Click one of the platform links (e.g., Windows 32 Bit) to the right of this entry.

3. Select a download mirror from the subsequently displayed page and proceed
to download the distribution’s archive file.

13CHAPTER 1: Getting Started With Java

I downloaded the approximately 183 MB eclipse-SDK-4.2.1-win32-x86_64.zip archive file for my
Windows 7 platform, unarchived this file, moved the resulting eclipse home directory to another
location, and created a shortcut to that directory’s eclipse.exe file.

After installing Eclipse Classic, run this application. You should discover a splash screen identifying
this IDE and a dialog box that lets you choose the location of a workspace for storing projects,
followed by a main window like that shown in Figure 1-1.

Figure 1-1. Keep the default workspace or choose another workspace

Click the OK button and you’re taken to Eclipse’s main window. See Figure 1-2.

14 CHAPTER 1: Getting Started With Java

The main window initially presents a Welcome tab from which you can learn more about Eclipse.
Click this tab’s X icon to close this tab; you can restore the Welcome tab by selecting Welcome from
the menubar’s Help menu.

The Eclipse user interface is based on a main window that consists of a menubar, a toolbar, a
workbench area, and a statusbar. The workbench presents windows for organizing Eclipse projects,
editing source files, viewing messages, and more.

To help you get comfortable with the Eclipse user interface, I’ll show you how to create a DumpArgs
project containing a single DumpArgs.java source file with Listing 1-1’s source code. You’ll also learn
how to compile and run this application.

Complete the following steps to create the DumpArgs project:

1. Select New from the File menu and Java Project from the resulting
pop-up menu.

2. In the resulting New Java Project dialog box, enter DumpArgs into the Project
name text field. Keep all the other defaults and click the Finish button.

After the second step, you’ll see a workbench similar to that shown in Figure 1-3.

Figure 1-2. The main window initially presents a Welcome tab

15CHAPTER 1: Getting Started With Java

On the left side of the workbench, you see a window titled Package Explorer. This window identifies
the workspace’s projects in terms of packages (discussed in Chapter 5). At the moment, only a
single DumpArgs entry appears in this window.

Clicking the triangle icon to the left of DumpArgs expands this entry to reveal src and JRE System
Library items. The src item stores the DumpArgs project’s source files, and the JRE System Library
identifies various JRE files that are used to run this application.

You’ll now add a new file named DumpArgs.java to src, as follows:

1. Highlight src and select New from the File menu and File from the resulting
pop-up menu.

2. In the resulting New File dialog box, enter DumpArgs.java into the File name
text field, and click the Finish button.

Eclipse responds by displaying an editor window titled DumpArgs.java. Copy Listing 1-1 content to
this window. Then compile and run this application by selecting Run from the Run menu. (If you see
a Save and Launch dialog box, click OK to close this dialog box.) Figure 1-4 shows the results.

Figure 1-3. A DumpArgs entry appears in the workbench’s Package Explorer

16 CHAPTER 1: Getting Started With Java

You must pass command-line arguments to DumpArgs to see additional output from this application.
Accomplish this task as follows:

1. Select Run Configurations from the Run menu.

2. In the resulting Run Configurations dialog box, select the Arguments tab.

3. Enter Curly Moe Larry into the Program arguments text area and click the
Close button.

Once again, select Run from the Run menu to run the DumpArgs application. This time, the Console
tab reveals Curly, Moe, and Larry on separate lines below “Passed arguments:”.

This is all I have to say about the Eclipse IDE. For more information, study the tutorials via the
Welcome tab, access IDE help via the Help menu, and explore the Eclipse documentation at
www.eclipse.org/documentation/.

Overview of Java APIs
Oracle organizes its standard class library APIs into packages (see Chapter 5), which are analogous
to file folders. Similarly, Google organizes its Android-oriented standard class library APIs into
packages. In this section, I provide an overview of various Java APIs that are common to Oracle
and Google. Furthermore, I discuss (throughout this book) only those APIs that are located in both
libraries. By limiting my discussion to common APIs, I avoid discussing Java APIs that cannot be
used when creating Android apps.

Figure 1-4. The Console tab at the bottom of the workbench presents the DumpArgs application’s output

17CHAPTER 1: Getting Started With Java

Language-Support and Other Language-Oriented APIs
Java relies on several APIs to support basic language features, such as strings (see Chapter 7),
exceptions (see Chapter 5), and threads (see Chapter 8). For example, the java.lang package offers
the String class to support strings, the Throwable class to support exceptions, and the Thread class
and Runnable interface to support threads.

Java also provides APIs that fulfill language-oriented tasks. For example, java.lang offers a
StringBuffer class (see Chapter 7) for creating changeable strings, a Math class (see Chapter 7)
for performing trigonometric and other basic mathematics operations, and a Package class
(see Chapter 7) for obtaining package-oriented information.

Collections-Oriented APIs
Java’s designers have developed a powerful Collections Framework for organizing objects (see
Chapter 9). This framework, which is located in the java.util package, is based on interfaces and
lets you store objects in lists, queues, sets (sorted or unsorted), and maps (sorted or unsorted).
These interfaces are associated with various implementation classes (e.g., ArrayList).

The Collections Framework also offers the Collections and Arrays classes. These utility classes
(classes consisting of static [class] methods) provide various methods for performing common
operations on collections and arrays. For example, Collections lets you conveniently search or sort
a collection; and Arrays lets you conveniently search, sort, copy, or fill an array.

Additional Utility APIs
Java’s designers have also developed a powerful Concurrency Utilities framework that offers a
high-level alternative to low-level threads (see Chapter 10). This framework’s APIs are organized
into java.util.concurrent, java.util.concurrent.atomic, and java.util.concurrent.locks
packages. Examples of APIs in the first package include the Executor interface and the
CyclicBarrier class.

Additional utility APIs that are located in the java.util package include the Date class for working
with dates, the Formatter class for formatting data items (e.g., integers and strings), the Random class
for achieving sophisticated random number generation, and the Scanner class for parsing an input
stream of characters into integers, strings, and other values. I discuss these APIs in Chapter 10.

Finally, the java.util.zip package offers capabilities for extracting information from existing ZIP
archives and creating new ZIP archives (see Chapter 10). Also, the related java.util.jar package
extends java.util.zip by offering additional capabilities required by JAR files, specifically, reading
attributes from and writing attributes to the JAR file’s manifest (see Chapter 10).

Classic I/O APIs
The ability to input and output information has always been important to Java. You’ve already
discovered Standard I/O, but there is much more to explore in Chapter 11. For example, the java.io
package offers the File class for performing file-oriented operations (e.g., listing a directory’s files),
and also offers stream/writer/reader classes for performing I/O (typically involving files).

18 CHAPTER 1: Getting Started With Java

Networking APIs
Although much I/O takes place in the context of a filesystem, Java also offers the ability to perform
I/O over a network via the various types located in its java.net package (see Chapter 12). For
example, you can use the Socket and ServerSocket classes to create the client and server ends of a
network communication link.

Socket offers a low-level approach to communicating over a network. In some cases, you’ll use the
higher-level URL class to communicate over the Web, perhaps to obtain a web page. As you interact
with the Web, you’ll encounter cookies that you can manage via additional java.net interfaces and
classes, such as CookiePolicy and CookieManager.

New I/O APIs
Modern operating systems have introduced sophisticated I/O mechanisms such as memory-mapped
files and readiness selection. Java supports these new I/O mechanisms via Buffer, Channel,
Selector, and related types found in java.nio and related packages. Also, java.util.regex supports
new I/O by offering high-performance string operations. See Chapter 13.

Database APIs
Databases store information, and relational databases store this information in tables that can be
related to each other via special key columns. Java supports database access via the java.sql and
javax.sql packages. The former package includes classes and interfaces such as DriverManager
and ResultSet; the latter package offers DataSource, RowSet, and more. See Chapter 14.

EXERCISES

The following exercises are designed to test your understanding of Chapter 1’s content:

What is Java?1.

What is a virtual machine?2.

What is the purpose of the Java compiler?3.

True or false: A classfile’s instructions are commonly referred to as bytecode.4.

What does the virtual machine’s interpreter do when it learns that a sequence of bytecode 5.
instructions is being executed repeatedly?

How does the Java platform promote portability?6.

How does the Java platform promote security?7.

True or false: Java SE is the Java platform for developing servlets.8.

What is the JRE?9.

What is the difference between the public and private JREs?10.

19CHAPTER 1: Getting Started With Java

What is the JDK?11.

Which JDK tool is used to compile Java source code?12.

Which JDK tool is used to run Java applications?13.

What is Standard I/O?14.

How do you specify the 15. main() method’s header?

What is an IDE? Identify the IDE that Google supports for developing Android apps.16.

Summary
Java is a language and a platform. The language is partly patterned after the C and C++ languages
to shorten the learning curve for C/C++ developers. The platform consists of a virtual machine and
associated execution environment.

Developers use different editions of the Java platform to create Java programs that run on desktop
computers, web browsers, web servers, mobile information devices, and embedded devices. These
editions are known as Java SE, Java EE, and Java ME.

Developers also use a special Google-created edition of the Java platform to create Android apps
that run on Android-enabled devices. This edition, known as the Android platform, presents a Dalvik
virtual machine that runs on top of a specially modified Linux kernel.

The public JRE implements the Java SE platform and makes it possible to run Java programs. The
JDK provides tools (including the Java compiler) for developing Java programs and also includes a
private copy of the JRE.

Working with the JDK’s tools at the command line is not recommended for large projects, which are
hard to manage without the help of an integrated development environment. Eclipse is a popular IDE
that Google supports for developing Android apps.

Oracle organizes its standard class library APIs into packages, which are analogous to file folders.
Similarly, Google organizes its Android-oriented standard class library APIs into packages. In this
chapter I also presented an overview of some of these packaged APIs.

Chapter 2 starts to introduce you to the Java language by focusing on this language’s fundamentals.
You’ll learn about comments, identifiers, types, variables, expressions, statements, and more.

21

Chapter 2
Learning Language
Fundamentals

Aspiring Android app developers need to understand the Java language, which is used to express
an app’s source code. In Chapter 2, I start to introduce you to this language by focusing on its
fundamentals. Specifically, you’ll learn about comments, identifiers (and reserved words), types,
variables, expressions (and literals), and statements.

Note The American Standard Code for Information Interchange (ASCII) has traditionally been used
to encode a program’s source code. Because ASCII is limited to the English language, Unicode
(http://unicode.org/) was developed as a replacement. Unicode is a computing industry standard
for consistently encoding, representing, and handling text that’s expressed in most of the world’s writing
systems. Because Java supports Unicode, non-English-oriented symbols can be integrated into or accessed
from Java source code. You’ll see examples in this chapter.

Learning Comments
Source code needs to be documented so that you (and any others who have to maintain it) can
understand it, now and later. Source code should be documented while being written and whenever
it’s modified. If these modifications impact existing documentation, the documentation must be
updated so that it accurately explains the code.

Java provides the comment feature for embedding documentation in source code. When the
source code is compiled, the Java compiler ignores all comments—no bytecodes are generated.
Single-line, multiline, and Javadoc comments are supported.

22 CHAPTER 2: Learning Language Fundamentals

Single-Line Comments
A single-line comment occupies all or part of a single line of source code. This comment begins with
the // character sequence and continues with explanatory text. The compiler ignores everything
from // to the end of the line in which // appears. The following example presents a single-line
comment:

System.out.println(Math.sqrt(10 * 10 + 20 * 20)); // Output distance from (0, 0) to (10, 20).

This example calculates the distance between the (0, 0) origin and the point (10, 20) in the Cartesian
x/y plane. It uses the formula distance = square root(x*x+y*y), where x is 10 and y is 20, for this
task. Java provides a Math class whose sqrt() method returns the square root of its single numeric
argument. (I discuss Math in Chapter 7 and arguments in Chapter 3.)

Note Single-line comments are useful for inserting short but meaningful explanations of source code into
this code. Don’t use them to insert unhelpful information. For example, when declaring a variable, don’t insert
a meaningless comment such as // This variable stores integer values.

Multiline Comments
A multiline comment occupies one or more lines of source code. This comment begins with the
/* character sequence, continues with explanatory text, and ends with the */ character sequence.
Everything from /* through */ is ignored by the compiler. The following example demonstrates a
multiline comment:

/*
 A year is a leap year if it is divisible by 400, or divisible by 4 and
 not also divisible by 100.
*/
return (year % 400 == 0 || (year % 4 == 0 && year % 100 != 0));

This example introduces a return statement (discussed in Chapter 3) for determining whether a
year (stored in a variable named year; I discuss variables later in this chapter) is a leap year or not.
The important part of this code to grasp is the multiline comment, which clarifies the expression
(discussed later) that determines whether year’s value does or doesn’t represent a leap year.

Caution You cannot place one multiline comment inside another. For example, /*/* Nesting
multiline comments is illegal! */*/ is not a valid multiline comment.

23CHAPTER 2: Learning Language Fundamentals

Javadoc Comments
A Javadoc comment occupies one or more lines of source code. This comment begins with the
/** character sequence, continues with explanatory text, and ends with the */ character sequence.
Everything from /** through */ is ignored by the compiler. The following example demonstrates a
Javadoc comment:

/**
 * Application entry point
 *
 * @param args array of command-line arguments passed to this method
 */
public static void main(String[] args)
{
 // TODO code application logic here
}

This example begins with a Javadoc comment that describes the main() method, which I discussed
in Chapter 1. Sandwiched between /** and */ is a description of the method and the @param
Javadoc tag (an @-prefixed instruction to the javadoc tool).

The following list identifies several commonly used tags:

 @author identifies the source code’s author.

 @deprecated identifies a source code entity (such as a method) that should no
longer be used.

 @param identifies one of a method’s parameters.

 @see provides a see-also reference.

 @since identifies the software release where the entity first originated.

 @return identifies the kind of value that the method returns.

 @throws documents an exception thrown from a method. I discuss exceptions
in Chapter 5.

Listing 2-1 presents Chapter 1’s DumpArgs application source code with Javadoc comments that
describe the DumpArgs class and its main() method.

Listing 2-1. Documenting an Application Class and Its main() Method

/**
 Dump all command-line arguments to standard output.

 @author Jeff Friesen
*/

public class DumpArgs
{
 /**
 Application entry point.

24 CHAPTER 2: Learning Language Fundamentals

 @param args array of command-line arguments.
 */

 public static void main(String[] args)
 {
 System.out.println("Passed arguments:");
 for (int i = 0; i < args.length; i++)
 System.out.println(args[i]);
 }
}

You can extract these documentation comments into a set of HTML files by using the JDK’s javadoc
tool, as follows:

javadoc DumpArgs.java

javadoc responds by outputting the following messages:

Loading source file DumpArgs.java...
Constructing Javadoc information...
Standard Doclet version 1.7.0_06
Building tree for all the packages and classes...
Generating \DumpArgs.html...
Generating \package-frame.html...
Generating \package-summary.html...
Generating \package-tree.html...
Generating \constant-values.html...
Building index for all the packages and classes...
Generating \overview-tree.html...
Generating \index-all.html...
Generating \deprecated-list.html...
Building index for all classes...
Generating \allclasses-frame.html...
Generating \allclasses-noframe.html...
Generating \index.html...
Generating \help-doc.html...

It also generates several files, including the index.html documentation entry-point file. Point your
browser to this file and you should see a page similar to that shown in Figure 2-1.

25CHAPTER 2: Learning Language Fundamentals

Note Appendix B provides another (and a more extensive) example involving Javadoc comments and the
javadoc tool.

Figure 2-1. The entry-point page into DumpArgs’s documentation describes this class

Learning Identifiers
Source code entities such as classes and methods need to be named so that they can be referenced
from elsewhere in the code. Java provides the identifiers feature for this purpose.

An identifier consists of letters (A–Z, a–z, or equivalent uppercase/lowercase letters in other human
alphabets), digits (0–9 or equivalent digits in other human alphabets), connecting punctuation
characters (e.g., the underscore), and currency symbols (e.g., the dollar sign $). This name must
begin with a letter, a currency symbol, or a connecting punctuation character; and its length cannot
exceed the line in which it appears.

26 CHAPTER 2: Learning Language Fundamentals

Examples of valid identifiers include (some editors might have problems with such symbols), i,
counter, j2, first$name, and _for. Examples of invalid identifiers include 1name (starts with a digit)
and first#name (# is not a valid identifier symbol).

Note Java is a case-sensitive language, which means that identifiers differing only in case are considered
separate identifiers. For example, temperature and Temperature are separate identifiers.

Almost any valid identifier can be chosen to name a class, method, or other source code entity.
However, some identifiers are reserved for special purposes; they are known as reserved words.
Java reserves the following identifiers: abstract, assert, boolean, break, byte, case, catch, char,
class, const, continue, default, do, double, enum, else, extends, false, final, finally, float, for,
goto, if, implements, import, instanceof, int, interface, long, native, new, null, package, private,
protected, public, return, short, static, strictfp, super, switch, synchronized, this, throw,
throws, transient, true, try, void, volatile, and while. The compiler outputs an error message
when you attempt to use any of these reserved words outside of their usage contexts.

Note Most of Java’s reserved words are also known as keywords. The three exceptions are false, null,
and true, which are examples of literals (values specified verbatim).

Learning Types
Applications process different types of values such as integers, floating-point values, characters, and
strings. A type identifies a set of values (and their representation in memory) and a set of operations
that transform these values into other values of that set. For example, the integer type identifies
numeric values with no fractional parts and integer-oriented math operations, such as adding two
integers to yield another integer.

Note Java is a strongly typed language, which means that every expression, variable, and so on has a type
known to the compiler. This capability helps the compiler detect type-related errors at compile time rather
than having these errors manifest themselves at runtime. Expressions and variables are discussed later in
this chapter.

Java classifies types as primitive types, user-defined types, and array types.

Primitive Types
A primitive type is a type that’s defined by the language and whose values are not objects. Java
supports the Boolean, character, byte integer, short integer, integer, long integer, floating-point, and
double precision floating-point primitive types. They are described in Table 2-1.

27CHAPTER 2: Learning Language Fundamentals

Table 2-1 describes each primitive type in terms of its reserved word, size, minimum value, and
maximum value. A “--” entry indicates that the column in which it appears is not applicable to the
primitive type described in that entry’s row.

The size column identifies the size of each primitive type in terms of the number of bits (binary
digits—each digit is either 0 or 1) that a value of that type occupies in memory. Except for Boolean
(whose size is implementation dependent—one Java implementation might store a Boolean value in
a single bit, whereas another implementation might require an 8-bit byte for performance efficiency),
each primitive type’s implementation has a specific size.

The minimum value and maximum value columns identify the smallest and largest values that can be
represented by each type. Except for Boolean (whose only values are true and false), each primitive
type has a minimum value and a maximum value.

The minimum and maximum values of the character type refer to Unicode. Unicode 0 is shorthand
for “the first Unicode code point”—a code point is an integer that represents a symbol (such as A)
or a control character (such as newline or tab) or that combines with other code points to form
a symbol.

Table 2-1. Primitive Types

Primitive Type Reserved Word Size Min Value Max Value
Boolean boolean -- -- --

Character char 16-bit Unicode 0 Unicode 65,535

Byte integer byte 8-bit −128 +127

Short integer short 16-bit −32,768 +32,767

Integer int 32-bit −2,147,483,648 +2,147,483,647

Long integer long 64-bit −9,223,372,036,854,775,808 +9,223,372,036,854,775,807

Floating-point float 32-bit IEEE 754 IEEE 754

Double precision
floating-point

double 64-bit IEEE 754 IEEE 754

Note The character type’s limits imply that this type is unsigned (all character values are positive).
In contrast, each numeric type is signed (it supports positive and negative values).

The minimum and maximum values of the byte integer, short integer, integer, and long integer types
reveal that there is one more negative value than positive value (0 is typically not regarded as a
positive value). The reason for this imbalance has to do with how integers are represented.

Java represents an integer value as a combination of a sign bit (the leftmost bit—0 for a positive
value and 1 for a negative value) and magnitude bits (all remaining bits to the right of the sign
bit). When the sign bit is 0, the magnitude is stored directly. However, when the sign bit is 1, the
magnitude is stored using twos-complement representation in which all 1s are flipped to 0s, all

28 CHAPTER 2: Learning Language Fundamentals

0s are flipped to 1s, and 1 is added to the number behind the minus sign. Twos-complement is
used so that negative integers can naturally coexist with positive integers. For example, adding the
representation of −1 to +1 yields 0. Figure 2-2 illustrates byte integer 2’s direct representation and
byte integer −2’s twos-complement representation.

0 0 0 0 0 0 01

–2sign bit

2

1 1 1 1 1 1 01

Figure 2-2. The binary representation of two byte-integer values begins with a sign bit

The minimum and maximum values of the floating-point and double precision floating-point
types refer to Institute of Electrical and Electronics Engineers (IEEE) 754, which is a standard for
representing floating-point values in memory. Check out Wikipedia’s “IEEE 754-2008” entry
(http://en.wikipedia.org/wiki/IEEE_754) to learn more about this standard.

Note Developers who argue that Java should support objects only are not happy about the inclusion of
primitive types in the language. However, Java was designed to include primitive types to overcome the
speed and memory limitations of early 1990s-era devices, to which Java was originally targeted.

User-Defined Types
A user-defined type is a type that’s often used to model a real-world concept (e.g., a color or a bank
account). It’s defined by the developer using a class, an interface, an enum, or an annotation type;
and its values are objects. (I discuss classes in Chapter 3, interfaces in Chapter 4, and enums and
annotation types in Chapter 6.)

For example, you could create a Color class to model colors; its values could describe colors as
red/green/blue component values. Also, Java’s String class defines the string user-defined type;
its values describe strings of characters, and its methods perform various string operations such as
concatenating two strings together. (I discuss methods in Chapter 3.)

User-defined types are also known as reference types because a variable of that type stores a
reference (a memory address or some other identifier) to a region of memory that stores an object
of that type. In contrast, variables of primitive types store the values directly; they don’t store
references to these values.

Array Types
An array type is a special reference type that signifies an array, a region of memory that stores values
in equal-size and contiguous slots, which are commonly referred to as elements.

29CHAPTER 2: Learning Language Fundamentals

This type consists of the element type (a primitive type or a user-defined type) and one or more
pairs of square brackets that indicate the number of dimensions (extents). A single pair of brackets
signifies a one-dimensional array (a vector), two pairs of brackets signify a two-dimensional array
(a table), three pairs of brackets signify a one-dimensional array of two-dimensional arrays (a vector
of tables), and so on. For example, int[] signifies a one-dimensional array (with int as the element
type), and double[][] signifies a two-dimensional array (with double as the element type).

Learning Variables
Applications manipulate values that are stored in memory, which is symbolically represented in
source code through the use of the variables feature. A variable is a named memory location that
stores some type of value. A variable that stores a reference is often referred to as reference variable.

Variables must be declared before they are used. A declaration minimally consists of a type name,
optionally followed by a sequence of square bracket pairs, followed by a name, optionally followed
by a sequence of square bracket pairs, and terminated with a semicolon character (;). Consider the
following examples:

int counter;
double temperature;
String firstName;
int[] ages;
char gradeLetters[];
float[][] matrix;
double ;

The first example declares an integer variable named counter, the second example declares a
variable (of double precision floating-point type) named temperature, the third example declares
a string variable named firstName, the fourth example declares a one-dimensional integer array
variable named ages, the fifth example declares a one-dimensional character array variable named
gradeLetters, the sixth example declares a two-dimensional floating-point array variable named
matrix, and the seventh example declares a double precision floating-point variable named . No
string is yet associated with firstName, and no arrays are yet associated with ages, gradeLetters,
and matrix.

Note Square brackets can appear after the type name or after the variable name, but not in both places.
For example, the compiler reports an error when it encounters int[] x[];. It is common practice to place
the square brackets after the type name (as in int[] ages;) instead of after the variable name (as in char
gradeLetters[];), unless the array is being declared in a context such as int x, y[], z;.

You can declare multiple variables on one line by separating each variable from its predecessor with
a comma, as demonstrated by the following example:

int x, y[], z;

30 CHAPTER 2: Learning Language Fundamentals

This example declares three variables named x, y, and z. Each variable shares the same type,
which happens to be integer. Unlike x and z, which store single integer values, y[] signifies a
one-dimensional array whose element type is integer—each element stores an integer value.
No array is yet associated with y.

The square brackets must appear after the variable name when the array is declared on the same
line as the other variables. If you place the square brackets before the variable name, as in int x,
[]y, z;, the compiler reports an error. If you place the square brackets after the type name, as in
int[] x, y, z;, all three variables signify one-dimensional arrays of integers.

Learning Expressions
The previously declared variables were not explicitly initialized to any values. As a result, they are
either initialized to default values (such as 0 for int and 0.0 for double) or remain uninitialized,
depending on the contexts in which they appear (declared within classes or declared within
methods). In Chapter 3 I discuss variable contexts in terms of fields, local variables, and parameters.

Java provides the expressions feature for initializing variables and for other purposes. An expression
is a combination of literals, variable names, method calls, and operators. At runtime, it evaluates to
a value whose type is referred to as the expression’s type. If the expression is being assigned to a
variable, the expression’s type must agree with the variable’s type; otherwise, the compiler reports
an error.

Java classifies expressions as simple expressions and compound expressions.

Simple Expressions
A simple expression is a literal (a value expressed verbatim), the name of a variable (containing a
value), or a method call (returning a value). Java supports several kinds of literals: string, Boolean
true and false, character, integer, floating-point, and null.

Note A method call that doesn’t return a value—the called method is known as a void method—is
a special kind of simple expression; for example, System.out.println("Hello, World!");.
This standalone expression cannot be assigned to a variable. Attempting to do so (as in
int i = System.out.println("X");) causes the compiler to report an error.

A string literal consists of a sequence of Unicode characters surrounded by a pair of double quotes;
for example, "The quick brown fox jumps over the lazy dog." It might also contain escape
sequences, which are special syntax for representing certain printable and nonprintable characters
that cannot otherwise appear in the literal. For example, "The quick brown \"fox\" jumps over the
lazy dog." uses the \" escape sequence to surround fox with double quotes.

Table 2-2 describes all supported escape sequences.

31CHAPTER 2: Learning Language Fundamentals

Finally, a string literal might contain Unicode escape sequences, which are special syntax for
representing Unicode characters. A Unicode escape sequence begins with \u and continues with
four hexadecimal digits (0–9, A–F, a–f) with no intervening space. For example, \u0041 represents
capital letter A, and \u20ac represents the European Union’s euro currency symbol.

A Boolean literal consists of reserved word true or reserved word false.

A character literal consists of a single Unicode character surrounded by a pair of single quotes
('A' is an example). You can also represent, as a character literal, an escape sequence (e.g., '\'') or
a Unicode escape sequence (e.g., '\u0041').

An integer literal consists of a sequence of digits. If the literal is to represent a long integer value,
it must be suffixed with an uppercase L or lowercase l (L is easier to read). If there is no suffix, the
literal represents a 32-bit integer (an int).

Integer literals can be specified in the decimal, hexadecimal, and octal formats:

The decimal format is the default format; for example, 127.

The hexadecimal format requires that the literal begin with 0x or 0X and continue
with hexadecimal digits (0–9, A–F, a–f); for example, 0x7F.

The octal format requires that the literal be prefixed with 0 and continue with
octal digits (0–7); for example, 0177.

A floating-point literal consists of an integer part, a decimal point (represented by the period
character [.]), a fractional part, an exponent (starting with letter E or e), and a type suffix (letter D, d,
F, or f). Most parts are optional, but enough information must be present to differentiate the
floating-point literal from an integer literal. Examples include 0.1 (double precision floating-point), 89F
(floating-point), 600D (double precision floating-point), and 13.08E+23 (double precision floating-point).

Finally, the null literal is assigned to a reference variable to indicate that the variable doesn’t refer to
an object.

Table 2-2. Escape Sequences

Escape Syntax Description
\\ Backslash

\" Double quote

\' Single quote

\b Backspace

\f Form feed

\n Newline (also referred to as line feed)

\r Carriage return

\t Horizontal tab

32 CHAPTER 2: Learning Language Fundamentals

The following examples use literals to initialize the previously presented variables:

int counter = 10;
double temperature = 98.6; // Assume Fahrenheit scale.
String firstName = "Mark";
int[] ages = { 52, 28, 93, 16 };
char gradeLetters[] = { 'A', 'B', 'C', 'D', 'F' };
float[][] matrix = { { 1.0F, 2.0F, 3.0F }, { 4.0F, 5.0F, 6.0F }};
int x = 1, y[] = { 1, 2, 3 }, z = 3;
double = 3.14159;

The fourth through seventh examples use array initializers to initialize the ages, gradeLetters, matrix,
and y arrays. An array initializer consists of a brace-and-comma-delimited list of expressions, which
(as the matrix example shows) may themselves be array initializers. The matrix example results in a
table that looks like the following:

1.0F 2.0F 3.0F
4.0F 5.0F 6.0F

ORGANIZING VARIABLES IN MEMORY

Perhaps you’re curious about how variables are organized in memory. Figure 2-3 presents one possible high-level
organization for the counter, ages, and matrix variables, along with the arrays assigned to ages and matrix.

10

52

1.0F

20001000
(counter)

20001004
(ages)

20001008
(matrix)

2.0F 4.0F 5.0F 6.0F3.0F

28 93 16

Figure 2-3. The counter variable stores a 4-byte integer value, whereas ages and matrix store 4-byte references to their
respective arrays

Figure 2-3 reveals that each of counter, ages, and matrix is stored at a memory address (starting at a fictitious
20001000 value in this example) and divisible by 4 (each variable stores a 4-byte value); that counter’s 4-byte value is
stored at this address; and that each of the ages and matrix 4-byte memory locations stores the 32-bit address of its
respective array (64-bit addresses would most likely be used on 64-bit virtual machines). Also, a one-dimensional array is
stored as a list of values, whereas a two-dimensional array is stored as a one-dimensional row array of addresses, where
each address identifies a one-dimensional column array of values for that row.

Although Figure 2-3 implies that array addresses are stored in ages and matrix, which equates references with
addresses, a Java implementation might equate references with handles (integer values that identify slots in a list). This
alternative is presented in Figure 2-4 for ages and its referenced array.

33CHAPTER 2: Learning Language Fundamentals

Handles make it easy to move around regions of memory during garbage collection (discussed in Chapter 3). If multiple
variables referenced the same array via the same address, each variable’s address value would have to be updated when
the array was moved. However, if multiple variables referenced the array via the same handle, only the handle’s list entry
would need to be updated. A downside to using handles is that accessing memory via these handles can be slower than
directly accessing this memory via an address. Regardless of how references are implemented, this implementation
detail is hidden from the Java developer to promote portability.

The following example shows a simple expression where a literal is assigned to a variable, followed
by a simple expression where one variable is assigned the value of another variable:

int counter1 = 1;
int counter2 = counter1;

Finally, the following example shows a simple expression that assigns the result of a method call to a
variable named isLeap:

boolean isLeap = isLeapYear(2012);

The previous examples have assumed that only those expressions whose types are the same as the
types of the variables that they are initializing can be assigned to those variables. However, under
certain circumstances, it’s possible to assign an expression having a different type. For example,
Java permits you to assign certain integer literals to short integer variables, as in short s = 20;, and
assign a short integer expression to an integer variable, as in int i = s;.

Java permits the former assignment because 20 can be represented as a short integer (no
information is lost). In contrast, Java would complain about short s = 40000; because integer literal
40000 cannot be represented as a short integer (32767 is the maximum positive integer that can be
stored in a short integer variable). Java permits the latter assignment because no information is lost
when Java converts from a type with a smaller set of values to a type with a wider set of values.

Java supports the following primitive-type conversions via widening conversion rules:

Byte integer to short integer, integer, long integer, floating-point, or double
precision floating-point

Short integer to integer, long integer, floating-point, or double precision
floating-point

Character to integer, long integer, floating-point, or double precision
floating-point

901

52 28 93 16

ages

900

901

902
. . .

Figure 2-4. A handle is stored in ages, and the list entry identified by this handle stores the address of the associated array

34 CHAPTER 2: Learning Language Fundamentals

Integer to long integer, floating-point, or double precision floating-point

Long integer to floating-point or double precision floating-point

Floating-point to double precision floating-point

Note When converting from a smaller integer to a larger integer, Java copies the smaller integer’s sign bit
into the extra bits of the larger integer.

In Chapter 4, I discuss the widening conversion rules for performing type conversions in the contexts
of user-defined and array types.

Compound Expressions
A compound expression is a sequence of simple expressions and operators, where an operator
(a sequence of instructions symbolically represented in source code) transforms its operand
expression value(s) into another value. For example, -6 is a compound expression consisting
of operator - and integer literal 6 as its operand. This expression transforms 6 into its negative
equivalent. Similarly, x + 5 is a compound expression consisting of variable name x, integer
literal 5, and operator + sandwiched between these operands. Variable x’s value is fetched and
added to 5 when this expression is evaluated. The sum becomes the value of the expression.

Note When x’s type is byte integer or short integer, this variable’s value is widened to an integer.
However, when x’s type is long integer, floating-point, or double precision floating-point, 5 is widened to the
appropriate type. The addition operation is performed after the widening conversion takes place.

Java supplies many operators, which are classified by the number of operands that they take. A
unary operator takes only one operand (unary minus [−] is an example), a binary operator takes two
operands (addition [+] is an example), and Java’s single ternary operator (conditional [?:]) takes three
operands.

Operators are also classified as prefix, postfix, and infix. A prefix operator is a unary operator that
precedes its operand (as in −6), a postfix operator is a unary operator that trails its operand (as in
x++), and an infix operator is a binary or ternary operator that is sandwiched between the binary
operator’s two or the ternary operator’s three operands (as in x + 5).

Table 2-3 presents all supported operators in terms of their symbols, descriptions, and precedence
levels—I discuss the concept of precedence at the end of this section. Various operator descriptions
refer to “integer type,” which is shorthand for specifying any of byte integer, short integer, integer, or
long integer unless “integer type” is qualified as a 32-bit integer. Also, “numeric type” refers to any of
these integer types along with floating-point and double precision floating-point.

35CHAPTER 2: Learning Language Fundamentals

Table 2-3. Operators

Operator Symbol Description Precedence
Addition + Given operand1 + operand2, where each

operand must be of character or numeric type,
add operand2 to operand1 and return the sum.

10

Array index [] Given variable[index], where index must
be of integer type, read value from or store
value into variable’s storage element at
location index.

13

Assignment = Given variable = operand, which must be
assignment-compatible (their types must agree),
store operand in variable.

0

Bitwise AND & Given operand1 & operand2, where each
operand must be of character or integer type,
bitwise AND their corresponding bits and
return the result. A result bit is set to 1
when each operand’s corresponding
bit is 1. Otherwise, the result bit is set to 0.

6

Bitwise complement ~ Given ~operand, where operand must be of
character or integer type, flip operand’s bits
(1s to 0s and 0s to 1s) and return the result.

12

Bitwise exclusive OR ^ Given operand1 ^ operand2, where each operand
must be of character or integer type, bitwise
exclusive OR their corresponding bits and return
the result. A result bit is set to 1 when one
operand’s corresponding bit is 1 and the other
operand’s corresponding bit is 0. Otherwise,
the result bit is set to 0.

5

Bitwise inclusive OR | Given operand1 | operand2, which must be
of character or integer type, bitwise inclusive
OR their corresponding bits and return the result.
A result bit is set to 1 when either (or both) of
the operands’ corresponding bits is 1.
Otherwise, the result bit is set to 0.

4

Cast (type) Given (type) operand, convert operand to an
equivalent value that can be represented by type.
For example, you could use this operator to convert
a floating-point value to a 32-bit integer value.

12

(continued)

36 CHAPTER 2: Learning Language Fundamentals

Operator Symbol Description Precedence

Compound assignment +=, −=,
*=, /=,
%=, &=,
|=, ^=,
<<=, >>=,
>>>=

Given variable operator operand, where
operator is one of the listed compound operator
symbols and where operand is assignment
compatible with variable, perform the
indicated operation using variable’s value as
operator’s left operand value and store the
resulting value in variable.

0

Conditional ?: Given operand1 ? operand2 : operand3,
where operand1 must be of Boolean type,
return operand2 when operand1 is true or
operand3 when operand1 is false.
The types of operand2 and operand3 must agree.

1

Conditional AND && Given operand1 && operand2, where each operand
must be of Boolean type, return true when both
operands are true. Otherwise, return false. When
operand1 is false, operand2 is not examined.
This is known as short-circuiting.

3

Conditional OR || Given operand1 || operand2, where each
operand must be of Boolean type, return true
when at least one operand is true. Otherwise,
return false. When operand1 is true,
operand2 is not examined. This is known as
short-circuiting.

2

Division / Given operand1 / operand2, where each
operand must be of character or numeric
type, divide operand1 by operand2 and
return the quotient.

11

Equality == Given operand1 == operand2, where both
operands must be comparable (you cannot
compare an integer with a string literal,
for example), compare both operands for
equality. Return true when these operands
are equal. Otherwise, return false.

7

Inequality != Given operand1 != operand2, where both
operands must be comparable (you cannot
compare an integer with a string literal, for example),
compare both operands for inequality. Return true
when these operands are not equal. Otherwise,
return false.

7

Table 2-3. (continued)

(continued)

37CHAPTER 2: Learning Language Fundamentals

Operator Symbol Description Precedence

Left shift << Given operand1 << operand2,
where each operand must be of character
or integer type, shift operand1’s binary
representation left by the number of bits
that operand2 specifies. For each shift,
a 0 is shifted into the rightmost bit and the
leftmost bit is discarded. Only the 5 low-order
bits of operand2 are used when shifting a
32–bit integer (to prevent shifting more than
the number of bits in a 32–bit integer). Only the
6 low-order bits of operand2 are used when
shifting a 64-bit integer (to prevent shifting more
than the number of bits in a 64-bit integer).
The shift preserves negative values. Furthermore,
it is equivalent to (but faster than) multiplying
by a multiple of 2.

9

Logical AND & Given operand1 & operand2, where each
operand must be of Boolean type, return true
when both operands are true. Otherwise,
return false. In contrast to conditional
AND, logical AND doesn’t perform short-circuiting.

6

Logical complement ! Given !operand, where operand must be of
Boolean type, flip operand’s value (true to
false or false to true) and return the result.

12

Logical exclusive OR ^ Given operand1 ^ operand2, where each
operand must be of Boolean type, return true
when one operand is true and the other operand
is false. Otherwise, return false.

5

Logical inclusive OR | Given operand1 | operand2, where each
operand must be of Boolean type, return true
when at least one operand is true. Otherwise,
return false. In contrast to conditional OR,
logical inclusive OR doesn’t perform
short-circuiting.

4

Member access . Given identifier1.identifier2, access the identifier2
member of identifier1. You will learn about this
operator in Chapter 3.

13

Method call () Given identifier(argument list), call the method
identified by identifier and matching parameter list.
You will learn about method calling in Chapter 3.

13

Table 2-3. (continued)

(continued)

38 CHAPTER 2: Learning Language Fundamentals

Operator Symbol Description Precedence

Multiplication * Given operand1 * operand2, where each
operand must be of character or numeric
type, multiply operand1 by operand2 and
return the product.

11

Object creation new Given new identifier(argument list), allocate
memory for object and call constructor (discussed
in Chapter 3) specified as identifier(argument list).
Given new identifier[integer size], allocate a
one-dimensional array of values.

12

Postdecrement -- Given variable--, where variable must be of
character or numeric type, subtract 1 from
variable’s value (storing the result in variable) and
return the original value.

13

Postincrement ++ Given variable++, where variable must be of
character or numeric type, add 1 to variable’s
value (storing the result in variable) and return
the original value.

13

Predecrement -- Given --variable, where variable must be of
character or numeric type, subtract 1 from
its value, store the result in variable, and return
the new decremented value.

12

Preincrement ++ Given ++variable, where variable must be of
character or numeric type, add 1 to its value,
store the result in variable, and return the new
incremented value.

12

Relational
greater than

> Given operand1 > operand2, where each
operand must be of character or numeric type,
return true when operand1 is greater than
operand2. Otherwise, return false.

8

Relational greater
than or equal to

>= Given operand1 >= operand2, where each
operand must be of character or numeric type,
return true when operand1 is greater than or
equal to operand2. Otherwise, return false.

8

Relational less than < Given operand1 < operand2, where each
operand must be of character or numeric type,
return true when operand1 is less than operand2.
Otherwise, return false.

8

Table 2-3. (continued)

(continued)

39CHAPTER 2: Learning Language Fundamentals

Operator Symbol Description Precedence

Relational less
than or equal to

<= Given operand1 <= operand2, where each
operand must be of character or numeric type,
return true when operand1 is less than or equal
to operand2. Otherwise, return false.

8

Relational
type checking

instanceof Given operand1 instanceof operand2,
where operand1 is an object and operand2 is
a class (or other user-defined type), return true
when operand1 is an instance of operand2.
Otherwise, return false.

8

Remainder % Given operand1 % operand2, where each
operand must be of character or numeric type,
divide operand1 by operand2 and return the
remainder. Also known as the modulus operator.

11

Signed right shift >> Given operand1 >> operand2, where each
operand must be of character or integer type,
shift operand1’s binary representation right by
the number of bits that operand2 specifies.
For each shift, a copy of the sign bit (the leftmost
bit) is shifted to the right and the rightmost bit is
discarded. Only the 5 low-order bits of
operand2 are used when shifting a 32-bit integer
(to prevent shifting more than the number
of bits in a 32-bit integer). Only the 6 low-order
bits of operand2 are used when shifting a
64-bit integer (to prevent shifting more than
the number of bits in a 64-bit integer).
The shift preserves negative values. Furthermore,
it is equivalent to (but faster than) dividing
by a multiple of 2.

9

String concatenation + Given operand1 + operand2, where at least
one operand is of String type, append
operand2’s string representation to operand1’s
string representation and return the
concatenated result.

10

Subtraction - Given operand1 - operand2, where each operand
must be of character or numeric type, subtract
operand2 from operand1 and return the difference.

10

Unary minus - Given -operand, where operand must be
of character or numeric type, return
operand’s arithmetic negative.

12

Table 2-3. (continued)

(continued)

40 CHAPTER 2: Learning Language Fundamentals

Table 2-3’s operators can be classified as additive, array index, assignment, bitwise, cast,
conditional, equality, logical, member access, method call, multiplicative, object creation, relational,
shift, and unary minus/plus.

Additive Operators
The additive operators consist of addition (+), subtraction (−), postdecrement (−−), postincrement (++),
predecrement (−−), preincrement (++), and string concatenation (+). Addition returns the sum
of its operands (e.g., 6 + 4 returns 10), subtraction returns the difference between its operands
(e.g., 6 – 4 returns 2 and 4 – 6 returns −2), postdecrement subtracts one from its variable operand
and returns the variable’s prior value (e.g., x−−), postincrement adds one to its variable operand and
returns the variable’s prior value (e.g., x++), predecrement subtracts one from its variable operand
and returns the variable’s new value (e.g., −−x), preincrement adds one to its variable operand and
returns the variable’s new value (e.g., ++x), and string concatenation merges its string operands and
returns the merged string (e.g., "A" + "B" returns "AB").

The addition, subtraction, postdecrement, postincrement, predecrement, and preincrement
operators can yield values that overflow or underflow the limits of the resulting value’s type. For
example, adding two large positive 32-bit integer values can produce a value that cannot be
represented as a 32-bit integer value. The result is said to overflow. Java doesn’t detect overflows
and underflows.

Java provides a special widening conversion rule for use with string operands and the string
concatenation operator. When either operand is not a string, the operand is first converted to a string
prior to string concatenation. For example, when presented with "A" + 5, the compiler generates code
that first converts 5 to "5" and then performs the string concatenation operation, resulting in "A5".

Operator Symbol Description Precedence

Unary plus + Like its predecessor, but return operand.
Rarely used.

12

Unsigned right shift >>> Given operand1 >>> operand2, where each operand
must be of character or integer type, shift operand1’s
binary representation right by the number of bits that
operand2 specifies. For each shift, a zero is shifted into
the leftmost bit and the rightmost bit is discarded. Only
the 5 low-order bits of operand2 are used when shifting
a 32–bit integer (to prevent shifting more than the
number of bits in a 32–bit integer). Only the 6 low-order
bits of operand2 are used when shifting a 64-bit integer
(to prevent shifting more than the number of bits in a
64-bit integer). The shift does not preserve negative
values. Furthermore, it is equivalent to (but faster than)
dividing by a multiple of 2.

9

Table 2-3. (continued)

41CHAPTER 2: Learning Language Fundamentals

Array Index Operator
The array index operator ([]) accesses an array element by presenting the location of that element
as an integer index. This operator is specified after an array variable’s name, for example, ages[0].

Indexes are relative to 0, which implies that ages[0] accesses the first element, whereas ages[6]
accesses the seventh element. The index must be greater than or equal to 0 and less than the
length of the array; otherwise, the virtual machine throws ArrayIndexOutOfBoundsException (consult
Chapter 5 to learn about exceptions).

An array’s length is returned by appending “.length” to the array variable. For example,
ages.length returns the length of (the number of elements in) the array that ages references.
Similarly, matrix.length returns the number of row elements in the matrix two-dimensional array,
whereas matrix[0].length returns the number of column elements assigned to the first row element
of this array.

Assignment Operators
The assignment operator (=) assigns an expression’s result to a variable (as in int x = 4;). The types
of the variable and expression must agree; otherwise, the compiler reports an error.

Java also supports several compound assignment operators that perform a specific operation and
assign its result to a variable. For example, the += operator evaluates the numeric expression on its
right and adds the result to the contents of the variable on its left. The other compound assignment
operators behave in a similar way.

Bitwise Operators
The bitwise operators consist of bitwise AND (&), bitwise complement (~), bitwise exclusive OR (^),
and bitwise inclusive OR (|). These operators are designed to work on the binary representations of
their character or integral operands. Because this concept can be hard to understand if you haven’t
previously worked with these operators in another language, the following output from a hypothetical
application demonstrates these operators:

~00000000000000000000000010110101 results in 11111111111111111111111101001010
00011010 & 10110111 results in 00000000000000000000000000010010
00011010 ^ 10110111 results in 00000000000000000000000010101101
00011010 | 10110111 results in 00000000000000000000000010111111

The &, ^, and | operators in the last three lines first convert their byte integer operands to 32-bit
integer values (through sign bit extension, copying the sign bit’s value into the extra bits) before
performing their operations.

Cast Operator
The cast operator—(type)—attempts to convert the type of its operand to type. This operator
exists because the compiler will not allow you to convert a value from one type to another in which
information will be lost without specifying your intention do so (via the cast operator). For example,
when presented with short s = 1.65 + 3;, the compiler reports an error because attempting to
convert a double precision floating-point value to a short integer results in the loss of the fraction
.65—s would contain 4 instead of 4.65.

42 CHAPTER 2: Learning Language Fundamentals

Recognizing that information loss might not always be a problem, Java permits you to explicitly
state your intention by casting to the target type. For example, short s = (short) 1.65 + 3; tells
the compiler that you want 1.65 + 3 to be converted to a short integer and that you realize that the
fraction will disappear.

The following example provides another demonstration of the need for a cast operator:

char c = 'A';
byte b = c;

The compiler reports an error about loss of precision when it encounters byte b = c;. The reason is
that c can represent any unsigned integer value from 0 through 65535, whereas b can only represent
a signed integer value from −128 through +127. Even though 'A' equates to +65, which can fit within
b’s range, c could just have easily been initialized to '\u0323', which would not fit.

The solution to this problem is to introduce a (byte) cast, as follows, which causes the compiler to
generate code to cast c’s character type to byte integer:

byte b = (byte) c;

Java supports the following primitive-type conversions via cast operators:

Byte integer to character

Short integer to byte integer or character

Character to byte integer or short integer

Integer to byte integer, short integer, or character

Long integer to byte integer, short integer, character, or integer

Floating-point to byte integer, short integer, character, integer, or long integer

Double precision floating-point to byte integer, short integer, character, integer,
long integer, or floating-point

A cast operator is not always required when converting from more to fewer bits and where no
data loss occurs. For example, when it encounters byte b = 100;, the compiler generates code
that assigns integer 100 to byte integer variable b because 100 can easily fit into the 8-bit storage
location assigned to this variable.

Conditional Operators
The conditional operators consist of conditional AND (&&), conditional OR (||), and conditional (?:).
The first two operators always evaluate their left operand (a Boolean expression that evaluates to
true or false) and conditionally evaluate their right operand (another Boolean expression). The third
operator evaluates one of two operands based on a third Boolean operand.

Conditional AND always evaluates its left operand and evaluates its right operand only when its
left operand evaluates to true. For example, age > 64 && stillWorking first evaluates age > 64. If
this subexpression is true, stillWorking is evaluated, and its true or false value (stillWorking is a
Boolean variable) serves as the value of the overall expression. If age > 64 is false, stillWorking is
not evaluated.

43CHAPTER 2: Learning Language Fundamentals

Conditional OR always evaluates its left operand and evaluates its right operand only when its left
operand evaluates to false. For example, value < 20 || value > 40 first evaluates value < 20. If
this subexpression is false, value > 40 is evaluated, and its true or false value serves as the overall
expression’s value. If value < 20 is true, value > 40 is not evaluated.

Conditional AND and conditional OR boost performance by preventing the unnecessary evaluation
of subexpressions, which is known as short-circuiting. For example, if its left operand is false, there
is no way that conditional AND’s right operand can change the fact that the overall expression will
evaluate to false.

If you aren’t careful, short-circuiting can prevent side effects (the results of subexpressions that
persist after the subexpressions have been evaluated) from executing. For example, age > 64 &&
++numEmployees > 5 increments numEmployees for only those employees whose ages are greater
than 64. Incrementing numEmployees is an example of a side effect because the value in
numEmployees persists after the subexpression ++numEmployees > 5 has evaluated.

The conditional operator is useful for making a decision by evaluating and returning one of two
operands based on the value of a third operand. The following example converts a Boolean value to
its integer equivalent (1 for true and 0 for false):

boolean b = true;
int i = b ? 1 : 0; // 1 assigns to i

Equality Operators
The equality operators consist of equality (==) and inequality (!=). These operators compare their
operands to determine whether they are equal or unequal. The former operator returns true when
equal; the latter operator returns true when unequal. For example, each of 2 == 2 and 2 != 3
evaluates to true, whereas each of 2 == 4 and 4 != 4 evaluates to false.

When it comes to object operands (discussed in Chapter 3), these operators do not compare their
contents. For example, "abc" == "xyz" doesn’t compare a with x. Instead, because string literals
are really String objects (in Chapter 7 I discuss this concept further), == compares the references to
these objects.

Logical Operators
The logical operators consist of logical AND (&), logical complement (!), logical exclusive OR (^), and
logical inclusive OR (|). Although these operators are similar to their bitwise counterparts, whose
operands must be integer/character, the operands passed to the logical operators must be Boolean.
For example, !false returns true. Also, when confronted with age > 64 & stillWorking, logical
AND evaluates both subexpressions. This same pattern holds for logical exclusive OR and logical
inclusive OR.

Member Access Operator
The member access operator (.) is used to access a class’s members or an object’s members.
For example, String s = "Hello"; int len = s.length(); returns the length of the string assigned
to variable s. It does so by calling the length() method member of the String class. In Chapter 3
I discuss member access in more detail.

44 CHAPTER 2: Learning Language Fundamentals

Arrays are special objects that have a single length member. When you specify an array variable
followed by the member access operator, followed by length, the resulting expression returns the
number of elements in the array as a 32-bit integer. For example, ages.length returns the length of
(the number of elements in) the array that ages references.

Method Call Operator
The method call operator—()—is used to signify that a method (discussed in Chapter 3) is being
called. Furthermore, it identifies the number, order, and types of arguments that are passed to the
method to be picked up by the method’s parameters. System.out.println("Hello"); is an example.

Multiplicative Operators
The multiplicative operators consist of multiplication (*), division (/), and remainder (%). Multiplication
returns the product of its operands (e.g., 6*4 returns 24), division returns the quotient of dividing its
left operand by its right operand (e.g., 6/4 returns 1), and remainder returns the remainder of dividing
its left operand by its right operand (e.g., 6%4 returns 2).

The multiplication, division, and remainder operators can yield values that overflow or underflow
the limits of the resulting value’s type. For example, multiplying two large positive 32-bit integer
values can produce a value that cannot be represented as a 32-bit integer value. The result is said to
overflow. Java doesn’t detect overflows and underflows.

Dividing a numeric value by 0 (via the division or remainder operator) also results in
interesting behavior. Dividing an integer value by integer 0 causes the operator to throw an
ArithmeticException object (I cover exceptions in Chapter 5). Dividing a floating-point/double
precision floating-point value by 0 causes the operator to return +infinity or -infinity, depending
on whether the dividend is positive or negative. Finally, dividing floating-point 0 by 0 causes the
operator to return NaN (Not a Number).

Object Creation Operator
The object creation operator (new) creates an object from a class and also creates an array from an
initializer. I discuss these topics in Chapter 3.

Relational Operators
The relational operators consist of greater than (>), greater than or equal to (>=), less than (<),
less than or equal to (<=), and type checking (instanceof). The former four operators compare their
operands and return true when the left operand is (respectively) greater than, greater than or equal
to, less than, or less than or equal to the right operand. For example, each of 5.0 > 3, 2 >= 2,
16.1 < 303.3, and 54.0 <= 54.0 evaluates to true.

The type-checking operator is used to determine if an object belongs to a specific type. I discuss
this topic in Chapter 4.

45CHAPTER 2: Learning Language Fundamentals

Shift Operators
The shift operators consist of left shift (<<), signed right shift (>>), and unsigned right shift (>>>). Left
shift shifts the binary representation of its left operand leftward by the number of positions specified
by its right operand. Each shift is equivalent to multiplying by 2. For example, 2 << 3 shifts 2’s binary
representation left by 3 positions; the result is equivalent to multiplying 2 by 8.

Each of signed and unsigned right shift shifts the binary representation of its left operand rightward
by the number of positions specified by its right operand. Each shift is equivalent to dividing by 2.
For example, 16 >> 3 shifts 16’s binary representation right by 3 positions; the result is equivalent to
dividing 16 by 8.

The difference between signed and unsigned right shift is what happens to the sign bit during the shift.
Signed right shift includes the sign bit in the shift, whereas unsigned right shift ignores the sign bit. As
a result, signed right shift preserves negative numbers, but unsigned right shift doesn’t. For example,
−4 >> 1 (the equivalent of −4 / 2) evaluates to −2, whereas −4 >>> 1 evaluates to 2147483646.

Tip The shift operators are faster than multiplying or dividing by powers of 2.

Unary Minus/Plus Operators
Unary minus (−) and unary plus (+) are the simplest of all operators. Unary minus returns the negative
of its operand (such as −5 returns −5 and --5 returns 5), whereas unary plus returns its operand
verbatim (such as +5 returns 5 and +−5 returns −5). Unary plus is not commonly used but is present
for completeness.

Precedence and Associativity
When evaluating a compound expression, Java takes each operator’s precedence (level of
importance) into account to ensure that the expression evaluates as expected. For example, when
presented with the expression 60 + 3 * 6, you expect multiplication to be performed before addition
(multiplication has higher precedence than addition), and the final result to be 78. You don’t expect
addition to occur first, yielding a result of 378.

Note Table 2-3’s rightmost column presents a value that indicates an operator’s precedence: the higher
the number, the higher the precedence. For example, addition’s precedence level is 10 and multiplication’s
precedence level is 11, which means that multiplication is performed before addition.

Precedence can be circumvented by introducing open and close parentheses, (and), into the
expression, where the innermost pair of nested parentheses is evaluated first. For example,
evaluating 2 * ((60 + 3) * 6) results in (60 + 3) being evaluated first, (60 + 3) * 6 being
evaluated next, and the overall expression being evaluated last. Similarly, in the expression
60 / (3–6), subtraction is performed before division.

46 CHAPTER 2: Learning Language Fundamentals

During evaluation, operators with the same precedence level (such as addition and subtraction,
which both have level 10) are processed according to their associativity (a property that determines
how operators having the same precedence are grouped when parentheses are missing).

For example, expression 9 * 4 / 3 is evaluated as if it was (9 * 4) / 3 because * and / are
left-to-right associative operators. In contrast, expression x = y = z = 100 is evaluated as if it was
x = (y = (z = 100))—100 is assigned to z, z’s new value (100) is assigned to y, and y’s new value
(100) is assigned to x—because = is a right-to-left associative operator.

Most of Java’s operators are left-to-right associative. Right-to-left associative operators include
assignment, bitwise complement, cast, compound assignment, conditional, logical complement,
object creation, predecrement, preincrement, unary minus, and unary plus.

Note Unlike languages such as C++, Java doesn’t let you overload operators. However, Java overloads the
+, ++, and -- operator symbols.

Learning Statements
Statements are the workhorses of a program. They assign values to variables, control a program’s
flow by making decisions and/or repeatedly executing other statements, and perform other tasks.
A statement can be expressed as a simple statement or as a compound statement:

A simple statement is a single, stand-alone source code instruction for
performing some task; it’s terminated with a semicolon.

A compound statement is a (possibly empty) sequence of simple and other
compound statements sandwiched between open and close brace delimiters—a
delimiter is a character that marks the beginning or end of some section. A
method body (such as the main() method’s body) is an example. Compound
statements can appear wherever simple statements appear and are alternatively
referred to as blocks.

In this section I introduce you to many of Java’s statements. Additional statements are covered in
later chapters. For example, in Chapter 3 I discuss the return statement.

Assignment Statements
The assignment statement is an expression that assigns a value to a variable. This statement begins
with a variable name, continues with the assignment operator (=) or a compound assignment
operator (such as +=), and concludes with an assignment-compatible expression and a semicolon.
Following are three examples:

x = 10;
ages[0] = 25;
counter += 10;

47CHAPTER 2: Learning Language Fundamentals

The first example assigns integer 10 to variable x, which is presumably of type integer as well. The
second example assigns integer 25 to the first element of the ages array. The third example adds 10
to the value stored in counter and stores the sum in counter.

Note Initializing a variable in the variable’s declaration (such as int counter = 1;) can be thought of as
a special form of the assignment statement.

Decision Statements
The previously described conditional operator (?:) is useful for choosing between two expressions
to evaluate and cannot be used to choose between two statements. For this purpose, Java supplies
three decision statements: if, if-else, and switch.

If Statement
The if statement evaluates a Boolean expression and executes another statement when this
expression evaluates to true. This statement has the following syntax:

if (Boolean expression)
 statement

If consists of reserved word if, followed by a Boolean expression in parentheses, followed by a
statement to execute when Boolean expression evaluates to true.

The following example demonstrates this statement:

if (numMonthlySales > 100)
 wage += bonus;

If the number of monthly sales exceeds 100, numMonthlySales > 100 evaluates to true and the wage
+= bonus; assignment statement executes. Otherwise, this assignment statement doesn’t execute.

Note Some people prefer to wrap a single statement in brace characters to prevent the possibility of error.
As a result, they would write the previous example as follows:

if (numMonthlySales > 100){
 wage += bonus;
}

I don’t do this for single statements because I view the extra braces as unnecessary clutter. However, you
may feel differently. Use whatever approach makes you the most comfortable.

48 CHAPTER 2: Learning Language Fundamentals

If-Else Statement
The if-else statement evaluates a Boolean expression and executes one of two statements depending
on whether this expression evaluates to true or false. This statement has the following syntax:

if (Boolean expression)
 statement1
else
 statement2

If-else consists of reserved word if, followed by a Boolean expression in parentheses, followed by
a statement1 to execute when Boolean expression evaluates to true, followed by a statement2 to
execute when Boolean expression evaluates to false.

The following example demonstrates this statement:

if ((n & 1) == 1)
 System.out.println("odd");
else
 System.out.println("even");

This example assumes the existence of an int variable named n that has been initialized to an
integer. It then proceeds to determine if the integer is odd (not divisible by 2) or even (divisible by 2).

The Boolean expression first evaluates n & 1, which bitwise ANDs n’s value with 1. It then compares
the result to 1. If they are equal, a message stating that n’s value is odd outputs; otherwise, a
message stating that n’s value is even outputs.

The parentheses are required because == has higher precedence than &. Without these parentheses,
the expression’s evaluation order would change to first evaluating 1 == 1 and then trying to bitwise
AND the Boolean result with n’s integer value. This order results in a compiler error message
because of a type mismatch: you cannot bitwise AND an integer with a Boolean value.

You could rewrite this if-else statement example to use the conditional operator, as follows:
System.out.println((n & 1) == 1 ? "odd" : "even");. However, you cannot do so with the
following example:

if ((n & 1) == 1)
 odd();
else
 even();

This example assumes the existence of odd() and even() methods that don’t return anything.
Because the conditional operator requires that each of its second and third operands evaluates to a
value, the compiler reports an error when attempting to compile (n & 1) == 1 ? odd() : even().

You can chain multiple if-else statements together, resulting in the following syntax:

if (Boolean expression1)
 statement1
else
if (Boolean expression2)
 statement2

49CHAPTER 2: Learning Language Fundamentals

else
 ...
else
 statementN

If Boolean expression1 evaluates to true, statement1 executes. Otherwise, if Boolean expression2
evaluates to true, statement2 executes. This pattern continues until one of these expressions
evaluates to true and its corresponding statement executes, or the final else is reached and
statementN (the default statement) executes.

The following example demonstrates this chaining:

if (testMark >= 90)
{
 gradeLetter = 'A';
 System.out.println("You aced the test.");
}
else
if (testMark >= 80)
{
 gradeLetter = 'B';
 System.out.println("You did very well on this test.");
}
else
if (testMark >= 70)
{
 gradeLetter = 'C';
 System.out.println("Not bad, but you need to study more for future tests.");
}
else
if (testMark >= 60)
{
 gradeLetter = 'D';
 System.out.println("Your test result suggests that you need a tutor.");
}
else
{
 gradeLetter = 'F';
 System.out.println("Your test result is pathetic; you need summer school.");
}

DANGLING-ELSE PROBLEM

When if and if-else are used together, and the source code is not properly indented, it can be difficult to determine which
if associates with the else. See the following, for example:

if (car.door.isOpen())
 if (car.key.isPresent())
 car.start();
else car.door.open();

50 CHAPTER 2: Learning Language Fundamentals

Did the developer intend for the else to match the inner if, but improperly formatted the code to make it appear
otherwise? See the following, for example:

if (car.door.isOpen())
 if (car.key.isPresent())
 car.start();
 else
 car.door.open();

If car.door.isOpen() and car.key.isPresent() each return true, car.start() executes. If
car.door.isOpen() returns true and car.key.isPresent() returns false, car.door.open();
executes. Attempting to open an open door makes no sense.

The developer must have wanted the else to match the outer if but forgot that else matches the nearest if. This problem
can be fixed by surrounding the inner if with braces, as follows:

if (car.door.isOpen())
{
 if (car.key.isPresent())
 car.start();
}
else
 car.door.open();

When car.door.isOpen() returns true, the compound statement executes. When this method returns false,
car.door.open(); executes, which makes sense.

Forgetting that else matches the nearest if and using poor indentation to obscure this fact is known as the
dangling-else problem.

Switch Statement
The switch statement lets you choose from among several execution paths in a more efficient
manner than with equivalent chained if-else statements. This statement has the following syntax:

switch (selector expression)
{
 case value1: statement1 [break;]
 case value2: statement2 [break;]
 ...
 case valueN: statementN [break;]
 [default: statement]
}

Switch consists of reserved word switch, followed by a selector expression in parentheses, followed
by a body of cases. The selector expression is any expression that evaluates to an integer or
character value. For example, it might evaluate to a 32-bit integer or to a 16-bit character.

51CHAPTER 2: Learning Language Fundamentals

Each case begins with reserved word case; continues with a literal value and a colon character (:);
continues with a statement to execute; and optionally concludes with a break statement, which
causes execution to continue after the switch statement.

After evaluating the selector expression, switch compares this value with each case’s value until
it finds a match. When there is a match, the case’s statement is executed. For example, when the
selector expression’s value matches value1, statement1 executes.

The optional break statement (anything placed in square brackets is optional), which consists of
reserved word break followed by a semicolon, prevents the flow of execution from continuing with
the next case’s statement. Instead, execution continues with the first statement following switch.

Note You will usually place a break statement after a case’s statement. Forgetting to include break can lead to
a hard-to-find bug. However, there are situations where you want to group several cases together and have them
execute common code. In such a situation, you would omit the break statement from the participating cases.

If none of the cases’ values match the selector expression’s value, and if a default case (signified by
the default reserved word followed by a colon) is present, the default case’s statement is executed.

The following example demonstrates this statement:

switch (direction)
{
 case 0: System.out.println("You are travelling north."); break;
 case 1: System.out.println("You are travelling east."); break;
 case 2: System.out.println("You are travelling south."); break;
 case 3: System.out.println("You are travelling west."); break;
 default: System.out.println("You are lost.");
}

This example assumes that direction stores an integer value. When this value is in the range 0–3,
an appropriate direction message is output; otherwise, a message about being lost is output.

Strong This example hardcodes values 0, 1, 2, and 3, which is not a good idea in practice. Instead,
constants should be used. In Chapter 3 I introduce you to constants.

Loop Statements
It’s often necessary to repeatedly execute a statement, and this repeated execution is called a loop.
Java provides three kinds of loop statements: for, while, and do-while. In this section, I first discuss
these statements. I then examine the topic of looping over the empty statement. Finally, I discuss the
break, labeled break, continue, and labeled continue statements for prematurely ending all or part of
a loop.

52 CHAPTER 2: Learning Language Fundamentals

For Statement
The for statement lets you loop over a statement a specific number of times or even indefinitely.
This statement has the following syntax:

for ([initialize]; [test]; [update])
 statement

For consists of reserved word for, followed by a header in parentheses, followed by a statement to
execute. The header consists of an optional initialize section, followed by an optional test section,
followed by an optional update section. A nonoptional semicolon separates each of the first two
sections from the next section.

The initialize section consists of a comma-separated list of variable declarations or variable
assignments. Some or all of these variables are typically used to control the loop’s duration and are
known as loop-control variables.

The test section consists of a Boolean expression that determines how long the loop executes.
Execution continues as long as this expression evaluates to true.

Finally, the update section consists of a comma-separated list of expressions that typically modify
the loop-control variables.

For is perfect for iterating (looping) over an array. Each iteration (loop execution) accesses one of
the array’s elements via an array[index] expression, where array is the array whose element is being
accessed and index is the zero-based location of the element being accessed.

The following example uses the for statement to iterate over the array of command-line arguments
that is passed to the main() method:

public static void main(String[] args)
{
 for (int i = 0; i < args.length; i++)
 System.out.println(args[i]);
}

For’s initialization section declares variable i for controlling the loop, its test section compares i’s
current value to the length of the args array to ensure that this value is less than the array’s length,
and its update section increments i by 1. The loop continues until i’s value equals the array’s length.

Each iteration accesses one of the array’s values via the args[i] expression. This expression returns
this array’s ith value (which happens to be a String object in this example). The first value is stored
in args[0].

Note Although I’ve named the array containing command-line arguments args, this name isn’t mandatory.
I could as easily have named it arguments (or even some_other_name).

53CHAPTER 2: Learning Language Fundamentals

The following example uses for to output the contents of the previously declared matrix array, which
is redeclared here for convenience:

float[][] matrix = { { 1.0F, 2.0F, 3.0F }, { 4.0F, 5.0F, 6.0F }};
for (int row = 0; row < matrix.length; row++)
{
 for (int col = 0; col < matrix[row].length; col++)
 System.out.print(matrix[row][col] + " ");
 System.out.print("\n");
}

Expression matrix.length returns the number of rows in this tabular array. For each row, expression
matrix[row].length returns the number of columns for that row. This latter expression suggests
that each row can have a different number of columns, although each row has the same number of
columns in the example.

System.out.print() is closely related to System.out.println(). Unlike the latter method,
System.out.print() outputs its argument without a trailing newline.

This example generates the following output:

1.0 2.0 3.0
4.0 5.0 6.0

While Statement
The while statement repeatedly executes another statement while its Boolean expression evaluates
to true. This statement has the following syntax:

while (Boolean expression)
 statement

While consists of reserved word while, followed by a parenthesized Boolean expression, followed by
a statement to repeatedly execute.

The while statement first evaluates the Boolean expression. If it is true, while executes the other
statement. Once again, the Boolean expression is evaluated. If it is still true, while re-executes the
statement. This cyclic pattern continues.

Prompting the user to enter a specific character is one situation in which while is useful. For
example, suppose that you want to prompt the user to enter a specific uppercase letter or its
lowercase equivalent. The following example provides a demonstration:

int ch = 0;
while (ch != 'C' && ch != 'c')
{
 System.out.println("Press C or c to continue.");
 ch = System.in.read();
}

54 CHAPTER 2: Learning Language Fundamentals

This example begins by initializing variable ch. This variable must be initialized; otherwise, the
compiler will report an uninitialized variable when it tries to read ch’s value in the while statement’s
Boolean expression.

This expression uses the conditional AND operator (&&) to test ch’s value. This operator first
evaluates its left operand, which happens to be expression ch != 'C'. (The != operator converts 'C'
from 16-bit unsigned char type to 32-bit signed int type prior to the comparison.)

If ch doesn’t contain C (it doesn’t at this point—0 was just assigned to ch), this expression evaluates
to true.

The && operator next evaluates its right operand, which happens to be expression ch != 'c'.
Because this expression also evaluates to true, conditional AND returns true and while executes the
compound statement.

The compound statement first outputs, via the System.out.println() method call, a message that
prompts the user to press the C key with or without the Shift key. It next reads the entered keystroke
via System.in.read(), saving its integer value in ch.

From left to write, System identifies a standard class of system utilities, in identifies an object located
in System that provides methods for inputting 1 or more bytes from the standard input device, and
read() returns the next byte (or −1 when there are no more bytes).

Following this assignment, the compound statement ends and while re-evaluates its Boolean
expression.

Suppose ch contains C’s integer value. Conditional AND evaluates ch != 'C', which evaluates to
false. Seeing that the expression is already false, conditional AND short-circuits its evaluation by not
evaluating its right operand and returns false. The while statement subsequently detects this value
and terminates.

Suppose ch contains c’s integer value. Conditional AND evaluates ch != 'C', which evaluates to
true. Seeing that the expression is true, conditional AND evaluates ch != 'c', which evaluates to
false. Once again, the while statement terminates.

Note A for statement can be coded as a while statement. For example,

for (int i = 0; i < 10; i++)
 System.out.println(i);

is equivalent to

int i = 0;
while (i < 10)
{
 System.out.println(i);
 i++;
}

55CHAPTER 2: Learning Language Fundamentals

Do-While Statement
The do-while statement repeatedly executes a statement while its Boolean expression evaluates to
true. Unlike the while statement, which evaluates the Boolean expression at the top of the loop,
do-while evaluates the Boolean expression at the bottom of the loop. This statement has the
following syntax:

do
 statement
while (Boolean expression);

Do-while consists of the do reserved word, followed by a statement to repeatedly execute, followed
by the while reserved word, followed by a parenthesized Boolean expression, followed by a
semicolon.

The do-while statement first executes the other statement. It then evaluates the Boolean expression.
If it is true, do-while executes the other statement. Once again, the Boolean expression is evaluated.
If it is still true, do-while re-executes the statement. This cyclic pattern continues.

The following example demonstrates do-while prompting the user to enter a specific uppercase
letter or its lowercase equivalent:

int ch;
do
{
 System.out.println("Press C or c to continue.");
 ch = System.in.read();
}
while (ch != 'C' && ch != 'c');

This example is similar to its predecessor. Because the compound statement is no longer executed
prior to the test, it’s no longer necessary to initialize ch—ch is assigned System.in.read()’s return
value prior to the Boolean expression’s evaluation.

Looping Over the Empty Statement
Java refers to a semicolon character appearing by itself as the empty statement. It’s sometimes
convenient for a loop statement to execute the empty statement repeatedly. The actual work
performed by the loop statement takes place in the statement header. Consider the following
example:

for (String line; (line = readLine()) != null; System.out.println(line));

This example uses for to present a programming idiom for copying lines of text that are read
from some source, via the fictitious readLine() method in this example, to some destination, via
System.out.println() in this example. Copying continues until readLine() returns null. Note the
semicolon (empty statement) at the end of the line.

56 CHAPTER 2: Learning Language Fundamentals

Caution Be careful with the empty statement because it can introduce subtle bugs into your code. For
example, the following loop is supposed to output the string Hello on 10 lines. Instead, only one instance
of this string is output because it is the empty statement and not System.out.println() that’s executed
10 times:

for (int i = 0; i < 10; i++); // this ; represents the empty statement
 System.out.println("Hello");

Break and Labeled Break Statements
What do for (;;);, while (true); and do;while (true); have in common? Each of these loop
statements presents an extreme example of an infinite loop (a loop that never ends). An infinite loop
is something that you should avoid because its unending execution causes your application to hang,
which is not desirable from the point of view of your application’s users.

Caution An infinite loop can also arise from a loop’s Boolean expression comparing a floating-point value
against a nonzero value via the equality or inequality operator because many floating-point values have
inexact internal representations. For example, the following example never ends because 0.1 doesn’t have
an exact internal representation:

for (double d = 0.0; d != 1.0; d += 0.1)
 System.out.println(d);

However, there are times when it is handy to code a loop as if it were infinite by using one of the
aforementioned programming idioms. For example, you might code a while (true) loop that
repeatedly prompts for a specific keystroke until the correct key is pressed. When the correct key is
pressed, the loop must end. Java provides the break statement for this purpose.

The break statement transfers execution to the first statement following a switch statement (as
discussed earlier) or a loop. In either scenario, this statement consists of reserved word break
followed by a semicolon.

The following example uses break with an if decision statement to exit a while (true)-based infinite
loop when the user presses the C or c key:

int ch;
while (true)
{
 System.out.println("Press C or c to continue.");
 ch = System.in.read();
 if (ch == 'C' || ch == 'c')
 break;
}

57CHAPTER 2: Learning Language Fundamentals

The break statement is also useful in the context of a finite loop. For example, consider a scenario
where an array of values is searched for a specific value, and you want to exit the loop when this
value is found. The following example reveals this scenario:

int[] employeeIDs = { 123, 854, 567, 912, 224 };
int employeeSearchID = 912;
boolean found = false;
for (int i = 0; i < employeeIDs.length; i++)
 if (employeeSearchID == employeeIDs[i])
 {
 found = true;
 break;
 }
System.out.println((found) ? "employee " + employeeSearchID + " exists"
 : "no employee ID matches " + employeeSearchID);

The example uses for and if to search an array of employee IDs to determine if a specific employee ID
exists. If this ID is found, if’s compound statement assigns true to found. Because there is no
point in continuing the search, it then uses break to quit the loop.

The labeled break statement transfers execution to the first statement following the loop that’s
prefixed by a label (an identifier followed by a colon). It consists of reserved word break, followed
by an identifier for which the matching label must exist. Furthermore, the label must immediately
precede a loop statement.

Labeled break is useful for breaking out of nested loops (loops within loops). The following example
reveals the labeled break statement transferring execution to the first statement that follows the
outer for loop:

outer:
for (int i = 0; i < 3; i++)
 for (int j = 0; j < 3; j++)
 if (i == 1 && j == 1)
 break outer;
 else
 System.out.println("i=" + i + ", j=" + j);
System.out.println("Both loops terminated.");

When i’s value is 1 and j’s value is 1, break outer; is executed to terminate both for loops. This
statement transfers execution to the first statement after the outer for loop, which happens to be
System.out.println("Both loops terminated.");.

The following output is generated:

i=0, j=0
i=0, j=1
i=0, j=2
i=1, j=0
Both loops terminated.

58 CHAPTER 2: Learning Language Fundamentals

Continue and Labeled Continue Statements
The continue statement skips the remainder of the current loop iteration, re-evaluates the loop’s
Boolean expression, and performs another iteration (if true) or terminates the loop (if false). Continue
consists of reserved word continue followed by a semicolon.

Consider a while loop that reads lines from a source and processes nonblank lines in some manner.
Because it should not process blank lines, while skips the current iteration when a blank line is
detected, as demonstrated in the following example:

String line;
while ((line = readLine()) != null)
{
 if (isBlank(line))
 continue;
 processLine(line);
}

This example employs a fictitious isBlank() method to determine if the currently read line is blank.
If this method returns true, if executes the continue statement to skip the rest of the current iteration
and read the next line whenever a blank line is detected. Otherwise, the fictitious processLine()
method is called to process the line’s contents.

Look carefully at this example and you should realize that the continue statement is not needed.
Instead, this listing can be shortened via refactoring (rewriting source code to improve its readability,
organization, or reusability), as demonstrated in the following example:

String line;
while ((line = readLine()) != null)
{
 if (!isBlank(line))
 processLine(line);
}

This example’s refactoring modifies if’s Boolean expression to use the logical complement
operator (!). Whenever isBlank() returns false, this operator flips this value to true and if executes
processLine(). Although continue isn’t necessary in this example, you’ll find it convenient to use this
statement in more complex code where refactoring isn’t as easy to perform.

The labeled continue statement skips the remaining iterations of one or more nested loops and
transfers execution to the labeled loop. It consists of reserved word continue followed by an
identifier for which a matching label must exist. Furthermore, the label must immediately precede a
loop statement.

Labeled continue is useful for breaking out of nested loops while still continuing to execute the
labeled loop. The following example reveals the labeled continue statement terminating the inner for
loop’s iterations:

outer:
for (int i = 0; i < 3; i++)
 for (int j = 0; j < 3; j++)

59CHAPTER 2: Learning Language Fundamentals

 if (i == 1 && j == 1)
 continue outer;
 else
 System.out.println("i=" + i + ", j=" + j);
System.out.println("Both loops terminated.");

When i’s value is 1 and j’s value is 1, continue outer; is executed to terminate the inner for loop
and continue with the outer for loop at its next value of i. Both loops continue until they finish.

The following output is generated:

i=0, j=0
i=0, j=1
i=0, j=2
i=1, j=0
i=2, j=0
i=2, j=1
i=2, j=2
Both loops terminated.

EXERCISES

The following exercises are designed to test your understanding of Chapter 2’s content:

1. What is Unicode?

2. What is a comment?

3. Identify the three kinds of comments that Java supports.

4. What is an identifier?

5. True or false: Java is a case-insensitive language.

6. What is a type?

7. Define primitive type.

8. Identify all of Java’s primitive types.

9. Define user-defined type.

10. Define array type.

11. What is a variable?

12. What is an expression?

13. Identify the two expression categories.

14. What is a literal?

15. Is string literal "The quick brown fox \jumps\ over the lazy dog." legal or illegal? Why?

16. What is an operator?

17. Identify the difference between a prefix operator and a postfix operator.

60 CHAPTER 2: Learning Language Fundamentals

18. What is the purpose of the cast operator?

19. What is precedence?

20. True or false: Most of Java’s operators are left-to-right associative.

21. What is a statement?

22. What is the difference between the while and do-while statements?

23. What is the difference between the break and continue statements?

24. Write an OutputGradeLetter application (the class is named OutputGradeLetter) whose
main() method executes the grade letter code sequence presented earlier while discussing the
if-else statement. Use the DumpArgs application presented in Listing 2-1 as the basis for this
application. (You don’t need to include Javadoc comments, but you can if you want.)

25. Create a Triangle application whose Triangle class’s main() method uses a pair of nested for
statements along with System.out.print() to output a 10-row triangle of asterisks, where each
row contains an odd number of asterisks (1, 3, 5, 7, and so on), as shown following:

 *

Compile and run this application.

Summary
Source code needs to be documented so that you (and any others who have to maintain it) can
understand it, now and later. Java provides the comment feature for embedding documentation in
source code. Single-line, multiline, and documentation comments are supported.

A single-line comment occupies all or part of a single line of source code. This comment begins with
the // character sequence and continues with explanatory text. The compiler ignores everything
from // to the end of the line in which // appears.

A multiline comment occupies one or more lines of source code. This comment begins with the /*
character sequence, continues with explanatory text, and ends with the */ character sequence.
Everything from /* through */ is ignored by the compiler.

A Javadoc comment occupies one or more lines of source code. This comment begins with the /**
character sequence, continues with explanatory text, and ends with the */ character sequence.
Everything from /** through */ is ignored by the compiler.

61CHAPTER 2: Learning Language Fundamentals

Identifiers are used to name classes, methods, and other source code entities. An identifier consists
of letters (A–Z, a–z, or equivalent uppercase/lowercase letters in other human alphabets), digits
(0–9 or equivalent digits in other human alphabets), connecting punctuation characters (e.g., the
underscore), and currency symbols (e.g., the dollar sign $). This name must begin with a letter, a
currency symbol, or a connecting punctuation character; and its length cannot exceed the line in
which it appears. Some identifiers are reserved by Java. Examples include abstract and case.

Applications process different types of values such as integers, floating-point values, characters, and
strings. A type identifies a set of values (and their representation in memory) and a set of operations
that transform these values into other values of that set.

A primitive type is a type that’s defined by the language and whose values are not objects. Java
supports the Boolean, character, byte integer, short integer, integer, long integer, floating-point, and
double precision floating-point primitive types.

A user-defined type is a type that’s defined by the developer using a class, an interface, an enum,
or an annotation type and whose values are objects. User-defined types are also known as
reference types.

An array type is a reference type that signifies an array, a region of memory that stores values in
equal-size and contiguous slots, which are commonly referred to as elements. This type consists of
the element type and one or more pairs of square brackets that indicate the number of dimensions.

Applications manipulate values that are stored in memory, which is symbolically represented in
source code through the use of the variables feature. A variable is a named memory location that
stores some type of value.

Java provides the expressions feature for initializing variables and for other purposes. An expression
combines some arrangement of literals, variable names, method calls, and operators. At runtime, it
evaluates to a value whose type is referred to as the expression’s type.

A simple expression is a literal (a value specified verbatim), a variable name (containing a value), or
a method call (returning a value). Java supports several kinds of literals: string, Boolean true and
false, character, integer, floating-point, and null.

A compound expression is a sequence of simple expressions and operators, where an operator
(a sequence of instructions symbolically represented in source code) transforms its operand
expression value(s) into another value.

Java supplies many operators, which are classified by the number of operands that they take.
A unary operator takes only one operand, a binary operator takes two operands, and Java’s single
ternary operator takes three operands.

Operators are also classified as prefix, postfix, and infix. A prefix operator is a unary operator that
precedes its operand, a postfix operator is a unary operator that trails its operand, and an
infix operator is a binary or ternary operator that is sandwiched between its operands.

Statements are the workhorses of a program. They assign values to variables, control a program’s
flow by making decisions and/or repeatedly executing other statements, and perform other tasks.
A statement can be expressed as a simple statement or as a compound statement.

In Chapter 3 I continue to explore the Java language by examining its support for classes and
objects. You also learn more about arrays.

63

Chapter 3
Discovering Classes and Objects

In Chapter 2 I introduced you to the fundamentals of the Java language. You now know how to write
simple applications by inserting statements into a class’s main() method. However, when you try to
develop complex applications in this manner, you’re bound to find development tedious, slow, and
prone to error. Classes and objects address these problems by simplifying application architecture.

In Chapter 3 I introduce you to Java’s support for classes and objects. You learn how to declare
a class and instantiate objects from the class, how to declare fields within the class and access
these fields, how to declare methods within the class and call them, how to initialize classes and
objects, and how to get rid of objects when they are no longer needed.

While discussing variables in Chapter 2, I introduced you to arrays. You learned about array variables
and discovered a simple way to create an array. However, Java also provides a more powerful and
more flexible way to create arrays, which is somewhat similar to the manner in which objects are
created. This chapter also extends Chapter 2’s array coverage by introducing you to this capability.

Declaring Classes and Instantiating Objects
Before the modern approach to programming that involves classes and objects, applications
adhered to structured programming in which data structures were created to organize and store
data items, and functions (named code sequences that return values) and procedures (named code
sequences that don’t return values) were used to manipulate data structure content. This separation
of data from code made it difficult to model real-world entities (such as a bank accounts and
employees) and often led to maintenance headaches for complex applications.

Computer scientists such as Bjarne Stroustrup (the creator of the C++ programming language) found
that this complexity could be simplified by merging data structures with functions and procedures
into discrete units known as classes. These classes could describe real-world entities and be
instantiated. The resulting objects proved to be an effective way to model these entities.

You first learn how to declare a class and then learn how to create objects from this class with the
help of the new operator and a constructor. Last, you learn about constructor parameters and how to

64 CHAPTER 3: Discovering Classes and Objects

specify them for initializing objects and about local variables and how to specify them for helping
to control the flow of code within a constructor.

Declaring Classes
A class is a template for manufacturing objects (named groupings of code and data), which are also
known as class instances, or instances for short. Classes generalize real-world entities, and objects
are specific manifestations of these entities at the application level. You might think of classes as
cookie cutters and objects as the cookies that cookie cutters create.

Because you cannot instantiate objects from a class that doesn’t exist, you must first declare the
class. The declaration consists of a header followed by a body. At minimum, the header consists of
reserved word class followed by a name that identifies the class (so that it can be referred to from
elsewhere in the source code). The body starts with an open brace character ({) and ends with
a close brace (}). Sandwiched between these delimiters are various kinds of declarations.
Consider Listing 3-1.

Listing 3-1. Declaring a Skeletal Image Class

class Image
{
 // various member declarations
}

Listing 3-1 declares a class named Image, which presumably describes some kind of image for
displaying on the screen. By convention, a class’s name begins with an uppercase letter. Furthermore,
the first letter of each subsequent word in a multiword class name is capitalized. This is known as
camelcasing.

Instantiating Objects with the New Operator and a Constructor
Image is an example of a user-defined type from which objects can be created. You create these
objects by using the new operator with a constructor, as follows:

Image image = new Image();

The new operator allocates memory to store the object whose type is specified by new’s solitary
operand, which happens to be Image() in this example. The object is stored in a region of memory
known as the heap.

The parentheses (round brackets) that follow Image signify a constructor, which is a block of code
for constructing an object by initializing it in some manner. The new operator invokes (calls) the
constructor immediately after allocating memory to store the object.

When the constructor ends, new returns a reference (a memory address or other identifier) to the
object so that it can be accessed elsewhere in the application. Regarding the newly created Image
object, its reference is stored in a variable named image whose type is specified as Image.
(It’s common to refer to the variable as an object, as in the image object, although it stores only an
object’s reference and not the object itself.)

65CHAPTER 3: Discovering Classes and Objects

Note new’s returned reference is represented in source code by keyword this. Wherever this appears,
it represents the current object. Also, variables that store references are called reference variables.

Image doesn’t explicitly declare a constructor. When a class doesn’t declare a constructor, Java
implicitly creates a constructor for that class. The created constructor is known as the default
noargument constructor because no arguments (discussed shortly) appear between its (and)
characters when the constructor is invoked.

Note Java doesn’t create a default noargument constructor when at least one constructor is declared.

Specifying Constructor Parameters and Local Variables
You explicitly declare a constructor within a class’s body by specifying the name of the class
followed by a parameter list, which is a round bracket-delimited and comma-separated list of zero
or more parameter declarations. A parameter is a constructor or method variable that receives an
expression value passed to the constructor or method when it is called. This expression value is
known as an argument.

Listing 3-2 enhances Listing 3-1’s Image class by declaring three constructors with parameter lists
that declare zero, one, or two parameters and a main() method for testing this class.

Listing 3-2. Declaring an Image Class with Three Constructors and a main() Method

public class Image
{
 Image()
 {
 System.out.println("Image() called");
 }

 Image(String filename)
 {
 this(filename, null);
 System.out.println("Image(String filename) called");
 }

 Image(String filename, String imageType)
 {
 System.out.println("Image(String filename, String imageType) called");
 if (filename != null)
 {
 System.out.println("reading " + filename);
 if (imageType != null)
 System.out.println("interpreting " + filename + " as storing a " +
 imageType + " image");
 }

66 CHAPTER 3: Discovering Classes and Objects

 // Perform other initialization here.
 }

 public static void main(String[] args)
 {
 Image image = new Image();
 System.out.println();
 image = new Image("image.png");
 System.out.println();
 image = new Image("image.png", "PNG");
 }
}

Listing 3-2’s Image class first declares a noargument constructor for initializing an Image object to
default values (whatever they may be). This constructor simulates default initialization. It does so by
invoking System.out.println() to output a message signifying that it’s been called.

Image next declares an Image(String filename) constructor whose parameter list consists of a single
parameter declaration—a variable’s type followed by the variable’s name. The java.lang.String
parameter is named filename, signifying that this constructor obtains image content from a file.

Note Throughout this chapter and remaining chapters, I typically prefix the first use of a predefined
type (such as String) with the package hierarchy in which the type is stored. For example, String is
stored in the lang subpackage of the java package. I do so to help you learn where types are stored
so that you can more easily specify import statements for importing these types (without having to first
search for a type’s package) into your source code—you don’t have to import types that are stored in
the java.lang package, but I still prefix the java.lang package to the type name for completeness.
I will have more to say about packages and the import statement in Chapter 5.

Some constructors rely on other constructors to help them initialize their objects. This is done to
avoid redundant code, which increases the size of an object and unnecessarily takes memory away
from the heap that could be used for other purposes. For example, Image(String filename) relies
on Image(String filename, String imageType) to read the file’s image content into memory.

Although it appears otherwise, constructors don’t have names (however, it is common to refer to a
constructor by specifying the class name and parameter list). A constructor calls another constructor
by using keyword this and a round bracket-delimited and comma-separated list of arguments. For
example, Image(String filename) executes this(filename, null); to execute Image(String filename,
String imageType).

Caution You must use keyword this to call another constructor—you cannot use the class’s name,
as in Image(). The this() constructor call (when present) must be the first code that is executed
within the constructor—this rule prevents you from specifying multiple this() constructor calls in the
same constructor. Finally, you cannot specify this() in a method—constructors can be called only by
other constructors and during object creation. (I discuss methods later in this chapter.)

67CHAPTER 3: Discovering Classes and Objects

When present, the constructor call must be the first code that is specified within a constructor;
otherwise, the compiler reports an error. For this reason, a constructor that calls another
constructor can perform additional work only after the other constructor has finished. For example,
Image(String filename) executes System.out.println("Image(String filename) called"); after
the invoked Image(String filename, String imageType) constructor finishes.

The Image(String filename, String imageType) constructor declares an imageType parameter
that signifies the kind of image stored in the file—a Portable Network Graphics (PNG) image, for
example. Presumably, the constructor uses imageType to speed up processing by not examining the
file’s contents to learn the image format. When null is passed to imageType, as happens with the
Image(String filename) constructor, Image(String filename, String imageType) examines file
contents to learn the format. If null was also passed to filename, Image(String filename,
String imageType) wouldn’t read the file but would presumably notify the code attempting to create
the Image object of an error condition.

After declaring the constructors, Listing 3-2 declares a main() method that lets you create Image
objects and view output messages. main() creates three Image objects, calling the first constructor
with no arguments, the second constructor with argument "image.png", and the third constructor
with arguments "image.png" and "PNG".

Note The number of arguments passed to a constructor or method, or the number of operator
operands, is known as the constructor’s, method’s, or operator’s arity.

Each object’s reference is assigned to a reference variable named image, replacing the previously
stored reference for the second and third object assignments. (Each occurrence of
System.out.println(); outputs a blank line to make the output easier to read.)

The presence of main() changes Image from only a class to an application. You typically place main()
in classes that are used to create objects to test such classes. When constructing an application for
use by others, you usually declare main() in a class where the intent is to run an application and not
to create an object from that class—the application is then run from only that class. See Chapter 1’s
DumpArgs and EchoText classes for examples.

After saving Listing 3-2 to Image.java, compile this file by executing javac Image.java at the
command line. Assuming that there are no error messages, execute the application by specifying
java Image. You should observe the following output:

Image() called

Image(String filename, String imageType) called
reading image.png
Image(String filename) called

Image(String filename, String imageType) called
reading image.png
interpreting image.png as storing a PNG image

68 CHAPTER 3: Discovering Classes and Objects

The first output line indicates that the noargument constructor has been called. Subsequent output
lines indicate that the second and third constructors have been called.

As well as declaring parameters, a constructor can declare variables within its body to help it perform
various tasks. For example, the previously presented Image(String filename, String imageType)
constructor might create an object from a (hypothetical) File class that provides the means to read
a file’s contents. At some point, the constructor instantiates this class and assigns the instance’s
reference to a variable, as demonstrated by the following code:

Image(String filename, String imageType)
{
 System.out.println("Image(String filename, String imageType) called");
 if (filename != null)
 {
 System.out.println("reading " + filename);
 File file = new File(filename);
 // Read file contents into object.
 if (imageType != null)
 System.out.println("interpreting " + filename + " as storing a " +
 imageType + " image");
 else
 // Inspect image contents to learn image type.
 ; // Empty statement is used to make if-else syntactically valid.
 }
 // Perform other initialization here.
}

As with the filename and imageType parameters, file is a variable that is local to the constructor
and is known as a local variable to distinguish it from a parameter. Although all three
variables are local to the constructor, there are two key differences between parameters and
local variables:

The filename and imageType parameters come into existence at the point
where the constructor begins to execute and exist until execution leaves the
constructor. In contrast, file comes into existence at its point of declaration
and continues to exist until the block in which it is declared is terminated
(via a closing brace character). This property of a parameter or a local variable is
known as lifetime.

The filename and imageType parameters can be accessed from anywhere in the
constructor. In contrast, file can be accessed only from its point of declaration
to the end of the block in which it is declared. It cannot be accessed before its
declaration or after its declaring block, but nested subblocks can access the
local variable. This property of a parameter or a local variable is known
as scope.

69CHAPTER 3: Discovering Classes and Objects

Note The lifetime and scope (also known as visibility) properties also apply to classes, objects, and
fields (discussed later). Classes come into existence when loaded into memory and cease to exist when
unloaded from memory, typically when an application exits. Also, loaded classes are typically visible to
other classes.

An object’s lifetime ranges from its creation via the new operator until the moment when it is removed
from memory by the garbage collector (discussed later in this chapter). Its scope depends on various
factors, such as when its reference is assigned to a local variable or to a field. I discuss fields later in
this chapter.

The lifetime of a field depends on whether it is an instance field or a class field. When the field belongs
to an object (an instance field), it comes into existence when the object is created and dies when the
object disappears from memory. When the field belongs to a class (a class field), the field begins its
existence when the class is loaded and disappears when the class is removed from memory. As with an
object, a field’s scope depends on various factors, such as whether the field is declared to have private
access or not—you’ll learn about private access later in this chapter.

A local variable cannot have the same name as a parameter because a parameter always has the
same scope as the local variable. However, a local variable can have the same name as another
local variable provided that both variables are located within different scopes (that is, within different
blocks). For example, you could specify int x = 1; within an if-else statement’s if block and
specify double x = 2.0; within the statement’s corresponding else block, and each local variable
would be distinct.

Note The discussion of constructor parameters, arguments, and local variables also applies to
method parameters, arguments, and local variables—I discuss methods later in this chapter.

Encapsulating State and Behaviors
Classes model real-world entities from a template perspective, for example, car and savings
account. Objects represent specific entities, for example, John’s red Toyota Camry (a car instance)
and Cuifen’s savings account with a balance of twenty thousand dollars (a savings account
instance).

Entities have attributes, such as color red, make Toyota, model Camry, and balance twenty thousand
dollars. An entity’s collection of attributes is referred to as its state. Entities also have behaviors, such
as open car door, drive car, display fuel consumption, deposit, withdraw, and show account balance.

A class and its objects model an entity by combining state with behaviors into a single unit—the
class abstracts state, whereas its objects provide concrete state values. This bringing together
of state and behaviors is known as encapsulation. Unlike in structured programming, where the
developer focuses on separately modeling behaviors through structured code and modeling
state through data structures that store data items for the structured code to manipulate, the

70 CHAPTER 3: Discovering Classes and Objects

developer working with classes and objects focuses on templating entities by declaring classes that
encapsulate state and behaviors, instantiating objects with specific state values from these classes
to represent specific entities and interacting with objects through their behaviors.

In this section, I first introduce you to Java’s language features for representing state, and then
I introduce you to its language features for representing behaviors. Because some state and behaviors
support the class’s internal architecture and should not be visible to those wanting to use the class,
I conclude this section by presenting the important concept of information hiding.

Representing State via Fields
Java lets you represent state via fields, which are variables declared within a class’s body. Entity
attributes are described via instance fields. Because Java also supports state that’s associated with
a class and not with an object, Java provides class fields to describe this class state.

You first learn how to declare and access instance fields and then learn how to declare and access
class fields. After discovering how to declare read-only instance and class fields, you review the
rules for accessing fields from different contexts.

Declaring and Accessing Instance Fields
You can declare an instance field by minimally specifying a type name, followed by an identifier that
names the field, followed by a semicolon character (;). Listing 3-3 presents a Car class with three
instance field declarations.

Listing 3-3. Declaring a Car Class with make, model, and numDoors Instance Fields

class Car
{
 String make;
 String model;
 int numDoors;
}

Listing 3-3 declares two String instance fields named make and model. It also declares an int
instance field named numDoors. By convention, a field’s name begins with a lowercase letter, and the
first letter of each subsequent word in a multiword field name is capitalized.

When an object is created, instance fields are initialized to default zero values, which you interpret at
the source code level as literal value false, '\u0000', 0, 0L, 0.0, 0.0F, or null (depending on element
type). For example, if you were to execute Car car = new Car();, make and model would be initialized
to null and numDoors would be initialized to 0.

You can assign values to or read values from an object’s instance fields by using the member access
operator (.); the left operand specifies the object’s reference and the right operand specifies the
instance field to be accessed. Listing 3-4 uses this operator to initialize a Car object’s make, model,
and numDoors instance fields.

71CHAPTER 3: Discovering Classes and Objects

Listing 3-4. Initializing a Car Object’s Instance Fields

public class Car
{
 String make;
 String model;
 int numDoors;

 public static void main(String[] args)
 {
 Car car = new Car();
 car.make = "Toyota";
 car.model = "Camry";
 car.numDoors = 4;
 }
}

Listing 3-4 presents a main() method that instantiates Car. The car instance’s make instance field is
assigned the "Toyota" string, its model instance field is assigned the "Camry" string, and its numDoors
instance field is assigned integer literal 4. (A string’s double quotes delimit a string’s sequence of
characters but are not part of the string.)

You can explicitly initialize an instance field when declaring that field to provide a nonzero default
value, which overrides the default zero value. Listing 3-5 demonstrates this point.

Listing 3-5. Initializing Car’s numDoors Instance Field to a Default Nonzero Value

public class Car
{
 String make;
 String model;
 int numDoors = 4;

 Car()
 {
 }

 public static void main(String[] args)
 {
 Car johnDoeCar = new Car();
 johnDoeCar.make = "Chevrolet";
 johnDoeCar.model = "Volt";
 }
}

Listing 3-5 explicitly initializes numDoors to 4 because the developer has assumed that most cars being
modeled by this class have four doors. When Car is initialized via the Car() constructor, the developer
only needs to initialize the make and model instance fields for those cars that have four doors.

It is usually not a good idea to directly initialize an object’s instance fields, and you will learn why
when I discuss information hiding (later in this chapter). Instead, you should perform this initialization
in the class’s constructor(s)—see Listing 3-6.

72 CHAPTER 3: Discovering Classes and Objects

Listing 3-6. Initializing Car’s Instance Fields via Constructors

public class Car
{
 String make;
 String model;
 int numDoors;

 Car(String make, String model)
 {
 this(make, model, 4);
 }

 Car(String make, String model, int nDoors)
 {
 this.make = make;
 this.model = model;
 numDoors = nDoors;
 }

 public static void main(String[] args)
 {
 Car myCar = new Car("Toyota", "Camry");
 Car yourCar = new Car("Mazda", "RX-8", 2);
 }
}

Listing 3-6’s Car class declares Car(String make, String model) and Car(String make, String
model, int nDoors) constructors. The first constructor lets you specify the make and model,
whereas the second constructor lets you specify values for the three instance fields.

The first constructor executes this(make, model, 4); to pass the values of its make and model
parameters along with a default value of 4 to the second constructor. Doing so demonstrates an
alternative to explicitly initializing an instance field and is preferable from a code maintenance
perspective.

The Car(String make, String model, int numDoors) constructor demonstrates another use for
keyword this. Specifically, it demonstrates a scenario where constructor parameters have the
same names as the class’s instance fields. Prefixing a variable name with “this.” causes the Java
compiler to create bytecode that accesses the instance field. For example, this.make = make;
assigns the make parameter’s String object reference to this (the current) Car object’s make instance
field. If make = make; was specified instead, it would accomplish nothing by assigning make’s value to
itself; a Java compiler might not generate code to perform the unnecessary assignment. In contrast,
“this.” isn’t necessary for the numDoors = nDoors; assignment, which initializes the numDoors field
from the nDoors parameter value.

Note To minimize error (by forgetting to prefix a field name with “this.”), it’s preferable to keep field
names and parameter names distinct (e.g., numDoors and nDoors). Alternatively, you might prefix
a field name with an underscore (e.g., _nDoors). Either way, you wouldn’t have to worry about the
“this.” prefix (and forgetting to specify it).

73CHAPTER 3: Discovering Classes and Objects

Declaring and Accessing Class Fields
In many situations, instance fields are all that you need. However, you might encounter a situation
where you need a single copy of a field no matter how many objects are created.

For example, suppose you want to track the number of Car objects that have been created and
introduce a counter instance field (initialized to 0) into this class. You also place code in the class’s
constructor that increases counter’s value by 1 when an object is created. However, because each
object has its own copy of the counter instance field, this field’s value never advances past 1.
Listing 3-7 solves this problem by declaring counter to be a class field by prefixing the field
declaration with the static keyword.

Listing 3-7. Adding a counter Class Field to Car

public class Car
{
 String make;
 String model;
 int numDoors;
 static int counter;

 Car(String make, String model)
 {
 this(make, model, 4);
 }

 Car(String make, String model, int numDoors)
 {
 this.make = make;
 this.model = model;
 this.numDoors = numDoors;
 counter++; // This code is unsafe because counter can be accessed directly.
 }

 public static void main(String[] args)
 {
 Car myCar = new Car("Toyota", "Camry");
 Car yourCar = new Car("Mazda", "RX-8", 2);
 System.out.println(Car.counter);
 }
}

Listing 3-7’s static prefix implies that there is only one copy of the counter field and not one copy
per object. When a class is loaded into memory, class fields are initialized to default zero values. For
example, counter is initialized to 0. (As with an instance field, you can alternatively assign a value to
a class field in its declaration.) Each time an object is created, counter will increase by 1 thanks to
the counter++ expression in the Car(String make, String model, int numDoors) constructor.

Unlike instance fields, class fields are normally accessed directly via the member access operator.
Although you could access a class field via an object reference (as in myCar.counter), it is
conventional to access a class field by using the class’s name, as in Car.counter. (It is also easier to
tell that the code is accessing a class field.)

74 CHAPTER 3: Discovering Classes and Objects

Note Because the main() method is a member of Listing 3-7’s Car class, you could access
counter directly, as in System.out.println(counter);. To access counter in the context of
another class’s main() method, however, you would have to specify Car.counter.

If you run Listing 3-7, you’ll notice that it outputs 2, because two Car objects have been created.

Declaring Read-Only Instance and Class Fields
The previously declared fields can be written to as well as read from. However, you might want to
declare a field that is read-only, for example, a field that names a constant value such as
pi (3.14159…). Java lets you accomplish this task by providing reserved word final.

Each object receives its own copy of a read-only instance field. This field must be initialized as part
of the field’s declaration or in the class’s constructor. When initialized in the constructor, the read-
only instance field is known as a blank final because it doesn’t have a value until one is assigned to
it in the constructor. Because a constructor can potentially assign a different value to each object’s
blank final, these read-only variables are not truly constants.

If you want a true constant, which is a single read-only value that is available to all objects, you need
to create a read-only class field. You can accomplish this task by including the reserved word static
with final in that field’s declaration.

Listing 3-8 shows how to declare a read-only class field.

Listing 3-8. Declaring a True Constant in the Employee Class

class Employee
{
 final static int RETIREMENT_AGE = 65;
}

Listing 3-8’s RETIREMENT_AGE declaration is an example of a compile-time constant. Because there is
only one copy of its value (thanks to the static keyword), and because this value will never change
(thanks to the final keyword), the compiler is free to optimize the compiled code by inserting the
constant value into all calculations where it is used. The code runs faster because it doesn’t have to
access a read-only class field.

Reviewing Field-Access Rules
The previous examples of field access may seem confusing because you can sometimes specify
the field’s name directly, whereas you need to prefix a field name with an object reference or a class
name and the member access operator at other times. The following rules dispel this confusion by
giving you guidance on how to access fields from the various contexts:

Specify the name of a class field as is from anywhere within the same class as
the class field declaration. Example: counter

Specify the name of a class field’s class, followed by the member access operator,
followed by the name of the class field from outside the class. Example: Car.counter

75CHAPTER 3: Discovering Classes and Objects

Specify the name of an instance field as is from any instance method,
constructor, or instance initializer (discussed later) in the same class as the
instance field declaration. Example: numDoors

Specify an object reference, followed by the member access operator, followed
by the name of the instance field from any class method or class initializer
(discussed later) within the same class as the instance field declaration or from
outside the class. Example: Car car = new Car(); car.numDoors = 2;

Although the final rule might seem to imply that you can access an instance field from a class
context, this is not the case. Instead, you are accessing the field from an object context.

The previous access rules are not exhaustive because there are two more field-access scenarios to
consider: declaring a local variable (or even a parameter) with the same name as an instance field
or as a class field. In either scenario, the local variable/parameter is said to shadow (hide or mask)
the field.

If you find that you have declared a local variable or a parameter that shadows a field, you can
rename the local variable/parameter, or you can use the member access operator with reserved
word this (instance field) or class name (class field) to explicitly identify the field. For example,
Listing 3-6’s Car(String make, String model, int nDoors) constructor demonstrated this latter
solution by specifying statements such as this.make = make; to distinguish an instance field from
a same-named parameter.

Representing Behaviors via Methods
Java lets you represent behaviors via methods, which are named blocks of code declared within
a class’s body. Entity behaviors are described via instance methods. Because Java also supports
behaviors that are associated with a class and not with an object, Java provides class methods to
describe these class behaviors.

You first learn how to declare and invoke instance methods, and then learn how to create instance
method call chains. Next, you discover how to declare and invoke class methods, encounter
additional details about passing arguments to methods, and explore Java’s return statement. After
learning how to invoke methods recursively as an alternative to iteration, and how to overload
methods, you review the rules for invoking methods from different contexts.

Declaring and Invoking Instance Methods
You can declare an instance method by minimally specifying a return type name, followed by an
identifier that names the method, followed by a parameter list, followed by a brace-delimited body.
Listing 3-9 presents a Car class with a printDetails() instance method.

Listing 3-9. Declaring a printDetails() Instance Method in the Car Class

public class Car
{
 String make;
 String model;
 int numDoors;

76 CHAPTER 3: Discovering Classes and Objects

 Car(String make, String model)
 {
 this(make, model, 4);
 }

 Car(String make, String model, int numDoors)
 {
 this.make = make;
 this.model = model;
 this.numDoors = numDoors;
 }

 void printDetails()
 {
 System.out.println("Make = " + make);
 System.out.println("Model = " + model);
 System.out.println("Number of doors = " + numDoors);
 System.out.println();
 }

 public static void main(String[] args)
 {
 Car myCar = new Car("Toyota", "Camry");
 myCar.printDetails();
 Car yourCar = new Car("Mazda", "RX-8", 2);
 yourCar.printDetails();
 }
}

Listing 3-9 declares an instance method named printDetails(). By convention, a method’s name
begins with a lowercase letter, and the first letter of each subsequent word in a multiword method
name is capitalized.

Methods are like constructors in that they have parameter lists. You pass arguments to these
parameters when you call the method. Because printDetails() doesn’t take arguments, its
parameter list is empty.

Note A method’s name and the number, types, and order of its parameters are known as its signature.

When a method is invoked, the code within its body is executed. In the case of printDetails(), this
method’s body executes a sequence of System.out.println() method calls to output the values of
its make, model, and numDoors instance fields.

Unlike constructors, methods are declared to have return types. A return type identifies the kind of
values returned by the method (e.g., int count() returns 32-bit integers). When a method doesn’t
return a value (and printDetails() doesn’t), its return type is replaced with keyword void, as in void
printDetails().

77CHAPTER 3: Discovering Classes and Objects

Note Constructors don’t have return types because they cannot return values. If a constructor could
return an arbitrary value, how would Java return that value? After all, the new operator returns
a reference to an object; how could new also return a constructor value?

A method is invoked by using the member access operator: the left operand specifies the
object’s reference and the right operand specifies the method to be called. For example, the
myCar.printDetails() and yourCar.printDetails() expressions invoke the printDetails()
instance method on the myCar and yourCar objects.

Compile Listing 3-9 (javac Car.java) and run this application (java Car). You should observe the
following output, whose different instance field values prove that printDetails() associates with
an object:

Make = Toyota
Model = Camry
Number of doors = 4

Make = Mazda
Model = RX-8
Number of doors = 2

When an instance method is invoked, Java passes a hidden argument to the method (as the leftmost
argument in a list of arguments). This argument is the reference to the object on which the method is
invoked. It is represented at the source code level via reserved word this. You don’t need to prefix
an instance field name with “this.” from within the method whenever you attempt to access an
instance field name that isn’t also the name of a parameter because the Java compiler ensures that
the hidden argument is used to access the instance field.

METHOD-CALL STACK

Method invocations require a method-call stack (also known as a method-invocation stack) to keep track of the
statements to which execution must return. Think of the method-call stack as a simulation of a pile of clean trays in
a cafeteria—you pop (remove) the clean tray from the top of the pile and the dishwasher will push (insert) the next clean
tray onto the top of the pile.

When a method is invoked, the virtual machine pushes its arguments and the address of the first statement to execute
following the invoked method onto the method-call stack. The virtual machine also allocates stack space for the method’s
local variables. When the method returns, the virtual machine removes local variable space, pops the address and
arguments off of the stack, and transfers execution to the statement at this address.

Chaining Together Instance Method Calls
Two or more instance method calls can be chained together via the member access operator, which
results in more compact code. To accomplish instance method call chaining, you need to rearchitect
your instance methods somewhat differently, which Listing 3-10 reveals.

78 CHAPTER 3: Discovering Classes and Objects

Listing 3-10. Implementing Instance Methods so That Calls to These Methods Can Be Chained Together

public class SavingsAccount
{
 int balance;

 SavingsAccount deposit(int amount)
 {
 balance += amount;
 return this;
 }

 SavingsAccount printBalance()
 {
 System.out.println(balance);
 return this;
 }

 public static void main(String[] args)
 {
 new SavingsAccount().deposit(1000).printBalance();
 }
}

Listing 3-10 shows that you must specify the class’s name as the instance method’s return type.
Each of deposit() and printBalance() must specify SavingsAccount as the return type. Also, you
must specify return this; (return current object’s reference) as the last statement—I discuss the
return statement later.

For example, new SavingsAccount().deposit(1000).printBalance(); creates a SavingsAccount
object, uses the returned SavingsAccount reference to invoke SavingsAccount’s deposit() instance
method, to add one thousand dollars to the savings account (I’m ignoring cents for convenience),
and finally uses deposit()’s returned SavingsAccount reference (which is the same SavingsAccount
instance) to invoke SavingsAccount’s printBalance() instance method to output the account
balance.

Declaring and Invoking Class Methods
In many situations, instance methods are all that you need. However, you might encounter a
situation where you need to describe a behavior that is independent of any object.

For example, suppose you would like to introduce a utility class (a class consisting of static [class]
methods) whose class methods perform various kinds of conversions (such as converting from
degrees Celsius to degrees Fahrenheit). You don’t want to create an object from this class to perform
a conversion. Instead, you simply want to call a method and obtain its result. Listing 3-11 addresses
this requirement by presenting a Conversions class with a pair of class methods. These methods can
be called without having to create a Conversions object.

79CHAPTER 3: Discovering Classes and Objects

Listing 3-11. A Conversions Utility Class with a Pair of Class Methods

class Conversions
{
 static double c2f(double degrees)
 {
 return degrees * 9.0 / 5.0 + 32;
 }

 static double f2c(double degrees)
 {
 return (degrees - 32) * 5.0 / 9.0;
 }
}

Listing 3-11’s Conversions class declares c2f() and f2c() methods for converting from degrees
Celsius to degrees Fahrenheit and vice-versa and returning the results of these conversions. Each
method header (method signature and other information) is prefixed with keyword static to turn the
method into a class method.

To execute a class method, you typically prefix its name with the class name. For example, you can
execute Conversions.c2f(100.0); to find out the Fahrenheit equivalent of 100 degrees Celsius, and
Conversions.f2c(98.6); to discover the Celsius equivalent of the normal body temperature. You
don’t need to instantiate Conversions and then call these methods via that instance, although you
could do so (but that isn’t good form).

Note Every application has at least one class method. Specifically, an application must specify
public static void main(String[] args) to serve as the application’s entry point. The
static reserved word makes this method a class method. (I will explain reserved word public later
in this chapter.)

Because class methods are not called with a hidden argument that refers to the current object,
c2f(), f2c(), and main() cannot access an object’s instance fields or call its instance methods.
These class methods can only access class fields and call class methods.

Passing Arguments to Methods
A method call includes a list of (zero or more) arguments being passed to the method. Java passes
arguments to methods via a style of argument passing called pass-by-value, which the following
example demonstrates:

Employee emp = new Employee("John ");
int recommendedAnnualSalaryIncrease = 1000;
printReport(emp, recommendAnnualSalaryIncrease);
printReport(new Employee("Cuifen"), 1500);

80 CHAPTER 3: Discovering Classes and Objects

Pass-by-value passes the value of a variable (the reference value stored in emp or the 1000 value
stored in recommendedAnnualSalaryIncrease, for example) or the value of some other expression
(such as new Employee("Cuifen") or 1500) to the method.

Because of pass-by-value, you cannot assign a different Employee object’s reference to emp from
inside printReport() via the printReport() parameter for this argument. After all, you have only
passed a copy of emp’s value to the method.

Many methods and constructors require you to pass a fixed number of arguments when they are
called. However, Java also provides the ability to pass a variable number of arguments—such
methods/constructors are often referred to as varargs methods/constructors. To declare a method
or constructor that takes a variable number of arguments, specify three consecutive periods after
the type name of the method’s/constructor’s rightmost parameter. The following example presents a
sum() method that accepts a variable number of arguments:

double sum(double. . . values)
{
 int total = 0;
 for (int i = 0; i < values.length; i++)
 total += values[i];
 return total;
}

sum()’s implementation totals the number of arguments passed to this method, for example,
sum(10.0, 20.0) or sum(30.0, 40.0, 50.0). (Behind the scenes, these arguments are stored in a
one-dimensional array, as evidenced by values.length and values[i].) After these values have been
totaled, this total is returned via the return statement.

Returning from a Method via the Return Statement
The execution of statements within a method that doesn’t return a value (its return type is set to
void) flows from the first statement to the last statement. However, Java’s return statement lets a
method or a constructor exit before reaching the last statement. As Listing 3-12 shows, this form of
the return statement consists of reserved word return followed by a semicolon.

Listing 3-12. Using the Return Statement to Return Prematurely from a Method

public class Employee
{
 String name;

 Employee(String name)
 {
 setName(name);
 }

 void setName(String name)
 {
 if (name == null)
 {
 System.out.println("name cannot be null");

81CHAPTER 3: Discovering Classes and Objects

 return;
 }
 else
 this.name = name;
 }

 public static void main(String[] args)
 {
 Employee john = new Employee(null);
 }
}

Listing 3-12’s Employee(String name) constructor invokes the setName() instance method to initialize
the name instance field. Providing a separate method for this purpose is a good idea because it lets
you initialize the instance field at construction time and also at a later time. (Perhaps the employee
changes his or her name.)

Note When you invoke a class’s instance or class method from a constructor or method within the
same class, you specify only the method’s name. You don’t prefix the method invocation with the
member access operator and an object reference or class name.

setName() uses an if statement to detect an attempt to assign the null reference to the name field. When
such an attempt is detected, it outputs the “name cannot be null” error message and returns prematurely
from the method so that the null value cannot be assigned (and replace a previously assigned name).

Caution When using the return statement, you might run into a situation where the compiler reports
an “unreachable code” error message. It does so when it detects code that will never be executed
and occupies memory unnecessarily. One area where you might encounter this problem is the switch
statement. For example, suppose you specify case 2: printUsageInstructions(); return;
break; as part of this statement. The compiler reports an error when it detects the break statement
following the return statement because the break statement is unreachable; it never can be executed.

The previous form of the return statement is not legal in a method that returns a value. For such
methods, Java provides an alternate version of return that lets the method return a value (whose
type must match the method’s return type). The following example demonstrates this version:

double divide(double dividend, double divisor)
{
 if (divisor == 0.0)
 {
 System.out.println("cannot divide by zero");
 return 0.0;
 }
 return dividend / divisor;
}

82 CHAPTER 3: Discovering Classes and Objects

divide() uses an if statement to detect an attempt to divide its first argument by 0.0 and outputs an
error message when this attempt is detected. Furthermore, it returns 0.0 to signify this attempt. If
there is no problem, the division is performed and the result is returned.

Caution You cannot use this form of the return statement in a constructor because constructors don’t
have return types.

Invoking Methods Recursively
A method normally executes statements that may include calls to other methods, such as
printDetails() invoking System.out.println(). However, it is occasionally convenient to have a
method call itself. This scenario is known as recursion.

For example, suppose you need to write a method that returns a factorial (the product of all the
positive integers up to and including a specific integer). For example, 3! (the ! is the mathematical
symbol for factorial) equals 3×2×1 or 6.

Your first approach to writing this method might consist of the code presented in the following
example:

int factorial(int n)
{
 int product = 1;
 for (int i = 2; i <= n; i++)
 product *= i;
 return product;
}

Although this code accomplishes its task (via iteration), factorial() could also be written according
to the following example’s recursive style:

int factorial(int n)
{
 if (n == 1)
 return 1; // base problem
 else
 return n * factorial(n - 1);
}

The recursive approach takes advantage of being able to express a problem in simpler terms of
itself. According to this example, the simplest problem, which is also known as the base problem,
is 1! (1).

When an argument greater than 1 is passed to factorial(), this method breaks the problem into
a simpler problem by calling itself with the next smaller argument value. Eventually, the base problem
will be reached.

83CHAPTER 3: Discovering Classes and Objects

For example, calling factorial(4) results in the following stack of expressions:

4 * factorial(3)
3 * factorial(2)
2 * factorial(1)

This last expression is at the top of the stack. When factorial(1) returns 1, these expressions are
evaluated as the stack begins to unwind:

 2 * factorial(1) now becomes 2*1 (2)

 3 * factorial(2) now becomes 3*2 (6)

 4 * factorial(3) now becomes 4*6 (24)

Recursion provides an elegant way to express many problems. Additional examples include
searching tree-based data structures for specific values and, in a hierarchical file system, finding and
outputting the names of all files that contain specific text.

Caution Recursion consumes stack space, so make sure that your recursion eventually ends in a base
problem; otherwise, you will run out of stack space and your application will be forced to terminate.

Overloading Methods
Java lets you introduce methods with the same name but different parameter lists into the same
class. This feature is known as method overloading. When the compiler encounters a method
invocation expression, it compares the called method’s arguments list with each overloaded
method’s parameter list as it looks for the correct method to invoke.

Two same-named methods are overloaded when their parameter lists differ in number or order of
parameters. For example, Java’s String class provides overloaded int indexOf(int ch) and int
indexOf(int ch, int fromIndex) methods. These methods differ in parameter counts. (I explore
String in Chapter 7.)

Two same-named methods are overloaded when at least one parameter differs in type. For example,
Java’s java.lang.Math class provides overloaded static double abs(double a) and static int
abs(int a) methods. One method’s parameter is a double; the other method’s parameter is an int.
(I explore Math in Chapter 7.)

You cannot overload a method by changing only the return type. For example, double
sum(double. . . values) and int sum(double. . . values) are not overloaded. These methods are
not overloaded because the compiler doesn’t have enough information to choose which method to
call when it encounters sum(1.0, 2.0) in source code.

84 CHAPTER 3: Discovering Classes and Objects

Reviewing Method-Invocation Rules
The previous examples of method invocation may seem confusing because you can sometimes
specify the method’s name directly, whereas you need to prefix a method name with an object
reference or a class name and the member access operator at other times. The following rules dispel
this confusion by giving you guidance on how to invoke methods from the various contexts:

Specify the name of a class method as is from anywhere within the same class
as the class method. Example: c2f(37.0);

Specify the name of the class method’s class, followed by the member access
operator, followed by the name of the class method from outside the class.
Example: Conversions.c2f(37.0); (You can also invoke a class method via an
object instance, but that is considered bad form because it hides from casual
observation the fact that a class method is being invoked.)

Specify the name of an instance method as is from any instance method,
constructor, or instance initializer in the same class as the instance method.
Example: setName(name);

Specify an object reference, followed by the member access operator, followed
by the name of the instance method from any class method or class initializer
within the same class as the instance method or from outside the class.
Example: Car car = new Car("Toyota", "Camry"); car.printDetails();

Although the latter rule might seem to imply that you can call an instance method from a class
context, this is not the case. Instead, you call the method from an object context.

Also, don’t forget to make sure that the number of arguments passed to a method, along with the
order in which these arguments are passed, and the types of these arguments agree with their
parameter counterparts in the method being invoked.

Note Field access and method call rules are combined in expression System.out.println();, where
the leftmost member access operator accesses the out class field (of type java.io.PrintStream)
in the java.lang.System class, and where the rightmost member access operator calls this field’s
println() method. You’ll learn about PrintStream in Chapter 11 and System in Chapter 8.

Hiding Information
Every class X exposes an interface (a protocol consisting of constructors, methods, and [possibly]
fields that are made available to objects created from other classes for use in creating and
communicating with X’s objects).

An interface serves as a one-way contract between a class and its clients, which are the external
constructors, methods, and other (initialization-oriented) class entities (discussed later in this
chapter) that communicate with the class’s instances by calling constructors and methods and by
accessing fields (typically public static final fields, or constants). The contract is such that the
class promises to not change its interface, which would break clients that depend on the interface.

85CHAPTER 3: Discovering Classes and Objects

X also provides an implementation (the code within exposed methods along with optional helper
methods and optional supporting fields that should not be exposed) that codifies the interface.
Helper methods are methods that assist exposed methods and should not be exposed.

When designing a class, your goal is to expose a useful interface while hiding details of that interface’s
implementation. You hide the implementation to prevent developers from accidentally accessing parts
of your class that don’t belong to the class’s interface so that you are free to change the implementation
without breaking client code. Hiding the implementation is often referred to as information hiding.
Furthermore, many developers consider implementation hiding to be part of encapsulation.

Java supports implementation hiding by providing four levels of access control, where three of these
levels are indicated via a reserved word. You can use the following access control levels to control
access to fields, methods, and constructors and two of these levels to control access to classes:

 Public: A field, method, or constructor that is declared public is accessible from
anywhere. Classes can be declared public as well.

 Protected: A field, method, or constructor that is declared protected is
accessible from all classes in the same package as the member’s class as well as
subclasses of that class regardless of package. (I discuss packages in Chapter 5.)

 Private: A field, method, or constructor that is declared private cannot be
accessed from beyond the class in which it is declared.

 Package-private: In the absence of an access-control reserved word, a field,
method, or constructor is only accessible to classes within the same package
as the member’s class. The same is true for non-public classes. The absence of
public, protected, or private implies package-private.

Note A class that is declared public must be stored in a file with the same name. For example, a
public Image class must be stored in Image.java. A source file can declare one public top-level
class only. (It’s also possible to declare nested classes that are public, and you will learn how to do so
in Chapter 5.)

You will often declare your class’s instance fields to be private and provide special public
instance methods for setting and getting their values. By convention, methods that set field values
have names starting with set and are known as setters. Similarly, methods that get field values
have names with get (or is, for Boolean fields) prefixes and are known as getters. Listing 3-13
demonstrates this pattern in the context of an Employee class declaration.

Listing 3-13. Separation of Interface from Implementation

public class Employee
{
 private String name;

86 CHAPTER 3: Discovering Classes and Objects

 public Employee(String name)
 {
 setName(name);
 }

 public void setName(String empName)
 {
 name = empName; // Assign the empName argument to the name field.
 }

 public String getName()
 {
 return name;
 }
}

Listing 3-13 presents an interface consisting of the public Employee class, its public constructor,
and its public setter/getter methods. This class and these members can be accessed from
anywhere. The implementation consists of the private name field and constructor/method code,
which is only accessible within the Employee class.

It might seem pointless to go to all this bother when you could simply omit private and access the
name field directly. However, suppose you are told to introduce a new constructor that takes separate
first and last name arguments and new methods that set/get the employee’s first and last names
into this class. Furthermore, suppose that it has been determined that the first and last names will be
accessed more often than the entire name. Listing 3-14 reveals these changes.

Listing 3-14. Revising Implementation Without Affecting Existing Interface

public class Employee
{
 private String firstName;
 private String lastName;

 public Employee(String name)
 {
 setName(name);
 }

 public Employee(String firstName, String lastName)
 {
 setName(firstName + " " + lastName);
 }

 public void setName(String name)
 {
 // Assume that the first and last names are separated by a
 // single space character. indexOf() locates a character in a
 // string; substring() returns a portion of a string.
 setFirstName(name.substring(0, name.indexOf(' ')));
 setLastName(name.substring(name.indexOf(' ') + 1));
 }

87CHAPTER 3: Discovering Classes and Objects

 public String getName()
 {
 return getFirstName() + " " + getLastName();
 }

 public void setFirstName(String empFirstName)
 {
 firstName = empFirstName;
 }

 public String getFirstName()
 {
 return firstName;
 }

 public void setLastName(String empLastName)
 {
 lastName = empLastName;
 }

 public String getLastName()
 {
 return lastName;
 }
}

Listing 3-14 reveals that the name field has been removed in favor of new firstName and lastName
fields, which were added to improve performance. Because setFirstName() and setLastName()
will be called more frequently than setName(), and because getFirstName() and getLastName() will
be called more frequently than getName(), it is more performant (in each case) to have the first two
methods set/get firstName’s and lastName’s values rather than merging either value into/extracting
this value from name’s value.

Listing 3-14 also reveals setName() calling setFirstName() and setLastName(), and getName() calling
getFirstName() and getLastName(), rather than directly accessing the firstName and lastName fields.
Although avoiding direct access to these fields is not necessary in this example, imagine another
implementation change that adds more code to setFirstName(), setLastName(), getFirstName(),
and getLastName(); not calling these methods will result in the new code not executing.

Client code (code that instantiates and uses a class, such as Employee) will not break when
Employee’s implementation changes from that shown in Listing 3-13 to that shown in Listing 3-14,
because the original interface remains intact, although the interface has been extended. This lack of
breakage results from hiding Listing 3-13’s implementation, especially the name field.

Note setName() invokes the String class’s indexOf() and substring() methods. You’ll learn
about these and other String methods in Chapter 7.

88 CHAPTER 3: Discovering Classes and Objects

Java provides a little known information hiding-related language feature that lets one object (or class
method/initializer) access another object’s private fields or invoke its private methods. Listing 3-15
provides a demonstration.

Listing 3-15. One Object Accessing Another Object’s private Field

public class PrivateAccess
{
 private int x;

 PrivateAccess(int x)
 {
 this.x = x;
 }

 boolean equalTo(PrivateAccess pa)
 {
 return pa.x == x;
 }

 public static void main(String[] args)
 {
 PrivateAccess pa1 = new PrivateAccess(10);
 PrivateAccess pa2 = new PrivateAccess(20);
 PrivateAccess pa3 = new PrivateAccess(10);
 System.out.println("pa1 equal to pa2: " + pa1.equalTo(pa2));
 System.out.println("pa2 equal to pa3: " + pa2.equalTo(pa3));
 System.out.println("pa1 equal to pa3: " + pa1.equalTo(pa3));
 System.out.println(pa2.x);
 }
}

Listing 3-15’s PrivateAccess class declares a private int field named x. It also declares an
equalTo() method that takes a PrivateAccess argument. The idea is to compare the argument
object with the current object to determine if they are equal.

The equality determination is made by using the == operator to compare the value of the argument
object’s x instance field with the value of the current object’s x instance field, returning Boolean true
when they are the same. What may seem baffling is that Java lets you specify pa.x to access the
argument object’s private instance field. Also, main() is able to directly access x via the pa2 object.

I previously presented Java’s four access-control levels and presented the following statement regarding
the private access-control level: “A field, method, or constructor that is declared private cannot be
accessed from beyond the class in which it is declared.” When you carefully consider this statement
and examine Listing 3-15, you will realize that x is not being accessed from beyond the PrivateAccess
class in which it is declared. Therefore, the private access-control level is not being violated.

The only code that can access this private instance field is code located within the PrivateAccess
class. If you attempted to access x via a PrivateAccess object that was created in the context of
another class, the compiler would report an error.

Being able to directly access x from within PrivateAccess is a performance enhancement; it is faster
to directly access this implementation detail than to call a method that returns its value.

89CHAPTER 3: Discovering Classes and Objects

Compile PrivateAccess.java (javac PrivateAccess.java) and run the application
(java PrivateAccess). You should observe the following output:

pa1 equal to pa2: false
pa2 equal to pa3: false
pa1 equal to pa3: true
20

Tip Get into the habit of developing useful interfaces while hiding implementations because it will
save you much trouble when maintaining your classes.

Initializing Classes and Objects
Classes and objects need to be properly initialized before they are used. You’ve already learned
that class fields are initialized to default zero values after a class loads and can be subsequently
initialized by assigning values to them in their declarations via class field initializers, for example,
static int counter = 1;. Similarly, instance fields are initialized to default values when an object’s
memory is allocated via new and can be subsequently initialized by assigning values to them in their
declarations via instance field initializers; for example, int numDoors = 4;.

Another aspect of initialization that’s already been discussed is the constructor, which is used to
initialize an object, typically by assigning values to various instance fields, but is also capable of
executing arbitrary code such as code that opens a file and reads the file’s contents.

Java provides two additional initialization features: class initializers and instance initializers. After
introducing you to these features in this section, I discuss the order in which all of Java’s initializers
perform their work.

Class Initializers
Constructors perform initialization tasks for objects. Their counterpart from a class initialization
perspective is the class initializer.

A class initializer is a static-prefixed block that is introduced into a class body. It is used to initialize
a loaded class via a sequence of statements. For example, I once used a class initializer to load a
custom database driver class. Listing 3-16 shows the loading details.

Listing 3-16. Loading a Database Driver via a Class Initializer

class JDBCFilterDriver implements Driver
{
 static private Driver d;

 static
 {
 // Attempt to load JDBC-ODBC Bridge Driver and register that
 // driver.

90 CHAPTER 3: Discovering Classes and Objects

 try
 {
 Class c = Class.forName("sun.jdbc.odbc.JdbcOdbcDriver");
 d = (Driver) c.newInstance();
 DriverManager.registerDriver(new JDBCFilterDriver());
 }
 catch (Exception e)
 {
 System.out.println(e);
 }
 }
 //. . .
}

Listing 3-16’s JDBCFilterDriver class uses its class initializer to load and instantiate the class that
describes Java’s JDBC-ODBC Bridge Driver and to register a JDBCFilterDriver instance with Java’s
database driver. Although this listing’s JDBC-oriented code is probably meaningless to you right
now, the listing illustrates the usefulness of class initializers. (I discuss JDBC in Chapter 14.)

A class can declare a mix of class initializers and class field initializers as demonstrated
in Listing 3-17.

Listing 3-17. Mixing Class Initializers with Class Field Initializers

class C
{
 static
 {
 System.out.println("class initializer 1");
 }

 static int counter = 1;

 static
 {
 System.out.println("class initializer 2");
 System.out.println("counter = " + counter);
 }
}

Listing 3-17 declares a class named C that specifies two class initializers and one class field
initializer. When the Java compiler compiles into a classfile a class that declares at least one class
initializer or class field initializer, it creates a special void <clinit>() class method that stores the
bytecode equivalent of all class initializers and class field initializers in the order they occur (from top
to bottom).

Note <clinit> is not a valid Java method name but is a valid name from the runtime perspective.
The angle brackets were chosen as part of the name to prevent a name conflict with any clinit()
methods that you might declare in the class.

91CHAPTER 3: Discovering Classes and Objects

For class C, <clinit>() would first contain the bytecode equivalent of System.out.println("class
initializer 1");, it would next contain the bytecode equivalent of static int counter = 1;, and
it would finally contain the bytecode equivalent of System.out.println("class initializer 2");
System.out.println("counter = " + counter);.

When class C is loaded into memory, <clinit>() executes immediately and generates the following
output:

class initializer 1
class initializer 2
counter = 1

Instance Initializers
Not all classes can have constructors, as you will discover in Chapter 5 when I present anonymous
classes. For these classes, Java supplies the instance initializer to take care of instance initialization
tasks.

An instance initializer is a block that is introduced into a class body as opposed to being introduced
as the body of a method or a constructor. The instance initializer is used to initialize an object via a
sequence of statements as demonstrated in Listing 3-18.

Listing 3-18. Initializing a Pair of Arrays via an Instance Initializer

class Graphics
{
 double[] sines;
 double[] cosines;

 {
 sines = new double[360];
 cosines = new double[sines.length];
 for (int degree = 0; degree < sines.length; degree++)
 {
 sines[degree] = Math.sin(Math.toRadians(degree));
 cosines[degree] = Math.cos(Math.toRadians(degree));
 }
 }
}

Listing 3-18’s Graphics class uses an instance initializer to create an object’s sines and cosines
arrays and to initialize these arrays’ elements to the sines and cosines of angles ranging from 0
through 359 degrees. It does so because it’s faster to read array elements than to repeatedly call
Math.sin() and Math.cos() elsewhere; performance matters. (In Chapter 7 I introduce Math.sin()
and Math.cos().)

A class can declare a mix of instance initializers and instance field initializers as shown in
Listing 3-19.

92 CHAPTER 3: Discovering Classes and Objects

Listing 3-19. Mixing Instance Initializers with Instance Field Initializers

class C
{
 {
 System.out.println("instance initializer 1");
 }

 int counter = 1;

 {
 System.out.println("instance initializer 2");
 System.out.println("counter = " + counter);
 }
}

Listing 3-19 declares a class named C that specifies two instance initializers and one instance
field initializer. When the Java compiler compiles a class into a classfile, it creates a special void
<init>() method representing the default noargument constructor when no constructor is explicitly
declared; otherwise, it creates an <init>() method for each encountered constructor. Furthermore,
it stores in each <init>() method the bytecode equivalent of all instance initializers and instance
field initializers in the order they occur (from top to bottom) and before the constructor code.

Note <init> is not a valid Java method name but is a valid name from the runtime perspective. The
angle brackets were chosen as part of the name to prevent a name conflict with any init() methods
that you might declare in the class.

For class C, <init>() would first contain the bytecode equivalent of System.out.println("instance
initializer 1");, it would next contain the bytecode equivalent of int counter = 1;, and it
would finally contain the bytecode equivalent of System.out.println("instance initializer 2");
System.out.println("counter = " + counter);.

When new C() executes, <init>() executes immediately and generates the following output:

instance initializer 1
instance initializer 2
counter = 1

Note You should rarely need to use the instance initializer, which is not commonly used in industry.
Other developers would likely miss the instance initializer while scanning the source code and might
find it confusing.

93CHAPTER 3: Discovering Classes and Objects

Initialization Order
A class’s body can contain a mixture of class field initializers, class initializers, instance field
initializers, instance initializers, and constructors. (You should prefer constructors to instance
field initializers, although I am guilty of not doing so consistently, and restrict your use of instance
initializers to anonymous classes, discussed in Chapter 5.) Furthermore, class fields and instance
fields initialize to default values. Understanding the order in which all of this initialization occurs is
necessary to preventing confusion, so check out Listing 3-20.

Listing 3-20. A Complete Initialization Demo

public class InitDemo
{
 static double double1;
 double double2;
 static int int1;
 int int2;
 static String string1;
 String string2;

 static
 {
 System.out.println("[class] double1 = " + double1);
 System.out.println("[class] int1 = " + int1);
 System.out.println("[class] string1 = " + string1);
 System.out.println();
 }

 {
 System.out.println("[instance] double2 = " + double2);
 System.out.println("[instance] int2 = " + int2);
 System.out.println("[instance] string2 = " + string2);
 System.out.println();
 }

 static
 {
 double1 = 1.0;
 int1 = 1000000000;
 string1 = "abc";
 }

 {
 double2 = 1.0;
 int2 = 1000000000;
 string2 = "abc";
 }

 InitDemo()
 {
 System.out.println("InitDemo() called");

94 CHAPTER 3: Discovering Classes and Objects

 System.out.println();
 }

 static double double3 = 10.0;
 double double4 = 10.0;

 static
 {
 System.out.println("[class] double3 = " + double3);
 System.out.println();
 }

 {
 System.out.println("[instance] double4 = " + double3);
 System.out.println();
 }

 public static void main(String[] args)
 {
 System.out.println ("main() started");
 System.out.println();
 System.out.println("[class] double1 = " + double1);
 System.out.println("[class] double3 = " + double3);
 System.out.println("[class] int1 = " + int1);
 System.out.println("[class] string1 = " + string1);
 System.out.println();
 for (int i = 0; i < 2; i++)
 {
 System.out.println("About to create InitDemo object");
 System.out.println();
 InitDemo id = new InitDemo();
 System.out.println("id created");
 System.out.println();
 System.out.println("[instance] id.double2 = " + id.double2);
 System.out.println("[instance] id.double4 = " + id.double4);
 System.out.println("[instance] id.int2 = " + id.int2);
 System.out.println("[instance] id.string2 = " + id.string2);
 System.out.println();
 }
 }
}

Listing 3-20’s InitDemo class declares two class fields and two instance fields for the double
precision floating-point primitive type, one class field and one instance field for the integer primitive
type, and one class field and one instance field for the String reference type. It also introduces one
explicitly initialized class field, one explicitly initialized instance field, three class initializers, three
instance initializers, and one constructor. If you compile and run this code, you will observe the
following output:

[class] double1 = 0.0
[class] int1 = 0
[class] string1 = null

95CHAPTER 3: Discovering Classes and Objects

[class] double3 = 10.0

main() started

[class] double1 = 1.0
[class] double3 = 10.0
[class] int1 = 1000000000
[class] string1 = abc

About to create InitDemo object

[instance] double2 = 0.0
[instance] int2 = 0
[instance] string2 = null

[instance] double4 = 10.0

InitDemo() called

id created

[instance] id.double2 = 1.0
[instance] id.double4 = 10.0
[instance] id.int2 = 1000000000
[instance] id.string2 = abc

About to create InitDemo object

[instance] double2 = 0.0
[instance] int2 = 0
[instance] string2 = null

[instance] double4 = 10.0

InitDemo() called

id created

[instance] id.double2 = 1.0
[instance] id.double4 = 10.0
[instance] id.int2 = 1000000000
[instance] id.string2 = abc

As you study this output in conjunction with the aforementioned discussion of class initializers and
instance initializers, you’ll discover some interesting facts about initialization:

Class fields initialize to default or explicit values just after a class is loaded.
Immediately after a class loads, all class fields are zeroed to default values.
Code within the <clinit>() method performs explicit initialization.

All class initialization occurs prior to the <clinit>() method returning.

96 CHAPTER 3: Discovering Classes and Objects

Instance fields initialize to default or explicit values during object creation. When
new allocates memory for an object, it zeros all instance fields to default values.
Code within an <init>() method performs explicit initialization.

All instance initialization occurs prior to the <init>() method returning.

Additionally, because initialization occurs in a top-down manner, attempting to access the contents
of a class field before that field is declared or attempting to access the contents of an instance field
before that field is declared causes the compiler to report an illegal forward reference.

Collecting Garbage
Objects are created via reserved word new, but how are they destroyed? Without some way to
destroy objects, they will eventually fill up the heap’s available space and the application will not
be able to continue. Java doesn’t provide the developer with the ability to remove them from
memory. Instead, Java handles this task by providing a garbage collector, which is code that runs
in the background and occasionally checks for unreferenced objects. When the garbage collector
discovers an unreferenced object (or multiple objects that reference each other and where there are
no other references to each other—only A references B and only B references A, for example), it
removes the object from the heap, making more heap space available.

An unreferenced object is an object that cannot be accessed from anywhere within an application.
For example, new Employee("John", "Doe"); is an unreferenced object because the Employee
reference returned by new is thrown away. In contrast, a referenced object is an object where the
application stores at least one reference. For example, Employee emp = new Employee("John",
"Doe"); is a referenced object because variable emp contains a reference to the Employee object.

A referenced object becomes unreferenced when the application removes its last stored reference.
For example, if emp is a local variable that contains the only reference to an Employee object, this
object becomes unreferenced when the method in which emp is declared returns. An application can
also remove a stored reference by assigning null to its reference variable. For example, emp = null;
removes the reference to the Employee object that was previously stored in emp.

Java’s garbage collector eliminates a form of memory leakage in C++ implementations that do not
rely on a garbage collector. In these C++ implementations, the developer must destroy dynamically
created objects before they go out of scope. If they vanish before destruction, they remain in the
heap. Eventually, the heap fills and the application halts.

Although this form of memory leakage is not a problem in Java, a related form of leakage is
problematic: continually creating objects and forgetting to remove even one reference to each object
causes the heap to fill up and the application to eventually come to a halt. This form of memory
leakage typically occurs in the context of collections (object-based data structures that store
objects) and is a major problem for applications that run for lengthy periods of time—a web server
is one example. For shorter-lived applications, you will normally not notice this form of memory
leakage.

Consider Listing 3-21.

97CHAPTER 3: Discovering Classes and Objects

Listing 3-21. A Memory-Leaking Stack

public class Stack
{
 private Object[] elements;
 private int top;

 public Stack(int size)
 {
 elements = new Object[size];
 top = −1; // indicate that stack is empty
 }

 public void push(Object o)
 {
 if (top + 1 == elements.length)
 {
 System.out.println("stack is full");
 return;
 }
 elements[++top] = o;
 }

 public Object pop()
 {
 if (top == −1)
 {
 System.out.println("stack is empty");
 return null;
 }
 Object element = elements[top--];
// elements[top + 1] = null;
 return element;
 }

 public static void main(String[] args)
 {
 Stack stack = new Stack(2);
 stack.push("A");
 stack.push("B");
 stack.push("C");
 System.out.println(stack.pop());
 System.out.println(stack.pop());
 System.out.println(stack.pop());
 }
}

Listing 3-21 describes a collection known as a stack, a data structure that stores elements in last-in,
first-out order. Stacks are useful for remembering things, such as the instruction to return to when
a method stops executing and must return to its caller.

98 CHAPTER 3: Discovering Classes and Objects

Stack provides a push() method for pushing arbitrary objects onto the top of the stack and a pop()
method for popping objects off of the stack’s top in the reverse order to which they were pushed.

After creating a Stack object that can store a maximum of two objects, main() invokes push() three
times to push three String objects onto the stack. Because the stack’s internal array can store two
objects only, push() outputs an error message when main() tries to push "C".

At this point, main() attempts to pop three Objects off of the stack, outputting each object to the
standard output device. The first two pop() method calls succeed, but the final method call fails and
outputs an error message because the stack is empty when it is called.

When you run this application, it generates the following output:

stack is full
B
A
stack is empty
null

There is a problem with the Stack class: it leaks memory. When you push an object onto the stack,
its reference is stored in the internal elements array. When you pop an object off of the stack, the
object’s reference is obtained and top is decremented, but the reference remains in the array (until
you invoke push()).

Imagine a scenario where the Stack object’s reference is assigned to a class field, which means that
the Stack object hangs around for the life of the application. Furthermore, suppose that you have
pushed three 50-megabyte Image objects onto the stack and then subsequently popped them off
of the stack. After using these objects, you assign null to their reference variables, thinking that
they will be garbage collected the next time the garbage collector runs. However, this won’t happen
because the Stack object still maintains its references to these objects, and so 150 megabytes
of heap space will not be available to the application, and maybe the application will run
out of memory.

The solution to this problem is for pop() to explicitly assign null to the elements entry prior to
returning the reference. Simply uncomment the elements[top + 1] = null; line in Listing 3-21 to
make this happen.

You might think that you should always assign null to reference variables when their referenced
objects are no longer required. However, doing so often doesn’t improve performance or free
up significant amounts of heap space and can lead to thrown instances of the java.lang.
NullPointerException class when you’re not careful. (I discuss NullPointerException in the
context of Chapter 5’s coverage of Java’s exceptions-oriented language features). You typically
nullify reference variables in classes that manage their own memory, such as the aforementioned
Stack class.

Note To learn more about garbage collection in a Java 5 context, check out Oracle’s “Memory
Management in the Java HotSpot Virtual Machine” whitepaper (www.oracle.com/technetwork/
java/javase/tech/memorymanagement-whitepaper-1-150020.pdf).

99CHAPTER 3: Discovering Classes and Objects

Revisiting Arrays
In Chapter 2 I introduced you to arrays, which are regions of memory (specifically, the heap) that
store values in equal-size and contiguous slots, known as elements. I also presented several
examples, including the following example:

char gradeLetters[] = { 'A', 'B', 'C', 'D', 'F' };

Here you have an array variable named gradeLetters that stores a reference to a five-element
region of memory, which stores the characters A, B, C, D, and F in contiguous and equal-size (16-bit)
memory locations.

Note I’ve placed the [] brackets after gradeLetters. Although this is legal, it’s conventional to
place these brackets after the type name, as in char[] gradeLetters = { 'A', 'B', 'C',
'D', 'F' };. I demonstrate both approaches in this section.

You access an element by specifying gradeLetters[x], where x is an integer that identifies an array
element and is known as an index; the first array element is always located at index 0. The following
example shows you how to output and change the first element’s value:

System.out.println(gradeLetters[0]); // Output the first grade letter.
gradeLetters[0] = 'a'; // Perhaps you prefer lowercase grade letters.

The { 'A', 'B', 'C', 'D', 'F' } array-creation syntax is an example of syntactic sugar (syntax
that simplifies a language, making it “sweeter” to use). Behind the scenes, the array is created with
the new operator and initializes to these values, as follows:

char gradeLetters[] = new char[] { 'A', 'B', 'C', 'D', 'F' };

First, a five-character region of memory is allocated. Next, the region’s five character elements
are initialized to A, B, C, D, and F. Finally, a reference to these elements is stored in array variable
gradeLetters.

Caution It’s an error to place an integer value between the square brackets following char. For
example, the compiler reports an error when it encounters the 5 in new char[5] { 'A', 'B',
'C', 'D', 'F' };.

You can think of an array as a special kind of object, although it’s not an object in the same sense
that a class instance is an object. This pseudo-object has a solitary and read-only length field that
contains the array’s size (the number of elements). For example, gradeLetters.length returns the
number of elements (5) in the gradeLetters array.

100 CHAPTER 3: Discovering Classes and Objects

Although you can use either of the previous two approaches to create an array, you will often specify
a third approach that doesn’t involve explicit element initialization and subsequently initialize the
array. This approach is demonstrated by the following code:

char gradeLetters[] = new char[5];

You specify the number of elements as a positive integer between the square brackets. Operator new
zeros the bits in each array element’s storage location, which you interpret at the source code level
as literal value false, '\u0000', 0, 0L, 0.0, 0.0F, or null (depending on element type).

You can then initialize the array, as follows:

gradeLetters[0] = 'A';
gradeLetters[1] = 'B';
gradeLetters[2] = 'C';
gradeLetters[3] = 'D';
gradeLetters[4] = 'F';

However, you will probably find it more convenient to use a loop for this task, as follows:

for (int i = 0; i < gradeLetters.length; i++)
 gradeLetters[i] = 'A' + i;

The previous examples focused on creating an array whose values share a common primitive type
(character, represented by the char keyword). You can also create an array of object references. For
example, you can create an array to store three Image object references, as follows:

Image[] imArray = { new Image("image0.png"), new Image("image1.png"), new Image("image2.png") };

Here you have an array variable named imArray that stores a reference to a three-element region
of memory, where each element stores a reference to an Image object. The Image object is located
elsewhere in memory.

You access an Image element by specifying imArray[x]. The following example assumes the
existence of a getLength() method that returns the image’s length (in bytes) and calls this method
on the first Image object to return the first image’s length, which is subsequently output:

System.out.println(imArray[0].getLength());

As with the previous gradeLetters example, you can combine the new operator with the syntactic
sugar initializer, as follows:

Image[] imArray = new Image[] { new Image("image0.png"), new Image("image1.png"),
 new Image("image2.png") };

Finally, you can use the third approach, which initializes each object reference to the null reference
by setting all of the bits in each element to 0. This approach is demonstrated following:

Image[] imArray = new Image[3];

101CHAPTER 3: Discovering Classes and Objects

Because new initializes each element to the null reference, you must explicitly initialize this array, and
you can conveniently do so as follows:

for (int i = 0; i < imArray.length; i++)
 imArray[i] = new Image("image" + i + ".png"); // image0.png, image1.png, and so on

The "image" + i + ".png" expression uses the string concatenation operator (+) to combine image
with the string equivalent of the integer value stored in variable i with .png. The resulting string is
passed to Image’s Image(String filename) constructor, and the resulting reference is stored in one
of the array elements.

Note Use of the string concatenation operator in a loop context can result in a lot of unnecessary
String object creation, depending on the length of the loop. I will discuss this topic in Chapter 7 when
I introduce you to the String class.

The previous examples have focused on creating one-dimensional arrays. However, you can also
create multidimensional arrays (that is, arrays with two or more dimensions). For example, consider a
two-dimensional array of temperature values.

Although you can use any of the three approaches to create the temperatures array, the third
approach is preferable when the values vary greatly. The following example creates this array as a
three-row-by-two-column table of double precision floating-point temperature values:

double[][] temperatures = new double[3][2];

Notice the two sets of square brackets between double and temperatures. These two sets of
brackets signify the array as two-dimensional (a table). Also notice the two sets of square brackets
following new and double. Each set contains a positive integer value signifying the number of rows (3)
or the number of columns (2) for each row.

Note When creating a multidimensional array, the number of square bracket pairs that are associated
with the array variable and the number of square bracket pairs that follow new and the type name must
be the same.

After creating the array, you can populate its elements with suitable values. The following example
initializes each temperatures element, which is accessed as temperatures[row][col], to a randomly
generated temperature value via Math.random(), which I’ll explain in Chapter 7:

for (int row = 0; row < temperatures.length; row++)
 for (int col = 0; col < temperatures[row].length; col++)
 temperatures[row][col] = Math.random() * 100;

102 CHAPTER 3: Discovering Classes and Objects

The outer for loop selects each row from row 0 to the length of the array (which identifies the
number of rows in the array). The inner for loop selects each column from 0 to the length
of the current row array (which identifies the number of columns represented by that array).
In essence, you are looking at a one-dimensional row array where each element references
a one-dimensional column array.

You can subsequently output these values in a tabular format by using another for loop as
demonstrated by the following example—the code makes no attempt to align the temperature
values in perfect columns:

for (int row = 0; row < temperatures.length; row++)
{
 for (int col = 0; col < temperatures[row].length; col++)
 System.out.print(temperatures[row][col] + " ");
 System.out.println();
}

Java provides an alternative for creating a multidimensional array in which you create each
dimension separately. For example, to create the previous two-dimensional temperatures array via
new in this manner, first create a one-dimensional row array (the outer array), and then create a
one-dimensional column array (the inner array), as demonstrated by the following code:

// Create the row array.
double[][] temperatures = new double[3][]; // Note the extra empty pair of brackets.
// Create a column array for each row.
for (int row = 0; row < temperatures.length; row++)
 temperatures[row] = new double[2]; // 2 columns per row

This kind of an array is known as a ragged array because each row can have a different number of
columns; the array is not rectangular, but is ragged.

Note When creating the row array, you must specify an extra pair of empty brackets as part of the
expression following new. (For a three-dimensional array—a one-dimensional array of tables, where
this array’s elements reference row arrays—you must specify two pairs of empty brackets as part of
the expression following new.)

EXERCISES

The following exercises are designed to test your understanding of Chapter 3’s content:

1. What is a class?

2. How do you declare a class?

3. What is an object?

4. How do you instantiate an object?

103CHAPTER 3: Discovering Classes and Objects

5. What is a constructor?

6. True or false: Java creates a default noargument constructor when a class declares no constructors.

7. What is a parameter list and what is a parameter?

8. What is an argument list and what is an argument?

9. True or false: You invoke another constructor by specifying the name of the class followed by an
argument list.

10. Define arity.

11. What is a local variable?

12. Define lifetime.

13. Define scope.

14. What is encapsulation?

15. Define field.

16. What is the difference between an instance field and a class field?

17. What is a blank final and how does it differ from a true constant?

18. How do you prevent a field from being shadowed?

19. Define method.

20. What is the difference between an instance method and a class method?

21. Define recursion.

22. How do you overload a method?

23. What is a class initializer, and what is an instance initializer?

24. Define garbage collector.

25. True or false: String[] letters = new String[2] { "A", "B" }; is correct syntax.

26. What is a ragged array?

27. The factorial() method provides an example of tail recursion, a special case of recursion in
which the method’s last statement contains a recursive call, which is known as a tail call. Provide
another example of tail recursion.

28. Create a Book class with name, author, and International Standard Book Number (ISBN) fields.
Provide a suitable constructor and getter methods that return field values. Introduce a main()
method into this class that creates an array of Book objects and iterates over this array outputting
each book’s name, author, and ISBN.

104 CHAPTER 3: Discovering Classes and Objects

Summary
A class is a template for manufacturing objects, which are named aggregates of code and data.
Classes generalize real-world entities, and objects are specific manifestations of these entities at the
application level.

The new operator allocates memory to store the object whose type is specified by new’s solitary
operand. This operator is followed by a constructor, which is a block of code for initializing an object.
new calls the constructor immediately after allocating memory to store the object.

Java lets you represent an entity’s state via fields, which are variables declared within a class’s body.
Entity attributes are described via instance fields. Because Java also supports state that’s associated
with a class and not with an object, Java provides class fields to describe this class state.

Java lets you represent an entity’s behaviors via methods, which are named blocks of code declared
within a class’s body. Entity behaviors are described via instance methods. Because Java also
supports behaviors that are associated with classes and not with objects, Java provides class
methods to describe these class behaviors.

Classes and objects need to be properly initialized before they are used. You’ve already learned
that class fields are initialized to default zero values after a class loads and can be subsequently
initialized by assigning values to them in their declarations via class field initializers. Similarly,
instance fields are initialized to default values when an object’s memory is allocated via new and
can be subsequently initialized by assigning values to them in their declarations via instance field
initializers or via constructors.

Java also supports class initializers and instance initializers for this task. A class initializer is a
static-prefixed block that is introduced into a class body. It is used to initialize a loaded class via
a sequence of statements. An instance initializer is a block that is introduced into a class body, as
opposed to being introduced as the body of a method or a constructor. The instance initializer is
used to initialize an object via a sequence of statements.

Objects are created via reserved word new, but how are they destroyed? Without some way to
destroy objects, they will eventually fill up the heap’s available space and the application will not be
able to continue. Java doesn’t provide the developer with the ability to remove them from memory.
Instead, Java handles this task by providing a garbage collector, which is code that runs in the
background and occasionally checks for unreferenced objects.

You can think of an array as a special kind of object, although it’s not an object in the same sense
that a class instance is an object. This pseudo-object has a solitary and read-only length field that
contains the array’s size (the number of elements).

As well as using the syntactic sugar first presented in Chapter 2 for creating an array, you can also
create an array using the new operator, with or without the syntactic sugar.

In Chapter 4 I continue to explore the Java language by examining its support for inheritance,
polymorphism, and interfaces.

105

Chapter 4
Discovering Inheritance,
Polymorphism, and Interfaces

An object-based language is a language that encapsulates state and behaviors in objects.
Java’s support for encapsulation (discussed in Chapter 3) qualifies it as an object-based
language. However, Java is also an object-oriented language because it supports inheritance and
polymorphism (as well as encapsulation). (Object-oriented languages are a subset of object-based
languages.) In Chapter 4 I introduce you to Java’s language features that support inheritance and
polymorphism. Also, I introduce you to interfaces, Java’s ultimate abstract type mechanism.

Building Class Hierarchies
We tend to categorize stuff by saying things like “cars are vehicles” or “savings accounts are
bank accounts.” By making these statements, we really are saying (from a software development
perspective) that cars inherit vehicular state (e.g., make and color) and behaviors (e.g., park and
display mileage) and that savings accounts inherit bank account state (e.g., balance) and behaviors
(e.g., deposit and withdraw). Car, vehicle, savings account, and bank account are examples of
real-world entity categories, and inheritance is a hierarchical relationship between similar entity
categories in which one category inherits state and behaviors from at least one other entity category.
Inheriting from a single category is single inheritance, and inheriting from at least two categories is
multiple inheritance.

Java supports single inheritance and multiple inheritance to facilitate code reuse—why reinvent
the wheel? Java supports single inheritance in a class context in which a class inherits state and
behaviors from another class through class extension. Because classes are involved, Java refers to
this kind of inheritance as implementation inheritance.

Java also supports single inheritance and multiple inheritance in an interface context in which a class
inherits behavior templates from one or more interfaces through interface implementation or in which
an interface inherits behavior templates from one or more interfaces through interface extension.

106 CHAPTER 4: Discovering Inheritance, Polymorphism, and Interfaces

Because interfaces are involved, Java refers to this kind of inheritance as interface inheritance.
(I discuss interfaces later in this chapter.)

Note You reuse code by carefully extending classes, implementing interfaces, and extending
interfaces. You start with something that is close to what you want and extend it to meet your goal.
You don’t reuse code by simply copying and pasting it. Copying and pasting often results in redundant
(i.e., nonreusable) and buggy code.

In this section I introduce you to Java’s support for implementation inheritance by first focusing on
class extension. I then introduce you to a special class that sits at the top of Java’s class hierarchy.
After introducing you to composition, which is an alternative to implementation inheritance for
reusing code, I show you how composition can be used to overcome problems with implementation
inheritance.

Extending Classes
Java provides the reserved word extends for specifying a hierarchical relationship between two
classes. For example, suppose you have a Vehicle class and want to introduce a Car class as a kind
of Vehicle. Listing 4-1 uses extends to cement this relationship.

Listing 4-1. Relating Two Classes via extends

class Vehicle
{
 // member declarations
}

class Car extends Vehicle
{
 // member declarations
}

Listing 4-1 codifies a relationship that is known as an “is-a” relationship: a car is a kind of vehicle.
In this relationship, Vehicle is known as the base class, parent class, or superclass; and Car is known
as the derived class, child class, or subclass.

Caution You cannot extend a final class. For example, if you declared Vehicle as final class
Vehicle, the compiler would report an error on encountering class Car extends Vehicle.
Developers declare their classes final when they don’t want these classes to be extended (for
security or other reasons).

107CHAPTER 4: Discovering Inheritance, Polymorphism, and Interfaces

As well as being capable of providing its own member declarations, Car is capable of inheriting
member declarations from its Vehicle superclass. As Listing 4-2 shows, non-private inherited
members become accessible to members of the Car class.

Listing 4-2. Inheriting Members

class Vehicle
{
 private String make;
 private String model;
 private int year;

 Vehicle(String make, String model, int year)
 {
 this.make = make;
 this.model = model;
 this.year = year;
 }

 String getMake()
 {
 return make;
 }

 String getModel()
 {
 return model;
 }

 int getYear()
 {
 return year;
 }
}

public class Car extends Vehicle
{
 private int numWheels;

 Car(String make, String model, int year, int numWheels)
 {
 super(make, model, year);
 this.numWheels = numWheels;
 }

 public static void main(String[] args)
 {
 Car car = new Car("Ford", "Fiesta", 2009, 4);
 System.out.println("Make = " + car.getMake());
 System.out.println("Model = " + car.getModel());
 System.out.println("Year = " + car.getYear());

108 CHAPTER 4: Discovering Inheritance, Polymorphism, and Interfaces

 // Normally, you cannot access a private field via an object
 // reference. However, numWheels is being accessed from
 // within a method (main()) that is part of the Car class.
 System.out.println("Number of wheels = " + car.numWheels);
 }
}

Listing 4-2’s Vehicle class declares private fields that store a vehicle’s make, model, and year;
a constructor that initializes these fields to passed arguments; and getter methods that retrieve these
fields’ values.

The Car subclass provides a private numWheels field, a constructor that initializes a Car object’s
Vehicle and Car layers, and a main() class method for testing this class.

Car’s constructor uses reserved word super to call Vehicle’s constructor with Vehicle-oriented
arguments and then initializes Car’s numWheels instance field. The super() call is analogous to
specifying this() to call another constructor in the same class, but invokes a superclass constructor
instead.

Caution The super() call can only appear in a constructor. Furthermore, it must be the first code
that is specified in the constructor. If super() is not specified, and if the superclass does not have a
noargument constructor, the compiler will report an error because the subclass constructor must call a
noargument superclass constructor when super() is not present.

Car’s main() method creates a Car object, initializing this object to a specific make, model, year, and
number of wheels. Four System.out.println() method calls subsequently output this information.

The first three System.out.println() method calls retrieve their pieces of information by calling
the Car instance’s inherited getMake(), getModel(), and getYear() methods. The final System.out.
println() method call accesses the instance’s numWheels field directly. Although it is generally not
a good idea to access an instance field directly (doing so violates information hiding), Car’s main()
method, which provides this access, is present only to test this class and would not exist in a real
application that uses this class.

Because Car is declared to be a public class, Listing 4-2 would be stored in a file named Car.java.
Therefore, execute javac Car.java to compile this source code into Vehicle.class and Car.class.
Then execute java Car to test the Car class. This execution results in the following output:

Make = Ford
Model = Fiesta
Year = 2009
Number of wheels = 4

109CHAPTER 4: Discovering Inheritance, Polymorphism, and Interfaces

A subclass can override (replace) an inherited method so that the subclass’s version of the method
is called instead. Listing 4-3 shows you that the overriding method must specify the same name,
parameter list, and return type as the method being overridden.

Listing 4-3. Overriding a Method

class Vehicle
{
 private String make;
 private String model;
 private int year;

 Vehicle(String make, String model, int year)
 {
 this.make = make;
 this.model = model;
 this.year = year;
 }

 void describe()
 {
 System.out.println(year + " " + make + " " + model);
 }
}

public class Car extends Vehicle
{
 private int numWheels;

 Car(String make, String model, int year, int numWheels)
 {
 super(make, model, year);
 }

 void describe()
 {
 System.out.print("This car is a "); // Print without newline – see Chapter 1.
 super.describe();
 }

 public static void main(String[] args)

Note A class whose instances cannot be modified is known as an immutable class. Vehicle is an
example. If Car’s main() method, which can directly read or write numWheels, was not present, Car
would also be an example of an immutable class. Also, a class cannot inherit constructors, nor can it
inherit private fields and methods. For example, Car doesn’t inherit Vehicle’s constructor, nor does
it inherit Vehicle’s private make, model, and year fields.

110 CHAPTER 4: Discovering Inheritance, Polymorphism, and Interfaces

 {
 Car car = new Car("Ford", "Fiesta", 2009, 4);
 car.describe();
 }
}

Listing 4-3’s Car class declares a describe() method that overrides Vehicle’s describe() method
to output a car-oriented description. This method uses reserved word super to call Vehicle’s
describe() method via super.describe();.

Note Call a superclass method from the overriding subclass method by prefixing the method’s name
with reserved word super and the member access operator. If you don’t do this, you end up recursively
calling the subclass’s overriding method. Use super and the member access operator to access
non-private superclass fields from subclasses that mask these fields by declaring same-named fields.

If you were to compile Listing 4-3 (javac Car.java) and run the Car application (java Car), you
would discover that Car’s overriding describe() method executes instead of Vehicle’s overridden
describe() method and outputs This car is a 2009 Ford Fiesta.

Caution You cannot override a final method. For example, if Vehicle’s describe() method
was declared as final void describe(), the compiler would report an error on encountering an
attempt to override this method in the Car class. Developers declare their methods final when they
don’t want these methods to be overridden (for security or other reasons). Also, you cannot make an
overriding method less accessible than the method it overrides. For example, if Car’s describe()
method was declared as private void describe(), the compiler would report an error because
private access is less accessible than the default package access. However, describe() could be
made more accessible by declaring it public, as in public void describe().

Suppose you happened to replace Listing 4-3’s describe() method with the method shown here:

void describe(String owner)
{
 System.out.print("This car, which is owned by " + owner + ", is a ");
 super.describe();
}

The modified Car class now has two describe() methods, the preceding explicitly declared method
and the method inherited from Vehicle. The void describe(String owner) method doesn’t override
Vehicle’s describe() method. Instead, it overloads this method.

111CHAPTER 4: Discovering Inheritance, Polymorphism, and Interfaces

The Java compiler helps you detect an attempt to overload instead of override a method at compile
time by letting you prefix a subclass’s method header with the @Override annotation as shown in the
following code (I will discuss annotations in Chapter 6):

@Override
void describe()
{
 System.out.print("This car is a ");
 super.describe();
}

Specifying @Override tells the compiler that the method overrides another method. If you overload
the method instead, the compiler reports an error. Without this annotation, the compiler would not
report an error because method overloading is a valid feature.

Tip Get into the habit of prefixing overriding methods with the @Override annotation. This habit will
help you detect overloading mistakes much sooner.

In Chapter 3 I discussed the initialization order of classes and objects, where you learned that class
members are always initialized first and in a top-down order (the same order applies to instance
members). Implementation inheritance adds a couple more details:

A superclass’s class initializers always execute before a subclass’s class
initializers.

A subclass’s constructor always calls the superclass constructor to initialize an
object’s superclass layer and then initializes the subclass layer.

Java’s support for implementation inheritance only permits you to extend a single class. You cannot
extend multiple classes because doing so can lead to problems. For example, suppose Java
supported multiple implementation inheritance, and you decided to model a flying horse (from Greek
mythology) via the class structure shown in Listing 4-4.

Listing 4-4. A Fictional Demonstration of Multiple Implementation Inheritance

class Bird
{
 void describe()
 {
 // code that outputs a description of a bird's appearance and behaviors
 }
}

class Horse
{
 void describe()
 {
 // code that outputs a description of a horse's appearance and behaviors
 }
}

112 CHAPTER 4: Discovering Inheritance, Polymorphism, and Interfaces

public class FlyingHorse extends Bird, Horse
{
 public static void main(String[] args)
 {
 FlyingHorse pegasus = new FlyingHorse();
 pegasus.describe();
 }
}

Listing 4-4’s class structure reveals an ambiguity resulting from each of Bird and Horse declaring a
describe() method. Which of these methods does FlyingHorse inherit? A related ambiguity arises
from same-named fields, possibly of different types. Which field is inherited?

The Ultimate Superclass
A class that doesn’t explicitly extend another class implicitly extends Java’s Object class (located
in the java.lang package—I will discuss packages in the next chapter). For example, Listing 4-1’s
Vehicle class extends Object, whereas Car extends Vehicle.

Object is Java’s ultimate superclass because it serves as the ancestor of every other class but
doesn’t itself extend any other class. Object provides a common set of methods that other classes
inherit. Table 4-1 describes these methods.

Table 4-1. Object’s Methods

Method Description

Object clone() Create and return a copy of the current object.

boolean equals(Object obj) Determine if the current object is equal to the object identified by obj.

void finalize() Finalize the current object.

Class<?> getClass() Return the current object’s Class object.

int hashCode() Return the current object’s hash code.

void notify() Wake up one of the threads that are waiting on the current object’s monitor.

void notifyAll() Wake up all threads that are waiting on the current object’s monitor.

String toString() Return a string representation of the current object.

void wait() Cause the current thread to wait on the current object’s monitor until it is woken
up via notify() or notifyAll().

void wait(long timeout) Cause the current thread to wait on the current object’s monitor until it is
woken up via notify() or notifyAll() or until the specified timeout value (in
milliseconds) has elapsed, whichever comes first.

void wait(long timeout,
int nanos)

Cause the current thread to wait on the current object’s monitor until it is woken
up via notify() or notifyAll() or until the specified timeout value
(in milliseconds) plus nanos value (in nanoseconds) has elapsed, whichever
comes first.

113CHAPTER 4: Discovering Inheritance, Polymorphism, and Interfaces

I will discuss the clone(), equals(), finalize(), hashCode(), and toString() methods shortly, but
defer a discussion of notify(), notifyAll(), and the wait() methods to Chapter 8.

Cloning
The clone() method clones (duplicates) an object without calling a constructor. It copies each
primitive or reference field’s value to its counterpart in the clone, a task known as shallow copying or
shallow cloning. Listing 4-5 demonstrates this behavior.

Listing 4-5. Shallowly Cloning an Employee Object

public class Employee implements Cloneable
{
 String name;
 int age;

 Employee(String name, int age)
 {
 this.name = name;
 this.age = age;
 }

 public static void main(String[] args) throws CloneNotSupportedException
 {
 Employee e1 = new Employee("John Doe", 46);
 Employee e2 = (Employee) e1.clone();
 System.out.println(e1 == e2); // Output: false
 System.out.println(e1.name == e2.name); // Output: true
 }
}

Listing 4-5 declares an Employee class with name and age instance fields and a constructor for
initializing these fields. The main() method uses this constructor to initialize a new Employee object’s
copies of these fields to John Doe and 46.

Note A class must implement the java.lang.Cloneable interface or its instances cannot be
shallowly cloned via Object’s clone() method—this method performs a runtime check to see if
the class implements Cloneable. (I will discuss interfaces later in this chapter.) If a class doesn’t
implement Cloneable, clone() throws java.lang.CloneNotSupportedException. (Because
CloneNotSupportedException is a checked exception, it’s necessary for Listing 4-5 to satisfy the
compiler by appending throws CloneNotSupportedException to the main() method’s header.
I will discuss exceptions in the next chapter.) The java.lang.String class is an example of a class
that doesn’t implement Cloneable; hence, String objects cannot be shallowly cloned.

After assigning the Employee object’s reference to local variable e1, main() calls the clone() method
on this variable to duplicate the object and then assigns the resulting reference to variable e2. The
(Employee) cast is needed because clone() returns Object.

114 CHAPTER 4: Discovering Inheritance, Polymorphism, and Interfaces

Shallow cloning is not always desirable because the original object and its clone refer to the same
object via their equivalent reference fields. For example, each of Listing 4-5’s two Employee objects
refers to the same String object via its name field.

Although not a problem for String, whose instances are immutable, changing a mutable object
via the clone’s reference field causes the original (noncloned) object to see the same change via
its reference field. For example, suppose you add a reference field named hireDate to Employee.
This field is of type Date with year, month, and day instance fields. Because Date is intended to be
mutable, you can change the contents of these fields in the Date instance assigned to hireDate.

Now suppose you plan to change the clone’s date but want to preserve the original Employee
object’s date. You cannot do this with shallow cloning because the change is also visible to the
original Employee object. To solve this problem, you must modify the cloning operation so that it
assigns a new Date reference to the Employee clone’s hireDate field. This task, which is known as
deep copying or deep cloning, is demonstrated in Listing 4-6.

Listing 4-6. Deeply Cloning an Employee Object

class Date
{
 int year, month, day;

 Date(int year, int month, int day)
 {
 this.year = year;
 this.month = month;
 this.day = day;
 }
}

public class Employee implements Cloneable
{
 String name;
 int age;
 Date hireDate;

Note Object’s clone() method was originally specified as a public method, which meant that
any object could be cloned from anywhere. For security reasons, this access was later changed to
protected, which means that only code within the same package as the class whose clone()
method is to be called, or code within a subclass of this class (regardless of package), can call
clone().

To prove that the objects whose references were assigned to e1 and e2 are different, main() next
compares these references via == and outputs the Boolean result, which happens to be false. To
prove that the Employee object was shallowly cloned, main() next compares the references in both
Employee objects’ name fields via == and outputs the Boolean result, which happens to be true.

115CHAPTER 4: Discovering Inheritance, Polymorphism, and Interfaces

 Employee(String name, int age, Date hireDate)
 {
 this.name = name;
 this.age = age;
 this.hireDate = hireDate;
 }

 @Override
 protected Object clone() throws CloneNotSupportedException
 {
 Employee emp = (Employee) super.clone();
 if (hireDate != null) // no point cloning a null object (one that doesn't exist)
 emp.hireDate = new Date(hireDate.year, hireDate.month, hireDate.day);
 return emp;
 }

 public static void main(String[] args) throws CloneNotSupportedException
 {
 Employee e1 = new Employee("John Doe", 46, new Date(2000, 1, 20));
 Employee e2 = (Employee) e1.clone();
 System.out.println(e1 == e2); // Output: false
 System.out.println(e1.name == e2.name); // Output: true
 System.out.println(e1.hireDate == e2.hireDate); // Output: false
 System.out.println(e2.hireDate.year + " " + e2.hireDate.month + " " +
 e2.hireDate.day); // Output: 2000 1 20
 }
}

Listing 4-6 declares Date and Employee classes. The Date class declares year, month, and day fields
and a constructor. (You can declare a comma-separated list of variables on one line provided that
these variables all share the same type, which is int in this case.)

Employee overrides the clone() method to deeply clone the hireDate field. This method first calls
Object’s clone() method to shallowly clone the current Employee object’s instance fields and then
stores the new object’s reference in emp. Assuming that hireDate doesn’t contain the null reference,
it next assigns a new Date object’s reference to emp’s hireDate field; this object’s fields are initialized
to the same values as those in the original Employee object’s hireDate instance.

At this point, you have an Employee clone with shallowly cloned name and age fields and a deeply
cloned hireDate field. The clone() method finishes by returning this Employee clone.

Note If you’re not calling Object’s clone() method from an overridden clone() method (because
you prefer to deeply clone reference fields and do your own shallow copying of nonreference fields),
it isn’t necessary for the class containing the overriding clone() method to implement Cloneable,
but it should implement this interface for consistency. String doesn’t override clone(), so String
objects cannot be deeply cloned.

116 CHAPTER 4: Discovering Inheritance, Polymorphism, and Interfaces

Recognizing the need to support logical equality in addition to reference equality, Java provides an
equals() method in the Object class. Because this method defaults to comparing references, you
need to override equals() to compare object contents.

Before overriding equals(), make sure that this is necessary. For example, Java’s java.lang.
StringBuffer class doesn’t override equals(). Perhaps this class’s designers didn’t think it
necessary to determine whether two StringBuffer objects are logically equivalent or not.

You cannot override equals() with arbitrary code. Doing so will probably prove disastrous to your
applications. Instead, you need to adhere to the contract that is specified in the Java documentation
for this method, which I present next.

The equals() method implements an equivalence relation on nonnull object references:

 It is reflexive: For any nonnull reference value x, x.equals(x) returns true.

 It is symmetric: For any nonnull reference values x and y, x.equals(y) returns
true if and only if y.equals(x) returns true.

 It is transitive: For any nonnull reference values x, y, and z, if x.equals(y) returns
true and y.equals(z) returns true, then x.equals(z) returns true.

 It is consistent: For any nonnull reference values x and y, multiple invocations
of x.equals(y) consistently return true or consistently return false, provided no
information used in equals() comparisons on the objects is modified.

For any nonnull reference value x, x.equals(null) returns false.

Note Because == and != perform the fastest possible comparisons and because string comparisons
need to be performed quickly (especially when sorting a huge number of strings), the String
class contains special support that allows literal strings and string-valued constant expressions to
be compared via == and !=. (I will discuss this support when I present String in Chapter 7.) The
following statements demonstrate these comparisons:

System.out.println("abc" == "abc"); // Output: true

System.out.println("abc" == "a" + "bc"); // Output: true

System.out.println("abc" == "Abc"); // Output: false

System.out.println("abc" != "def"); // Output: true

System.out.println("abc" == new String("abc")); // Output: false

Equality
The == and != operators compare two primitive values (such as integers) for equality (==) or inequality
(!=). These operators also compare two references to see whether they refer to the same object or
not. This latter comparison is known as an identity check.

You cannot use == and != to determine whether two objects are logically the same (or not). For
example, two Car objects with the same field values are logically equivalent. However, == reports
them as unequal because of their different references.

117CHAPTER 4: Discovering Inheritance, Polymorphism, and Interfaces

Although this contract probably looks somewhat intimidating, it isn’t that difficult to satisfy. For proof,
take a look at the implementation of the equals() method in Listing 4-7’s Point class.

Listing 4-7. Logically Comparing Point Objects

public class Point
{
 private int x, y;

 Point(int x, int y)
 {
 this.x = x;
 this.y = y;
 }

 int getX()
 {
 return x;
 }

 int getY()
 {
 return y;
 }

 @Override
 public boolean equals(Object o)
 {
 if (!(o instanceof Point))
 return false;
 Point p = (Point) o;
 return p.x == x && p.y == y;
 }

 public static void main(String[] args)
 {
 Point p1 = new Point(10, 20);
 Point p2 = new Point(20, 30);
 Point p3 = new Point(10, 20);
 // Test reflexivity
 System.out.println(p1.equals(p1)); // Output: true
 // Test symmetry
 System.out.println(p1.equals(p2)); // Output: false
 System.out.println(p2.equals(p1)); // Output: false
 // Test transitivity
 System.out.println(p2.equals(p3)); // Output: false
 System.out.println(p1.equals(p3)); // Output: true
 // Test nullability
 System.out.println(p1.equals(null)); // Output: false

118 CHAPTER 4: Discovering Inheritance, Polymorphism, and Interfaces

 // Extra test to further prove the instanceof operator's usefulness.
 System.out.println(p1.equals("abc")); // Output: false
 }
}

Listing 4-7’s overriding equals() method begins with an if statement that uses the instanceof
operator to determine whether the argument passed to parameter o is an instance of the Point class.
If not, the if statement executes return false;.

The o instanceof Point expression satisfies the last portion of the contract: for any nonnull
reference value x, x.equals(null) returns false. Because the null reference is not an instance of any
class, passing this value to equals() causes the expression to evaluate to false.

The o instanceof Point expression also prevents a java.lang.ClassCastException instance from
being thrown via expression (Point) o in the event that you pass an object other than a Point object
to equals(). (I will discuss exceptions in the next chapter.)

Following the cast, the contract’s reflexivity, symmetry, and transitivity requirements are met by only
allowing Points to be compared with other Points via expression p.x == x && p.y == y.

The final contract requirement, consistency, is met by making sure that the equals() method is
deterministic. In other words, this method doesn’t rely on any field value that could change from
method call to method call.

Tip You can optimize the performance of a time-consuming equals() method by first using == to
determine if o’s reference identifies the current object. Simply specify if (o == this) return
true; as the equals() method’s first statement. This optimization isn’t necessary in Listing 4-7’s
equals() method, which has satisfactory performance.

It’s important to always override the hashCode() method when overriding equals(). I didn’t do so in
Listing 4-7 because I have yet to formally introduce hashCode().

Finalization
Finalization refers to cleanup via the finalize() method, which is known as a finalizer. The
finalize() method’s Java documentation states that finalize() is “called by the garbage collector
on an object when garbage collection determines that there are no more references to the object.
A subclass overrides the finalize() method to dispose of system resources or to perform other
cleanup.”

Object’s version of finalize() does nothing; you must override this method with any needed
cleanup code. Because the virtual machine might never call finalize() before an application
terminates, you should provide an explicit cleanup method and have finalize() call this method as
a safety net in case the method isn’t otherwise called.

119CHAPTER 4: Discovering Inheritance, Polymorphism, and Interfaces

Caution Never depend on finalize() for releasing limited resources such as file descriptors.
For example, if an application object opens files, expecting that its finalize() method will close
them, the application might find itself unable to open additional files when a tardy virtual machine is
slow to call finalize(). What makes this problem worse is that finalize() might be called more
frequently on another virtual machine, resulting in this too-many-open-files problem not revealing itself.
The developer might falsely believe that the application behaves consistently across different virtual
machines.

If you decide to override finalize(), your object’s subclass layer must give its superclass layer an
opportunity to perform finalization. You can accomplish this task by specifying super.finalize();
as the last statement in your method, which the following example demonstrates:

protected void finalize() throws Throwable
{
 try
 {
 // Perform subclass cleanup.
 }
 finally
 {
 super.finalize();
 }
}

The example’s finalize() declaration appends throws Throwable to the method header because
the cleanup code might throw an exception. If an exception is thrown, execution leaves the method
and, in the absence of try-finally, super.finalize(); never executes. (I will discuss exceptions and
try-finally in Chapter 5.)

To guard against this possibility, the subclass’s cleanup code executes in a block that follows
reserved word try. If an exception is thrown, Java’s exception-handling logic executes the block
following the finally reserved word, and super.finalize(); executes the superclass’s finalize()
method.

120 CHAPTER 4: Discovering Inheritance, Polymorphism, and Interfaces

Note The finalize() method has often been used to perform resurrection (making an
unreferenced object referenced) to implement object pools that recycle the same objects when these
objects are expensive (time wise) to create (database connection objects are an example).

Resurrection occurs when you assign this (a reference to the current object) to a class or instance
field (or to another long-lived variable). For example, you might specify r = this; within finalize()
to assign the unreferenced object identified as this to a class field named r.

Because of the possibility for resurrection, there is a severe performance penalty imposed on the
garbage collection of an object that overrides finalize().

A resurrected object’s finalizer cannot be called again.

Hash Codes
The hashCode() method returns a 32-bit integer that identifies the current object’s hash code, a small
value that results from applying a mathematical function to a potentially large amount of data. The
calculation of this value is known as hashing.

You must override hashCode() when overriding equals() and in accordance with the following
contract, which is specified in hashCode()’s Java documentation:

Whenever it is invoked on the same object more than once during an execution
of a Java application, the hashCode() method must consistently return the same
integer, provided no information used in equals(Object) comparisons on the
object is modified. This integer need not remain consistent from one execution
of an application to another execution of the same application.

If two objects are equal according to the equals(Object) method, then calling
the hashCode() method on each of the two objects must produce the same
integer result.

It is not required that if two objects are unequal according to the equals(Object)
method, then calling the hashCode() method on each of the two objects must
produce distinct integer results. However, the programmer should be aware
that producing distinct integer results for unequal objects might improve the
performance of hash tables.

Fail to obey this contract and your class’s instances will not work properly with Java’s hash-based
Collections Framework classes, such as java.util.HashMap. (I will discuss HashMap and other
Collections Framework classes in Chapter 9.)

If you override equals() but not hashCode(), you most importantly violate the second item in the
contract: the hash codes of equal objects must also be equal. This violation can lead to serious
consequences, as demonstrated in the following example:

java.util.Map<Point, String> map = new java.util.HashMap<Point, String>();
map.put(p1, "first point");

121CHAPTER 4: Discovering Inheritance, Polymorphism, and Interfaces

System.out.println(map.get(p1)); // Output: first point
System.out.println(map.get(new Point(10, 20))); // Output: null

Assume that the example’s statements are appended to Listing 4-7’s main() method—the
java.util. prefix and <Point, String> have to do with packages and generics, which I discuss in
Chapters 5 and 6.

After main() creates its Point objects and calls its System.out.println() methods, it executes the
example’s statements, which perform the following tasks:

The first statement instantiates HashMap, which is in the java.util package.

The second statement calls HashMap’s put() method to store Listing 4-7’s p1
object key and the "first point" value in the hashmap.

The third statement retrieves the value of the hashmap entry whose Point key is
logically equal to p1 via HashMap’s get() method.

The fourth statement is equivalent to the third statement but returns the null
reference instead of "first point".

Although objects p1 and Point(10, 20) are logically equivalent, these objects have different hash
codes, resulting in each object referring to a different entry in the hashmap. If an object is not stored
(via put()) in that entry, get() returns null.

Correcting this problem requires that hashCode() be overridden to return the same integer value
for logically equivalent objects. I will show you how to accomplish this task when I discuss HashMap
in Chapter 9.

String Representation
The toString() method returns a string-based representation of the current object. This
representation defaults to the object’s class name, followed by the @ symbol, followed by a
hexadecimal representation of the object’s hash code.

For example, if you were to execute System.out.println(p1); to output Listing 4-7’s p1 object,
you would see a line of output similar to Point@3e25a5. (System.out.println() calls p1’s inherited
toString() method behind the scenes.)

You should strive to override toString() so that it returns a concise but meaningful description of
the object. For example, you might declare, in Listing 4-7’s Point class, a toString() method that is
similar to the following:

@Override
public String toString()
{
 return "(" + x + ", " + y + ")";
}

This time, executing System.out.println(p1); results in more meaningful output, such as (10, 20).

122 CHAPTER 4: Discovering Inheritance, Polymorphism, and Interfaces

Composition
Implementation inheritance and composition offer two different approaches to reusing code. As you
have learned, implementation inheritance is concerned with extending a class with a new class,
which is based on an “is-a” relationship between them: a Car is a Vehicle, for example.

On the other hand, composition is concerned with composing classes out of other classes, which
is based on a “has-a” relationship between them. For example, a Car has an Engine, Wheels, and a
SteeringWheel.

You have already seen examples of composition in this chapter. For example, Listing 4-2’s Car class
includes String make and String model fields. Listing 4-8’s Car class provides another example of
composition.

Listing 4-8. A Car Class Whose Instances Are Composed of Other Objects

class Car extends Vehicle
{
 private Engine engine; // bicycles don't have engines
 private Wheel[] wheels; // boats don't have wheels
 private SteeringWheel steeringWheel; // hang gliders don't have steering wheels
}

Listing 4-8 demonstrates that composition and implementation inheritance are not mutually
exclusive. Although not shown, Car inherits various members from its Vehicle superclass, in addition
to providing its own engine, wheels, and steeringWheel fields.

The Trouble with Implementation Inheritance
Implementation inheritance is potentially dangerous, especially when the developer doesn’t have
complete control over the superclass or when the superclass isn’t designed and documented with
extension in mind.

The problem is that implementation inheritance breaks encapsulation. The subclass relies on
implementation details in the superclass. If these details change in a new version of the superclass,
the subclass might break, even when the subclass isn’t touched.

For example, suppose you have purchased a library of Java classes, and one of these classes
describes an appointment calendar. Although you don’t have access to this class’s source code,
assume that Listing 4-9 describes part of its code.

Listing 4-9. An Appointment Calendar Class

public class ApptCalendar
{
 private final static int MAX_APPT = 1000;
 private Appt[] appts;
 private int size;

 public ApptCalendar()
 {
 appts = new Appt[MAX_APPT];

123CHAPTER 4: Discovering Inheritance, Polymorphism, and Interfaces

 size = 0; // redundant because field automatically initialized to 0
 // adds clarity, however
 }

 public void addAppt(Appt appt)
 {
 if (size == appts.length)
 return; // array is full
 appts[size++] = appt;
 }

 public void addAppts(Appt[] appts)
 {
 for (int i = 0; i < appts.length; i++)
 addAppt(appts[i]);
 }
}

Listing 4-9’s ApptCalendar class stores an array of appointments, with each appointment described
by an Appt instance. For this discussion, the details of Appt are irrelevant. It could be as trivial as
class Appt {}.

Suppose you want to log each appointment in a file. Because a logging capability isn’t provided, you
extend ApptCalendar with Listing 4-10’s LoggingApptCalendar class, which adds logging behavior in
overriding addAppt() and addAppts() methods.

Listing 4-10. Extending the Appointment Calendar Class

public class LoggingApptCalendar extends ApptCalendar
{
 // A constructor is not necessary because the Java compiler will add a
 // noargument constructor that calls the superclass's noargument
 // constructor by default.

 @Override
 public void addAppt(Appt appt)
 {
 Logger.log(appt.toString());
 super.addAppt(appt);
 }

 @Override
 public void addAppts(Appt[] appts)
 {
 for (int i = 0; i < appts.length; i++)
 Logger.log(appts[i].toString());
 super.addAppts(appts);
 }
}

124 CHAPTER 4: Discovering Inheritance, Polymorphism, and Interfaces

Listing 4-10’s LoggingApptCalendar class relies on a Logger class whose void log(String msg)
class method logs a string to a file (the details are unimportant). Notice the use of toString() to
convert an Appt object to a String object, which is then passed to log().

Although this class looks okay, it doesn’t work as you might expect. Suppose you instantiate
this class and add a few Appt instances to this instance via addAppts(), as demonstrated in the
following manner:

LoggingApptCalendar lapptc = new LoggingApptCalendar();
lapptc.addAppts(new Appt[] { new Appt(), new Appt(), new Appt() });

If you also add a System.out.println(msg); method call to Logger’s log(String msg) method, to
output this method’s argument, you will discover that log() outputs a total of six messages; each of
the expected three messages (one per Appt object) is duplicated.

When LoggingApptCalendar’s addAppts() method is called, it first calls Logger.log() for each Appt
instance in the appts array that is passed to addAppts(). This method then calls ApptCalendar’s
addAppts() method via super.addAppts(appts);.

ApptCalendar’s addAppts() method calls LoggingApptCalendar’s overriding addAppt() method for
each Appt instance in its appts array argument. addAppt() executes Logger.log(appt.toString());
to log its appt argument’s string representation, and you end up with three additional logged
messages.

If you didn’t override the addAppts() method, this problem would go away. However, the subclass
would be tied to an implementation detail: ApptCalendar’s addAppts() method calls addAppt().

It isn’t a good idea to rely on an implementation detail when the detail isn’t documented. (I previously
stated that you don’t have access to ApptCalendar’s source code.) When a detail isn’t documented,
it can change in a new version of the class.

Because a base class change can break a subclass, this problem is known as the fragile base class
problem. A related cause of fragility that also has to do with overriding methods occurs when new
methods are added to a superclass in a subsequent release.

For example, suppose a new version of the library introduces a new public void addAppt(Appt
appt, boolean unique) method into the ApptCalendar class. This method adds the appt instance to
the calendar when unique is false; and, when unique is true, it adds the appt instance only if it has
not previously been added.

Because this method has been added after the LoggingApptCalendar class was created,
LoggingApptCalendar doesn’t override the new addAppt() method with a call to Logger.log(). As a
result, Appt instances passed to the new addAppt() method are not logged.

Here is another problem: you introduce a method into the subclass that is not also in the superclass.
A new version of the superclass presents a new method that matches the subclass method
signature and return type. Your subclass method now overrides the superclass method and probably
doesn’t fulfill the superclass method’s contract.

There is a way to make these problems disappear. Instead of extending the superclass, create a
private field in a new class, and have this field reference an instance of the superclass. This task
demonstrates composition because you are forming a “has-a” relationship between the new class
and the superclass.

125CHAPTER 4: Discovering Inheritance, Polymorphism, and Interfaces

Additionally, have each of the new class’s instance methods call the corresponding superclass
method via the superclass instance that was saved in the private field, and also return the called
method’s return value. This task is known as forwarding, and the new methods are known as
forwarding methods.

Listing 4-11 presents an improved LoggingApptCalendar class that uses composition and forwarding
to forever eliminate the fragile base class problem and the additional problem of unanticipated
method overriding.

Listing 4-11. A Composed Logging Appointment Calendar Class

public class LoggingApptCalendar
{
 private ApptCalendar apptCal;

 public LoggingApptCalendar(ApptCalendar apptCal)
 {
 this.apptCal = apptCal;
 }

 public void addAppt(Appt appt)
 {
 Logger.log(appt.toString());
 apptCal.addAppt(appt);
 }

 public void addAppts(Appt[] appts)
 {
 for (int i = 0; i < appts.length; i++)
 Logger.log(appts[i].toString());
 apptCal.addAppts(appts);
 }
}

Listing 4-11’s LoggingApptCalendar class doesn’t depend on implementation details of the
ApptCalendar class. You can add new methods to ApptCalendar and they will not break
LoggingApptCalendar.

Note LoggingApptCalendar is an example of a wrapper class, a class whose instances wrap
other instances. Each LoggingApptCalendar instance wraps an ApptCalendar instance.
LoggingApptCalendar is also an example of the Decorator design pattern, which is presented on
page 175 of Design Patterns: Elements of Reusable Object-Oriented Software by Erich Gamma, Richard
Helm, Ralph Johnson, and John Vlissides (Addison-Wesley, 1995; ISBN: 0201633612).

126 CHAPTER 4: Discovering Inheritance, Polymorphism, and Interfaces

When should you extend a class and when should you use a wrapper class? Extend a class when
an “is-a” relationship exists between the superclass and the subclass, and either you have control
over the superclass or the superclass has been designed and documented for class extension.
Otherwise, use a wrapper class.

What does “design and document for class extension” mean? Design means provide protected
methods that hook into the class’s inner workings (to support writing efficient subclasses) and
ensure that constructors and the clone() method never call overridable methods. Document means
clearly state the impact of overriding methods.

Caution Wrapper classes shouldn’t be used in a callback framework, an object framework in which
an object passes its own reference to another object (via this) so that the latter object can call the
former object’s methods at a later time. This “calling back to the former object’s method” is known as
a callback. Because the wrapped object doesn’t know of its wrapper class, it passes only its reference
(via this), and resulting callbacks don’t involve the wrapper class’s methods.

Changing Form
Some real-world entities can change their forms. For example, water (on Earth as opposed to
interstellar space) is naturally a liquid, but it changes to a solid when frozen, and it changes to a gas
when heated to its boiling point. Insects such as butterflies that undergo metamorphosis are another
example.

The ability to change form is known as polymorphism and is useful to model in a programming
language. For example, code that draws arbitrary shapes can be expressed more concisely by
introducing a single Shape class and its draw() method and by invoking that method for each Circle
instance, Rectangle instance, and other Shape instance stored in an array. When Shape’s draw()
method is called for an array instance, it is the Circle’s, Rectangle’s or other Shape instance’s
draw() method that gets called. There are many forms of Shape’s draw() method. In other words,
this method is polymorphic.

Java supports four kinds of polymorphism:

 Coercion: An operation serves multiple types through implicit type conversion.
For example, division lets you divide an integer by another integer or divide
a floating-point value by another floating-point value. If one operand is an
integer and the other operand is a floating-point value, the compiler coerces
(implicitly converts) the integer to a floating-point value to prevent a type error.
(There is no division operation that supports an integer operand and a floating-
point operand.) Passing a subclass object reference to a method’s superclass
parameter is another example of coercion polymorphism. The compiler coerces
the subclass type to the superclass type to restrict operations to those of the
superclass.

127CHAPTER 4: Discovering Inheritance, Polymorphism, and Interfaces

 Overloading: The same operator symbol or method name can be used in
different contexts. For example, + can be used to perform integer addition,
floating-point addition, or string concatenation, depending on the types of its
operands. Also, multiple methods having the same name can appear in a class
(through declaration and/or inheritance).

 Parametric: Within a class declaration, a field name can associate with different
types and a method name can associate with different parameter and return
types. The field and method can then take on different types in each class
instance. For example, a field might be of type java.lang.Integer and a method
might return an Integer in one class instance, and the same field might be
of type String and the same method might return a String in another class
instance. Java supports parametric polymorphism via generics, which I will
discuss in Chapter 6.

 Subtype: A type can serve as another type’s subtype. When a subtype instance
appears in a supertype context, executing a supertype operation on the
subtype instance results in the subtype’s version of that operation executing.
For example, suppose that Circle is a subclass of Point and that both classes
contain a draw() method. Assigning a Circle instance to a variable of type
Point, and then calling the draw() method via this variable, results in Circle’s
draw() method being called.

Many developers don’t regard coercion and overloading as valid kinds of polymorphism. They see
coercion and overloading as nothing more than type conversions and syntactic sugar. In contrast,
parametric and subtype are regarded as valid kinds of polymorphism.

In this section I focus on subtype polymorphism by first examining upcasting and late binding.
I then introduce you to abstract classes and abstract methods, downcasting and runtime type
identification, and covariant return types.

Upcasting and Late Binding
Listing 4-7’s Point class represents a point as an x-y pair. Because a circle (in this example) is an x-y
pair denoting its center, and has a radius denoting its extent, you can extend Point with a Circle
class that introduces a radius field. Check out Listing 4-12.

Listing 4-12. A Circle Class Extending the Point Class

class Circle extends Point
{
 private int radius;

 Circle(int x, int y, int radius)
 {
 super(x, y);
 this.radius = radius;
 }

 int getRadius()

128 CHAPTER 4: Discovering Inheritance, Polymorphism, and Interfaces

 {
 return radius;
 }

 @Override
 public String toString()
 {
 return "" + radius;
 }
}

Listing 4-12’s Circle class describes a Circle as a Point with a radius, which implies that you can
treat a Circle instance as if it was a Point instance. Accomplish this task by assigning the Circle
instance to a Point variable, as demonstrated here:

Circle c = new Circle(10, 20, 30);
Point p = c;

The cast operator isn’t needed to convert from Circle to Point because access to a Circle instance
via Point’s interface is legal. After all, a Circle is at least a Point. This assignment is known as
upcasting because you are implicitly casting up the type hierarchy (from the Circle subclass to
the Point superclass). It’s also an example of covariance in that a type with a wider range of values
(Circle) is being converted to a type with a narrower range of values (Point).

After upcasting Circle to Point, you cannot call Circle’s getRadius() method because this method
is not part of Point’s interface. Losing access to subtype features after narrowing it to a superclass
seems useless but is necessary for achieving subtype polymorphism.

In addition to upcasting the subclass instance to a variable of the superclass type, subtype
polymorphism involves declaring a method in the superclass and overriding this method in the
subclass. For example, suppose Point and Circle are to be part of a graphics application, and you
need to introduce a draw() method into each class to draw a point and a circle, respectively. You
end with the class structure shown in Listing 4-13.

Listing 4-13. Declaring a Graphics Application’s Point and Circle Classes

 class Point
{
 private int x, y;

 Point(int x, int y)
 {
 this.x = x;
 this.y = y;
 }

 int getX()
 {
 return x;
 }

129CHAPTER 4: Discovering Inheritance, Polymorphism, and Interfaces

 int getY()
 {
 return y;
 }

 @Override
 public String toString()
 {
 return "(" + x + ", " + y + ")";
 }

 void draw()
 {
 System.out.println("Point drawn at " + toString());
 }
}

class Circle extends Point
{
 private int radius;

 Circle(int x, int y, int radius)
 {
 super(x, y);
 this.radius = radius;
 }

 int getRadius()
 {
 return radius;
 }

 @Override
 public String toString()
 {
 return "" + radius;
 }

 @Override
 void draw()
 {
 System.out.println("Circle drawn at " + super.toString() +
 " with radius " + toString());
 }
}

Listing 4-13’s draw() methods will ultimately draw graphics shapes, but simulating their behaviors
via System.out.println() method calls is sufficient during the early testing phase of the graphics
application.

130 CHAPTER 4: Discovering Inheritance, Polymorphism, and Interfaces

Now that you have temporarily finished with Point and Circle, you will want to test their draw()
methods in a simulated version of the graphics application. To achieve this objective, you write
Listing 4-14’s Graphics class.

Listing 4-14. A Graphics Class for Testing Point’s and Circle’s draw() Methods

public class Graphics
{
 public static void main(String[] args)
 {
 Point[] points = new Point[] { new Point(10, 20), new Circle(10, 20, 30) };
 for (int i = 0; i < points.length; i++)
 points[i].draw();
 }
}

Listing 4-14’s main() method first declares an array of Points. Upcasting is demonstrated by
first having the array’s initializer instantiate the Circle class and then by assigning this instance’s
reference to the second element in the points array.

Moving on, main() uses a for loop to call each Point element’s draw() method. Because the first
iteration calls Point’s draw() method, whereas the second iteration calls Circle’s draw() method,
you observe the following output:

Point drawn at (10, 20)
Circle drawn at (10, 20) with radius 30

How does Java “know” that it must call Circle’s draw() method on the second loop iteration?
Should it not call Point’s draw() method because Circle is being treated as a Point thanks to the
upcast?

At compile time, the compiler doesn’t know which method to call. All it can do is verify that a method
exists in the superclass and verify that the method call’s arguments list and return type match the
superclass’s method declaration.

In lieu of knowing which method to call, the compiler inserts an instruction into the compiled code
that, at runtime, fetches and uses whatever reference is in points[i] to call the correct draw()
method. This task is known as late binding.

Late binding is used for calls to non-final instance methods. For all other method calls, the
compiler knows which method to call and inserts an instruction into the compiled code that calls the
method associated with the variable’s type (not its value). This task is known as early binding.

You can also upcast from one array to another provided that the array being upcast is a subtype of
the other array. Consider Listing 4-15.

Listing 4-15. Demonstrating Array Upcasting

class Point
{
 private int x, y;

 Point(int x, int y)

131CHAPTER 4: Discovering Inheritance, Polymorphism, and Interfaces

 {
 this.x = x;
 this.y = y;
 }

 int getX() { return x; }
 int getY() { return y; }
}

class ColoredPoint extends Point
{
 private int color;

 ColoredPoint(int x, int y, int color)
 {
 super(x, y);
 this.color = color;
 }

 int getColor() { return color; }
}

public class UpcastArrayDemo
{
 public static void main(String[] args)
 {
 ColoredPoint[] cptArray = new ColoredPoint[1];
 cptArray[0] = new ColoredPoint(10, 20, 5);
 Point[] ptArray = cptArray;
 System.out.println(ptArray[0].getX()); // Output: 10
 System.out.println(ptArray[0].getY()); // Output: 20
 // System.out.println(ptArray[0].getColor()); // Illegal
 }
}

Listing 4-15’s main() method first creates a ColoredPoint array consisting of one element. It then
instantiates this class and assigns the object’s reference to this element. Because ColoredPoint[]
is a subtype of Point[], main() is able to upcast cptArray’s ColoredPoint[] type to Point[] and
assign its reference to ptArray.

main() then invokes the ColoredPoint instance’s getX() and getY() methods via ptArray[0].
It cannot invoke getColor() because ptArray has narrower scope than cptArray. In other words,
getColor() is not part of Point’s interface.

Abstract Classes and Abstract Methods
Suppose new requirements dictate that your graphics application must include a Rectangle class.
Furthermore, this class must include a draw() method, and this method must be tested in a manner
similar to that shown in Listing 4-14’s Graphics application class.

132 CHAPTER 4: Discovering Inheritance, Polymorphism, and Interfaces

In contrast to Circle, which is a Point with a radius, it doesn’t make sense to think of a Rectangle as
being a Point with a width and height. Rather, a Rectangle instance would probably be composed of
a Point instance indicating its origin and a Point instance indicating its width and height extents.

Because circles, points, and rectangles are examples of shapes, it makes more sense to declare
a Shape class with its own draw() method than to specify class Rectangle extends Point.
Listing 4-16 presents Shape’s declaration.

Listing 4-16. Declaring a Shape Class

class Shape
{
 void draw()
 {
 }
}

Listing 4-16’s Shape class declares an empty draw() method that only exists to be overridden and to
demonstrate subtype polymorphism.

You can now refactor Listing 4-13’s Point class to extend Listing 4-16’s Shape class, leave Circle as
is, and introduce a Rectangle class that extends Shape. You can then refactor Listing 4-14’s Graphics
class’s main() method to take Shape into account. Listing 4-17 presents the resulting Graphics class.

Listing 4-17. A Graphics Class with a New main() Method That Takes Shape into Account

public class Graphics
{
 public static void main(String[] args)
 {
 Shape[] shapes = new Shape[] { new Point(10, 20), new Circle(10, 20, 30),
 new Rectangle(20, 30, 15, 25) };
 for (int i = 0; i < shapes.length; i++)
 shapes[i].draw();
 }
}

Because Point and Rectangle directly extend Shape, and because Circle indirectly extends Shape by
extending Point, Listing 4-17’s main() method will call the appropriate subclass’s draw() method in
response to shapes[i].draw();.

Although Shape makes the code more flexible, there is a problem. What is to stop the developer from
instantiating Shape and adding this meaningless instance to the shapes array, as follows?

Shape[] shapes = new Shape[] { new Point(10, 20), new Circle(10, 20, 30),
 new Rectangle(20, 30, 15, 25), new Shape() };

What does it mean to instantiate Shape? Because this class describes an abstract concept, what
does it mean to draw a generic shape? Fortunately, Java provides a solution to this problem, which
is demonstrated in Listing 4-18.

133CHAPTER 4: Discovering Inheritance, Polymorphism, and Interfaces

Listing 4-18. Abstracting the Shape Class

abstract class Shape
{
 abstract void draw(); // semicolon is required
}

Listing 4-18 uses Java’s abstract reserved word to declare a class that cannot be instantiated. The
compiler reports an error when you try to instantiate this class.

Tip Get into the habit of declaring classes that describe generic categories (such as shape, animal,
vehicle, and account) abstract. This way, you will not inadvertently instantiate them.

The abstract reserved word is also used to declare a method without a body. The draw() method
doesn’t need a body because it cannot draw an abstract shape.

Caution The compiler reports an error when you attempt to declare a class that is both abstract and
final. For example, abstract final class Shape is an error because an abstract class cannot be
instantiated and a final class cannot be extended. The compiler also reports an error when you declare
a method to be abstract but do not declare its class to be abstract. For example, removing abstract
from the Shape class’s header in Listing 4-18 results in an error. This removal is an error because a
non-abstract (concrete) class cannot be instantiated when it contains an abstract method. Finally,
when you extend an abstract class, the extending class must override all of the abstract class’s abstract
methods, or else the extending class must itself be declared to be abstract; otherwise, the compiler will
report an error.

An abstract class can contain non-abstract methods in addition to or instead of abstract methods.
For example, Listing 4-2’s Vehicle class could have been declared abstract. The constructor would
still be present, to initialize private fields, even though you could not instantiate the resulting class.

Downcasting and Runtime Type Identification
Moving up the type hierarchy, via upcasting, causes loss of access to subtype features. For
example, assigning a Circle instance to Point variable p means that you cannot use p to call
Circle’s getRadius() method.

However, it is possible to once again access the Circle instance’s getRadius() method by
performing an explicit cast operation, for example, Circle c = (Circle) p;. This assignment is
known as downcasting because you are explicitly moving down the type hierarchy (from the Point
superclass to the Circle subclass). It is also an example of contravariance in that a type with a
narrower range of values (Point) is being converted to a type with a wider range of values (Circle).

134 CHAPTER 4: Discovering Inheritance, Polymorphism, and Interfaces

Although an upcast is always safe (the superclass’s interface is a subset of the subclass’s interface),
the same cannot be said of a downcast. Listing 4-19 shows you what kind of trouble you can get
into when downcasting is used incorrectly.

Listing 4-19. The Trouble with Downcasting

class A
{
}

class B extends A
{
 void m()
 {
 }
}

public class DowncastDemo
{
 public static void main(String[] args)
 {
 A a = new A();
 B b = (B) a;
 b.m();
 }
}

Listing 4-19 presents a class hierarchy consisting of a superclass named A and a subclass named B.
Although A doesn’t declare any members, B declares a single m() method.

A third class named DowncastDemo provides a main() method that first instantiates A and then tries
to downcast this instance to B and assign the result to variable b. The compiler will not complain
because downcasting from a superclass to a subclass in the same type hierarchy is legal.

However, if the assignment is allowed, the application will undoubtedly crash when it tries to execute
b.m();. The crash happens because the virtual machine will attempt to call a method that doesn’t
exist—class A doesn’t have an m() method.

Fortunately, this scenario will never happen because the virtual machine verifies that the cast is legal.
Because it detects that A doesn’t have an m() method, it doesn’t permit the cast by throwing an
instance of the ClassCastException class.

The virtual machine’s cast verification illustrates runtime type identification (or RTTI, for short). Cast
verification performs RTTI by examining the type of the cast operator’s operand to see whether the
cast should be allowed or not. Clearly, the cast should not be allowed.

135CHAPTER 4: Discovering Inheritance, Polymorphism, and Interfaces

A second form of RTTI involves the instanceof operator. This operator checks the left operand
to see whether or not it is an instance of the right operand and returns true if this is the case. The
following example introduces instanceof to Listing 4-19 to prevent the ClassCastException:

if(a instanceof B)
{
 B b = (B) a;
 b.m();
}

The instanceof operator detects that variable a’s instance was not created from B and returns false
to indicate this fact. As a result, the code that performs the illegal cast will not execute. (Overuse of
instanceof probably indicates poor software design.)

Because a subtype is a kind of supertype, instanceof will return true when its left operand is a
subtype instance or a supertype instance of its right operand supertype. The following example
demonstrates:

A a = new A();
B b = new B();
System.out.println(b instanceof A); // Output: true
System.out.println(a instanceof A); // Output: true

This example assumes the class structure shown in Listing 4-19 and instantiates superclass A and
subclass B. The first System.out.println() method call outputs true because b’s reference identifies
an instance of B, a subclass of A; the second System.out.println() method call outputs true
because a’s reference identifies an instance of superclass A.

You can also downcast from one array to another provided that the array being downcast is a
supertype of the other array, and its elements types are those of the subtype. Consider Listing 4-20.

Listing 4-20. Demonstrating Array Downcasting

class Point
{
 private int x, y;

 Point(int x, int y)
 {
 this.x = x;
 this.y = y;
 }

 int getX() { return x; }
 int getY() { return y; }
}

class ColoredPoint extends Point
{
 private int color;

 ColoredPoint(int x, int y, int color)

136 CHAPTER 4: Discovering Inheritance, Polymorphism, and Interfaces

 {
 super(x, y);
 this.color = color;
 }

 int getColor() { return color; }
}

public class DowncastArrayDemo
{
 public static void main(String[] args)
 {
 ColoredPoint[] cptArray = new ColoredPoint[1];
 cptArray[0] = new ColoredPoint(10, 20, 5);
 Point[] ptArray = cptArray;
 System.out.println(ptArray[0].getX()); // Output: 10
 System.out.println(ptArray[0].getY()); // Output: 20
 // System.out.println(ptArray[0].getColor()); // Illegal
 if (ptArray instanceof ColoredPoint[])
 {
 ColoredPoint cp = (ColoredPoint) ptArray[0];
 System.out.println(cp.getColor());
 }
 }
}

Listing 4-20 is similar to Listing 4-15 except that it also demonstrates downcasting. Notice its use
of instanceof to verify that ptArray’s referenced object is of type ColoredPoint[]. If this operator
returns true, it is safe to downcast ptArray[0] from Point to ColoredPoint and assign the reference
to ColoredPoint.

Covariant Return Types
A covariant return type is a method return type that, in the superclass’s method declaration, is the
supertype of the return type in the subclass’s overriding method declaration. Listing 4-21 provides a
demonstration of this language feature.

Listing 4-21. A Demonstration of Covariant Return Types

class SuperReturnType
{
 @Override
 public String toString()
 {
 return "superclass return type";
 }
}

class SubReturnType extends SuperReturnType
{
 @Override

137CHAPTER 4: Discovering Inheritance, Polymorphism, and Interfaces

 public String toString()
 {
 return "subclass return type";
 }
}

class Superclass
{
 SuperReturnType createReturnType()
 {
 return new SuperReturnType();
 }
}

class Subclass extends Superclass
{
 @Override
 SubReturnType createReturnType()
 {
 return new SubReturnType();
 }
}

public class CovarDemo
{
 public static void main(String[] args)
 {
 SuperReturnType suprt = new Superclass().createReturnType();
 System.out.println(suprt); // Output: superclass return type
 SubReturnType subrt = new Subclass().createReturnType();
 System.out.println(subrt); // Output: subclass return type
 }
}

Listing 4-21 declares SuperReturnType and Superclass superclasses and SubReturnType and
Subclass subclasses; each of Superclass and Subclass declares a createReturnType() method.
Superclass’s method has its return type set to SuperReturnType, whereas Subclass’s overriding
method has its return type set to SubReturnType, a subclass of SuperReturnType.

Covariant return types minimize upcasting and downcasting. For example, Subclass’s
createReturnType() method doesn’t need to upcast its SubReturnType instance to its SubReturnType
return type. Furthermore, this instance doesn’t need to be downcast to SubReturnType when
assigning to variable subrt.

In the absence of covariant return types, you would end up with Listing 4-22.

138 CHAPTER 4: Discovering Inheritance, Polymorphism, and Interfaces

Listing 4-22. Upcasting and Downcasting in the Absence of Covariant Return Types

class SuperReturnType
{
 @Override
 public String toString()
 {
 return "superclass return type";
 }
}

class SubReturnType extends SuperReturnType
{
 @Override
 public String toString()
 {
 return "subclass return type";
 }
}

class Superclass
{
 SuperReturnType createReturnType()
 {
 return new SuperReturnType();
 }
}

class Subclass extends Superclass
{
 @Override
 SuperReturnType createReturnType()
 {
 return new SubReturnType();
 }
}

public class CovarDemo
{
 public static void main(String[] args)
 {
 SuperReturnType suprt = new Superclass().createReturnType();
 System.out.println(suprt); // Output: superclass return type
 SubReturnType subrt = (SubReturnType) new Subclass().createReturnType();
 System.out.println(subrt); // Output: subclass return type
 }
}

In Listing 4-22, the first bolded code reveals an upcast from SubReturnType to SuperReturnType,
and the second bolded code uses the required (SubReturnType) cast operator to downcast from
SuperReturnType to SubReturnType, prior to the assignment to subrt.

139CHAPTER 4: Discovering Inheritance, Polymorphism, and Interfaces

Formalizing Class Interfaces
In my introduction to information hiding (see Chapter 3), I stated that every class X exposes an
interface (a protocol consisting of constructors, methods, and [possibly] fields that are made
available to objects created from other classes for use in creating and communicating with X’s
objects).

Java formalizes the interface concept by providing reserved word interface, which is used
to introduce a type without implementation. Java also provides language features to declare,
implement, and extend interfaces. After looking at interface declaration, implementation, and
extension in this section, I explain the rationale for using interfaces.

Declaring Interfaces
An interface declaration consists of a header followed by a body. At minimum, the header consists
of reserved word interface followed by a name that identifies the interface. The body starts with
an open brace character and ends with a close brace. Sandwiched between these delimiters are
constant and method header declarations. Consider Listing 4-23.

Listing 4-23. Declaring a Drawable Interface

interface Drawable
{
 int RED = 1; // For simplicity, integer constants are used. These constants are
 int GREEN = 2; // not that descriptive, as you will see.
 int BLUE = 3;
 int BLACK = 4;
 void draw(int color);
}

Listing 4-23 declares an interface named Drawable. By convention, an interface’s name begins with
an uppercase letter. Furthermore, the first letter of each subsequent word in a multiword interface
name is capitalized.

Note Many interface names end with the able suffix. For example, the standard class library includes
interfaces named Callable, Comparable, Cloneable, Iterable, Runnable, and Serializable.
It is not mandatory to use this suffix; the standard class library also provides interfaces named
CharSequence, Collection, Executor, Future, Iterator, List, Map, and Set.

Drawable declares four fields that identify color constants. Drawable also declares a draw() method
that must be called with one of these constants to specify the color used to draw something.

140 CHAPTER 4: Discovering Inheritance, Polymorphism, and Interfaces

Note You can precede interface with public to make your interface accessible to code outside
of its package. (I will discuss packages in the next chapter). Otherwise, the interface is only accessible
to other types in its package. You can also precede interface with abstract to emphasize that an
interface is abstract. Because an interface is already abstract, it is redundant to specify abstract in
the interface’s declaration. An interface’s fields are implicitly declared public, static, and final.
It is therefore redundant to declare them with these reserved words. Because these fields are
constants, they must be explicitly initialized; otherwise, the compiler reports an error. Finally, an
interface’s methods are implicitly declared public and abstract. Therefore, it is redundant to declare
them with these reserved words. Because these methods must be instance methods, don’t declare
them static or the compiler will report errors.

Drawable identifies a type that specifies what to do (draw something) but not how to do it. It leaves
implementation details to classes that implement this interface. Instances of such classes are known
as drawables because they know how to draw themselves.

Note An interface that declares no members is known as a marker interface or a tagging interface.
It associates metadata with a class. For example, the presence of the Cloneable marker/tagging
interface implies that instances of its implementing class can be shallowly cloned. RTTI is used to
detect that an object’s class implements a marker/tagging interface. For example, when Object’s
clone() method detects, via RTTI, that the calling instance’s class implements Cloneable, it
shallowly clones the object.

Implementing Interfaces
By itself, an interface is useless. To be of any benefit to an application, the interface needs to be
implemented by a class. Java provides the implements reserved word for this task. This reserved
word is demonstrated in Listing 4-24.

Listing 4-24. Implementing the Drawable Interface

class Point implements Drawable
{
 private int x, y;

 Point(int x, int y)
 {
 this.x = x;
 this.y = y;
 }

141CHAPTER 4: Discovering Inheritance, Polymorphism, and Interfaces

 int getX()
 {
 return x;
 }

 int getY()
 {
 return y;
 }

 @Override
 public String toString()
 {
 return "(" + x + ", " + y + ")";
 }

 @Override
 public void draw(int color)
 {
 System.out.println("Point drawn at " + toString() + " in color " + color);
 }
}

class Circle extends Point implements Drawable
{
 private int radius;

 Circle(int x, int y, int radius)
 {
 super(x, y);
 this.radius = radius;
 }

 int getRadius()
 {
 return radius;
 }

 @Override
 public String toString()
 {
 return "" + radius;
 }

 @Override
 public void draw(int color)
 {
 System.out.println("Circle drawn at " + super.toString() +
 " with radius " + toString() + " in color " + color);
 }
}

142 CHAPTER 4: Discovering Inheritance, Polymorphism, and Interfaces

Listing 4-24 retrofits Listing 4-13’s class hierarchy to take advantage of Listing 4-23’s Drawable
interface. You will notice that each of classes Point and Circle implements this interface by
attaching the implements Drawable clause to its class header.

To implement an interface, the class must specify, for each interface method header, a method
whose header has the same signature and return type as the interface’s method header and a code
body to go with the method header.

Caution When implementing a method, don’t forget that the interface’s methods are implicitly
declared public. If you forget to include public in the implemented method’s declaration,
the compiler will report an error because you are attempting to assign weaker access to the
implemented method.

When a class implements an interface, the class inherits the interface’s constants and method
headers and overrides the method headers by providing implementations (hence the @Override
annotation). This is known as interface inheritance.

It turns out that Circle’s header doesn’t need the implements Drawable clause. If this clause is not
present, Circle inherits Point’s draw() method and is still considered to be a Drawable, whether it
overrides this method or not.

An interface specifies a type whose data values are the objects whose classes implement the
interface and whose behaviors are those specified by the interface. This fact implies that you can
assign an object’s reference to a variable of the interface type, provided that the object’s class
implements the interface. The following example provides a demonstration:

public static void main(String[] args)
{
 Drawable[] drawables = new Drawable[] { new Point(10, 20), new Circle(10, 20, 30) };
 for (int i = 0; i < drawables.length; i++)
 drawables[i].draw(Drawable.RED);
}

Because Point and Circle instances are drawables by virtue of these classes implementing the
Drawable interface, it is legal to assign Point and Circle instance references to variables (including
array elements) of type Drawable.

When you run this method, it generates the following output:

Point drawn at (10, 20) in color 1
Circle drawn at (10, 20) with radius 30 in color 1

Listing 4-23’s Drawable interface is useful for drawing a shape’s outline. Suppose you also need to fill
a shape’s interior. You might attempt to satisfy this requirement by declaring Listing 4-25’s Fillable
interface.

143CHAPTER 4: Discovering Inheritance, Polymorphism, and Interfaces

Listing 4-25. Declaring a Fillable Interface

interface Fillable
{
 int RED = 1;
 int GREEN = 2;
 int BLUE = 3;
 int BLACK = 4;
 void fill(int color);
}

Given Listings 4-23 and 4-25, you can declare that the Point and Circle classes implement
both interfaces by specifying class Point implements Drawable, Fillable and class Circle
implements Drawable, Fillable. You can then modify the main() method to also treat the drawables
as fillables so that you can fill these shapes, as follows:

public static void main(String[] args)
{
 Drawable[] drawables = new Drawable[] { new Point(10, 20),
 new Circle(10, 20, 30) };
 for (int i = 0; i < drawables.length; i++)
 drawables[i].draw(Drawable.RED);
 Fillable[] fillables = new Fillable[drawables.length];
 for (int i = 0; i < drawables.length; i++)
 {
 fillables[i] = (Fillable) drawables[i];
 fillables[i].fill(Fillable.GREEN);
 }
}

After invoking each drawable’s draw() method, main() creates a Fillable array of the same length
as the Drawable array. It then proceeds to copy each Drawable array element to a Fillable array
element and then invoke the fillable’s fill() method. The (Fillable) cast is necessary because a
drawable is not a fillable. This cast operation will succeed because the Point and Circle instances
being copied implement Fillable as well as Drawable.

Tip You can list as many interfaces as you need to implement by specifying a comma-separated list
of interface names after implements.

Implementing multiple interfaces can lead to name collisions, and the compiler will report errors. For
example, suppose that you attempt to compile Listing 4-26’s interface and class declarations.

Listing 4-26. Colliding Interfaces

interface A
{
 int X = 1;
 void foo();
}

144 CHAPTER 4: Discovering Inheritance, Polymorphism, and Interfaces

interface B
{
 int X = 1;
 int foo();
}

class Collision implements A, B
{
 @Override
 public void foo();

 @Override
 public int foo() { return X; }
}

Each of Listing 4-26’s A and B interfaces declares a constant named X. Despite each constant
having the same type and value, the compiler will report an error when it encounters X in Collision’s
second foo() method because it doesn’t know which X is being inherited.

Speaking of foo(), the compiler reports an error when it encounters Collision’s second foo()
declaration because foo() has already been declared. You cannot overload a method by changing
only its return type.

The compiler will probably report additional errors. For example, the Java 7 compiler has this to say
when told to compile Listing 4-26:

Collision.java:19: error: method foo() is already defined in class Collision
 public int foo() { return X; }
 ^
Collision.java:13: error: Collision is not abstract and does not override abstract method foo()
in B class Collision implements A, B
^
Collision.java:16: error: foo() in Collision cannot implement foo() in B
 public void foo();
 ^
 return type void is not compatible with int
Collision.java:19: error: reference to X is ambiguous, both variable X in A and variable X
in B match
 public int foo() { return X; }
 ^
4 errors

Extending Interfaces
Just as a subclass can extend a superclass via reserved word extends, you can use this reserved
word to have a subinterface extend a superinterface. This, too, is known as interface inheritance.

For example, the duplicate color constants in Drawable and Fillable lead to name collisions when
you specify their names by themselves in an implementing class. To avoid these name collisions,
prefix a name with its interface name and the member access operator, or place these constants
in their own interface, and have Drawable and Fillable extend this interface, as demonstrated in
Listing 4-27.

145CHAPTER 4: Discovering Inheritance, Polymorphism, and Interfaces

Listing 4-27. Extending the Colors Interface

interface Colors
{
 int RED = 1;
 int GREEN = 2;
 int BLUE = 3;
 int BLACK = 4;
}

interface Drawable extends Colors
{
 void draw(int color);
}

interface Fillable extends Colors
{
 void fill(int color);
}

The fact that Drawable and Fillable both inherit constants from Colors is not a problem for the
compiler. There is only a single copy of these constants (in Colors) and no possibility of a name
collision, and so the compiler is satisfied.

If a class can implement multiple interfaces by declaring a comma-separated list of interface names
after implements, it seems that an interface should be able to extend multiple interfaces in a similar
way. This feature is demonstrated in Listing 4-28.

Listing 4-28. Extending a Pair of Interfaces

interface A
{
 int X = 1;
}

interface B
{
 double X = 2.0;
}

interface C extends A, B
{
}

Listing 4-28 will compile even though C inherits two same-named constants X with different types
and initializers. However, if you implement C and then try to access X, as in Listing 4-29, you will run
into a name collision.

146 CHAPTER 4: Discovering Inheritance, Polymorphism, and Interfaces

Listing 4-29. Discovering a Name Collision

class Collision implements C
{
 public void output()
 {
 System.out.println(X); // Which X is accessed?
 }
}

Suppose you introduce a void foo(); method header declaration into interface A and an int foo();
method header declaration into interface B. This time, the compiler will report an error when you
attempt to compile the modified Listing 4-28.

Why Use Interfaces?
Now that the mechanics of declaring, implementing, and extending interfaces are out of the way,
you can focus on the rationale for using them. Unfortunately, newcomers to Java’s interfaces feature
are often told that this feature was created as a workaround to Java’s lack of support for multiple
implementation inheritance. While interfaces are useful in this capacity, this is not their reason for
existence. Instead, Java’s interfaces feature was created to give developers the utmost flexibility in
designing their applications by decoupling interface from implementation. You should always code to
the interface (supplied by an interface type or an abstract class).

Those who are adherents to agile software development (a group of software development
methodologies based on iterative development that emphasizes keeping code simple, testing
frequently, and delivering functional pieces of the application as soon as they are deliverable) know
the importance of flexible coding. They cannot afford to tie their code to a specific implementation
because a change in requirements for the next iteration could result in a new implementation, and
they might find themselves rewriting significant amounts of code, which wastes time and slows
development.

Interfaces help you achieve flexibility by decoupling interface from implementation. For example,
the main() method in Listing 4-17’s Graphics class creates an array of objects from classes that
subclass the Shape class and then iterates over these objects, calling each object’s draw() method.
The only objects that can be drawn are those that subclass Shape.

Suppose you also have a hierarchy of classes that model resistors, transistors, and other electronic
components. Each component has its own symbol that allows the component to be shown in a
schematic diagram of an electronic circuit. Perhaps you want to add a drawing capability to each
class that draws that component’s symbol.

You might consider specifying Shape as the superclass of the electronic component class hierarchy.
However, electronic components are not shapes (although they have shapes), so it makes no sense
to place these classes in a class hierarchy rooted in Shape.

However, you can make each component class implement the Drawable interface, which lets
you add expressions that instantiate these classes to the drawables array in the main() method
appearing prior to Listing 4-25 (so you can draw their symbols). This is legal because these
instances are drawables.

147CHAPTER 4: Discovering Inheritance, Polymorphism, and Interfaces

Wherever possible, you should strive to specify interfaces instead of classes in your code to keep
your code adaptable to change. This is especially true when working with Java’s Collections
Framework, which I will discuss at length in Chapter 9.

For now, consider a simple example that consists of the Collections Framework’s java.util.List
interface and its java.util.ArrayList and java.util.LinkedList implementation classes. The
following example presents inflexible code based on the ArrayList class:

ArrayList<String> arrayList = new ArrayList<String>();
void dump(ArrayList<String> arrayList)
{
 // suitable code to dump out the arrayList
}

This example uses the generics-based parameterized type language feature (which I will discuss in
Chapter 6) to identify the kind of objects stored in an ArrayList instance. In this example, String
objects are stored.

The example is inflexible because it hardwires the ArrayList class into multiple locations. This
hardwiring focuses the developer into thinking specifically about array lists instead of generically
about lists.

Lack of focus is problematic when a requirements change, or perhaps a performance issue brought
about by profiling (analyzing a running application to check its performance), suggests that the
developer should have used LinkedList.

The example only requires a minimal number of changes to satisfy the new requirement. In contrast,
a larger code base might need many more changes. Although you only need to change ArrayList to
LinkedList, to satisfy the compiler, consider changing arrayList to linkedList to keep semantics
(meaning) clear—you might have to change multiple occurrences of names that refer to an ArrayList
instance throughout the source code.

The developer is bound to lose time while refactoring the code to adapt to LinkedList. Instead, time
could have been saved by writing this example to use the equivalent of constants. In other words,
the example could have been written to rely on interfaces and to only specify ArrayList in one place.
The following example shows you what the resulting code would look like:

List<String> list = new ArrayList<String>();
void dump(List<String> list)
{
 // suitable code to dump out the list
}

This example is much more flexible than the previous example. If a requirements or profiling change
suggests that LinkedList should be used instead of ArrayList, simply replace Array with Linked
and you are done. You don’t even have to change the parameter name.

148 CHAPTER 4: Discovering Inheritance, Polymorphism, and Interfaces

Note Java provides interfaces and abstract classes for describing abstract types (types that cannot
be instantiated). Abstract types represent abstract concepts (drawable and shape, for example), and
instances of such types would be meaningless.

Interfaces promote flexibility through lack of implementation—Drawable and List illustrate this flexibility.
They are not tied to any single class hierarchy but can be implemented by any class in any hierarchy. In
contrast, abstract classes support implementation but can be genuinely abstract (Listing 4-18’s abstract
Shape class, for example). However, they are limited to appearing in the upper levels of class hierarchies.

Interfaces and abstract classes can be used together. For example, the Collections Framework’s java.util
package provides List, Map, and Set interfaces and AbstractList, AbstractMap, and AbstractSet
abstract classes that provide skeletal implementations of these interfaces.

By implementing many interface methods, the skeletal implementations make it easy for you to create
your own interface implementations to address your unique requirements. If they don’t meet your
needs, you can optionally have your class directly implement the appropriate interface.

EXERCISES

The following exercises are designed to test your understanding of Chapter 4’s content:

1. What is implementation inheritance?

2. How does Java support implementation inheritance?

3. Can a subclass have two or more superclasses?

4. How do you prevent a class from being subclassed?

5. True or false: The super() call can appear in any method.

6. If a superclass declares a constructor with one or more parameters, and if a subclass constructor
doesn’t use super() to call that constructor, why does the compiler report an error?

7. What is an immutable class?

8. True or false: A class can inherit constructors.

9. What does it mean to override a method?

10. What is required to call a superclass method from its overriding subclass method?

11. How do you prevent a method from being overridden?

12. Why can you not make an overriding subclass method less accessible than the superclass method it
is overriding?

13. How do you tell the compiler that a method overrides another method?

14. Why does Java not support multiple implementation inheritance?

149CHAPTER 4: Discovering Inheritance, Polymorphism, and Interfaces

15. What is the name of Java’s ultimate superclass?

16. What is the purpose of the clone() method?

17. When does Object’s clone() method throw CloneNotSupportedException?

18. Explain the difference between shallow copying and deep copying.

19. Can the == operator be used to determine if two objects are logically equivalent? Why or why not?

20. What does Object’s equals() method accomplish?

21. Does expression "abc" == "a" + "bc" return true or false?

22. How can you optimize a time-consuming equals() method?

23. What is the purpose of the finalize() method?

24. Should you rely on finalize() for closing open files? Why or why not?

25. What is a hash code?

26. True or false: You should override the hashCode() method whenever your override the
equals() method.

27. What does Object’s toString() method return?

28. Why should you override toString()?

29. Define composition.

30. True or false: Composition is used to describe “is-a” relationships and implementation inheritance is
used to describe “has-a” relationships.

31. Identify the fundamental problem of implementation inheritance. How do you fix this problem?

32. Define subtype polymorphism.

33. How is subtype polymorphism accomplished?

34. Why would you use abstract classes and abstract methods?

35. Can an abstract class contain concrete methods?

36. What is the purpose of downcasting?

37. List two forms of RTTI.

38. What is a covariant return type?

39. How do you formally declare an interface?

40. True or false: You can precede an interface declaration with the abstract reserved word.

41. Define marker interface.

42. What is interface inheritance?

43. How do you implement an interface?

44. What problem might you encounter when you implement multiple interfaces?

45. How do you form a hierarchy of interfaces?

150 CHAPTER 4: Discovering Inheritance, Polymorphism, and Interfaces

46. Why is Java’s interfaces feature so important?

47. What do interfaces and abstract classes accomplish?

48. How do interfaces and abstract classes differ?

49. Model part of an animal hierarchy by declaring Animal, Bird, Fish, AmericanRobin,
DomesticCanary, RainbowTrout, and SockeyeSalmon classes:

Animal is public and abstract, declares private String-based kind and appearance
fields, declares a public constructor that initializes these fields to passed-in arguments,
declares public and abstract eat() and move() methods that take no arguments and
whose return type is void, and overrides the toString() method to output the contents of
kind and appearance.

Bird is public and abstract, extends Animal, declares a public constructor that passes
its kind and appearance parameter values to its superclass constructor, overrides its eat()
method to output eats seeds and insects (via System.out.println()), and overrides
its move() method to output flies through the air.

Fish is public and abstract; extends Animal; declares a public constructor that passes
its kind and appearance parameter values to its superclass constructor; overrides its eat()
method to output eats krill, algae, and insects; and overrides its move() method to
output swims through the water.

AmericanRobin is public, extends Bird, and declares a public noargument constructor that
passes "americanrobin" and "red breast" to its superclass constructor.

DomesticCanary is public, extends Bird, and declares a public noargument constructor
that passes "domesticcanary" and "yellow, orange, black, brown, white, red"
to its superclass constructor.

RainbowTrout is public, extends Fish, and declares a public noargument constructor that
passes "rainbowtrout" and "bands of brilliant speckled multicolored stripes
running nearly the whole length of its body" to its superclass constructor.

SockeyeSalmon is public, extends Fish, and declares a public noargument constructor
that passes "sockeyesalmon" and "bright red with a green head" to its superclass
constructor.

Note For brevity, I have omitted from the Animal hierarchy abstract Robin, Canary, Trout, and
Salmon classes that generalize robins, canaries, trout, and salmon. Perhaps you might want to include
these classes in the hierarchy.

Although this exercise illustrates the accurate modeling of a natural scenario using inheritance, it also
reveals the potential for class explosion—too many classes may be introduced to model a scenario, and
it might be difficult to maintain all of these classes. Keep this in mind when modeling with inheritance.

151CHAPTER 4: Discovering Inheritance, Polymorphism, and Interfaces

50. Continuing from the previous exercise, declare an Animals class with a main() method. This
method first declares an animals array that is initialized to AmericanRobin, RainbowTrout,
DomesticCanary, and SockeyeSalmon objects. The method then iterates over this array, first
outputting animals[i] (which causes toString() to be called) and then calling each object’s
eat() and move() methods (demonstrating subtype polymorphism).

51. Continuing from the previous exercise, declare a public Countable interface with a String
getID() method. Modify Animal to implement Countable and have this method return kind’s
value. Modify Animals to initialize the animals array to AmericanRobin, RainbowTrout,
DomesticCanary, SockeyeSalmon, RainbowTrout, and AmericanRobin objects. Also,
introduce code that computes a census of each kind of animal. This code will use the Census class
that is declared in Listing 4-30.

Listing 4-30. The Census Class Stores Census Data on Four Kinds of Animals

public class Census
{
 public final static int SIZE = 4;
 private String[] IDs;
 private int[] counts;

 public Census()
 {
 IDs = new String[SIZE];
 counts = new int[SIZE];
 }

 public String get(int index)
 {
 return IDs[index] + " " + counts[index];
 }

 public void update(String ID)
 {
 for (int i = 0; i < IDs.length; i++)
 {
 // If ID not already stored in the IDs array (which is indicated by
 // the first null entry that is found), store ID in this array, and
 // also assign 1 to the associated element in the counts array, to
 // initialize the census for that ID.
 if (IDs[i] == null)
 {
 IDs[i] = ID;
 counts[i] = 1;
 return;
 }

152 CHAPTER 4: Discovering Inheritance, Polymorphism, and Interfaces

 // If a matching ID is found, increment the associated element in
 // the counts array to update the census for that ID.
 if (IDs[i].equals(ID))
 {
 counts[i]++;
 return;
 }
 }
 }
}

Summary
Inheritance is a hierarchical relationship between similar entity categories in which one category
inherits state and behaviors from at least one other entity category. Inheriting from a single category
is called single inheritance, and inheriting from at least two categories is called multiple inheritance.

Java supports single inheritance and multiple inheritance to facilitate code reuse—why reinvent the
wheel? Java supports single inheritance in a class context (via reserved word extends) in which a class
inherits fields and methods from another class through class extension. Because classes are involved,
Java refers to this kind of inheritance as implementation inheritance. Java supports multiple inheritance
only in an interface context in which a class inherits method templates from one or more interfaces
through interface implementation (via reserved word implements) or in which an interface inherits
method templates from one or more interfaces through interface extension (via reserved word extends).
Because interfaces are involved, Java refers to this kind of inheritance as interface inheritance.

Some real-world entities have the ability to change their forms. The ability to change form is known
as polymorphism and is useful to model in a programming language. Although Java supports the
coercion, overloading, parametric, and subtype kinds of polymorphism, in this chapter I only focused
on subtype polymorphism, which is achieved through upcasting and method overriding.

Every class X exposes an interface (a protocol consisting of constructors, methods, and [possibly]
fields that are made available to objects created from other classes for use in creating and
communicating with X’s objects). Java formalizes the interface concept by providing reserved word
interface, which is used to introduce a type without implementation.

Although many believe that the interfaces language feature was created as a workaround to Java’s
lack of support for multiple implementation inheritance, this is not the real reason for its existence.
Instead, Java’s interfaces feature was created to give developers the utmost flexibility in designing their
applications by decoupling interface from implementation. You should always code to the interface.

In Chapter 5 I continue to explore the Java language by focusing on nested types, packages, static
imports, and exceptions.

153

Chapter 5
Mastering Advanced Language
Features Part 1

In Chapters 2 through 4 I laid a foundation for learning the Java language. In Chapter 5 I build onto
this foundation by introducing you to some of Java’s more advanced language features, specifically,
those features related to nested types, packages, static imports, and exceptions. Additional
advanced language features are covered in Chapter 6.

Mastering Nested Types
Classes that are declared outside of any class are known as top-level classes. Java also supports
nested classes, which are classes that are declared as members of other classes or scopes. Nested
classes help you implement top-level class architecture.

There are four kinds of nested classes: static member classes, nonstatic member classes,
anonymous classes, and local classes. The latter three categories are known as inner classes.

In this section I introduce you to static member classes and inner classes. For each kind of nested
class, I provide you with a brief introduction, an abstract example, and a more practical example.
I then briefly examine the topic of nesting interfaces within classes.

Static Member Classes
A static member class is a static member of an enclosing class. Although enclosed, it doesn’t have
an enclosing instance of that class and cannot access the enclosing class’s instance fields and
invoke its instance methods. However, it can access the enclosing class’s static fields and invoke
its static methods, even those members that are declared private. Listing 5-1 presents a static
member class declaration.

154 CHAPTER 5: Mastering Advanced Language Features Part 1

Listing 5-1. Declaring a Static Member Class

class EnclosingClass
{
 private static int i;

 private static void m1()
 {
 System.out.println(i);
 }

 static void m2()
 {
 EnclosedClass.accessEnclosingClass();
 }

 static class EnclosedClass
 {
 static void accessEnclosingClass()
 {
 i = 1;
 m1();
 }

 void accessEnclosingClass2()
 {
 m2();
 }
 }
}

Listing 5-1 declares a top-level class named EnclosingClass with class field i, class methods m1()
and m2(), and static member class EnclosedClass. Also, EnclosedClass declares class method
accessEnclosingClass() and instance method accessEnclosingClass2().

Because accessEnclosingClass() is declared static, m2() must be prefixed with EnclosedClass and
the member access operator to call this method.

Listing 5-2 presents the source code to an application class that demonstrates how to invoke
EnclosedClass’s accessEnclosingClass() class method and instantiate EnclosedClass and invoke its
accessEnclosingClass2() instance method.

Listing 5-2. Invoking a Static Member Class’s Class and Instance Methods

public class SMCDemo
{
 public static void main(String[] args)
 {
 EnclosingClass.EnclosedClass.accessEnclosingClass(); // Output: 1
 EnclosingClass.EnclosedClass ec = new EnclosingClass.EnclosedClass();
 ec.accessEnclosingClass2(); // Output: 1
 }
}

155CHAPTER 5: Mastering Advanced Language Features Part 1

Listing 5-2’s main() method reveals that you must prefix the name of an enclosed class
with the name of its enclosing class to invoke a class method, for example,
EnclosingClass.EnclosedClass.accessEnclosingClass();.

This listing also reveals that you must prefix the name of the enclosed class with the name of its
enclosing class when instantiating the enclosed class, for example, EnclosingClass.EnclosedClass
ec = new EnclosingClass.EnclosedClass();. You can then invoke the instance method in the
normal manner, for example, ec.accessEnclosingClass2();.

Static member classes have their uses. For example, Listing 5-3’s Double and Float static member
classes provide different implementations of their enclosing Rectangle class. The Float version
occupies less memory because of its 32-bit float fields, and the Double version provides greater
accuracy because of its 64-bit double fields.

Listing 5-3. Using Static Member Classes to Declare Multiple Implementations of Their Enclosing Class

abstract class Rectangle
{
 abstract double getX();
 abstract double getY();
 abstract double getWidth();
 abstract double getHeight();

 static class Double extends Rectangle
 {
 private double x, y, width, height;

 Double(double x, double y, double width, double height)
 {
 this.x = x;
 this.y = y;
 this.width = width;
 this.height = height;
 }

 double getX() { return x; }
 double getY() { return y; }
 double getWidth() { return width; }
 double getHeight() { return height; }
 }

 static class Float extends Rectangle
 {
 private float x, y, width, height;

 Float(float x, float y, float width, float height)
 {
 this.x = x;
 this.y = y;
 this.width = width;
 this.height = height;
 }

156 CHAPTER 5: Mastering Advanced Language Features Part 1

 double getX() { return x; }
 double getY() { return y; }
 double getWidth() { return width; }
 double getHeight() { return height; }
 }

 // Prevent subclassing. Use the type-specific Double and Float
 // implementation subclass classes to instantiate.
 private Rectangle() {}

 boolean contains(double x, double y)
 {
 return (x >= getX() && x < getX() + getWidth()) &&
 (y >= getY() && y < getY() + getHeight());
 }
}

Listing 5-3’s Rectangle class demonstrates nested subclasses. Each of the Double and Float static
member classes subclass the abstract Rectangle class, providing private floating-point or double
precision floating-point fields and overriding Rectangle’s abstract methods to return these fields’
values as doubles.

Rectangle is abstract because it makes no sense to instantiate this class. Because it also makes
no sense to directly extend Rectangle with new implementations (the Double and Float nested
subclasses should be sufficient), its default constructor is declared private. Instead, you must
instantiate Rectangle.Float (to save memory) or Rectangle.Double (when accuracy is required), as
demonstrated by Listing 5-4.

Listing 5-4. Creating and Using Different Rectangle Implementations

public class SMCDemo
{
 public static void main(String[] args)
 {
 Rectangle r = new Rectangle.Double(10.0, 10.0, 20.0, 30.0);
 System.out.println("x = " + r.getX());
 System.out.println("y = " + r.getY());
 System.out.println("width = " + r.getWidth());
 System.out.println("height = " + r.getHeight());
 System.out.println("contains(15.0, 15.0) = " + r.contains(15.0, 15.0));
 System.out.println("contains(0.0, 0.0) = " + r.contains(0.0, 0.0));
 System.out.println();
 r = new Rectangle.Float(10.0f, 10.0f, 20.0f, 30.0f);
 System.out.println("x = " + r.getX());
 System.out.println("y = " + r.getY());
 System.out.println("width = " + r.getWidth());
 System.out.println("height = " + r.getHeight());
 System.out.println("contains(15.0, 15.0) = " + r.contains(15.0, 15.0));
 System.out.println("contains(0.0, 0.0) = " + r.contains(0.0, 0.0));
 }
}

157CHAPTER 5: Mastering Advanced Language Features Part 1

Listing 5-4 first instantiates Rectangle’s Double subclass via new Rectangle.Double(10.0, 10.0,
20.0, 30.0) and then invokes its various methods. Continuing, Listing 5-4 instantiates Rectangle’s
Float subclass via new Rectangle.Float(10.0f, 10.0f, 20.0f, 30.0f) before invoking Rectangle
methods on this instance.

Compile both listings (javac SMCDemo.java or javac *.java) and run the application (java SMCDemo).
You will then observe the following output:

x = 10.0
y = 10.0
width = 20.0
height = 30.0
contains(15.0, 15.0) = true
contains(0.0, 0.0) = false

x = 10.0
y = 10.0
width = 20.0
height = 30.0
contains(15.0, 15.0) = true
contains(0.0, 0.0) = false

Java’s class library contains many static member classes. For example, the java.lang.Character
class encloses a static member class named Subset whose instances represent subsets of the
Unicode character set. Additional examples include java.util.AbstractMap.SimpleEntry and
java.io.ObjectInputStream.GetField.

Note When you compile an enclosing class that contains a static member class, the compiler creates
a classfile for the static member class whose name consists of its enclosing class’s name, a dollar-sign
character, and the static member class’s name. For example, compile Listing 5-1 and you will discover
EnclosingClass$EnclosedClass.class in addition to EnclosingClass.class. This format also
applies to nonstatic member classes.

Nonstatic Member Classes
A nonstatic member class is a non-static member of an enclosing class. Each instance of the
nonstatic member class implicitly associates with an instance of the enclosing class. The nonstatic
member class’s instance methods can call instance methods in the enclosing class and access
the enclosing class instance’s nonstatic fields. Listing 5-5 presents a nonstatic member class
declaration.

158 CHAPTER 5: Mastering Advanced Language Features Part 1

Listing 5-5. Declaring a Nonstatic Member Class

class EnclosingClass
{
 private int i;

 private void m()
 {
 System.out.println(i);
 }

 class EnclosedClass
 {
 void accessEnclosingClass()
 {
 i = 1;
 m();
 }
 }
}

Listing 5-5 declares a top-level class named EnclosingClass with instance field i, instance method
m1(), and nonstatic member class EnclosedClass. Furthermore, EnclosedClass declares instance
method accessEnclosingClass().

Because accessEnclosingClass() is nonstatic, EnclosedClass must be instantiated before this
method can be called. This instantiation must take place via an instance of EnclosingClass.
Listing 5-6 accomplishes these tasks.

Listing 5-6. Calling a Nonstatic Member Class’s Instance Method

public class NSMCDemo
{
 public static void main(String[] args)
 {
 EnclosingClass ec = new EnclosingClass();
 ec.new EnclosedClass().accessEnclosingClass(); // Output: 1
 }
}

Listing 5-6’s main() method first instantiates EnclosingClass and saves its reference in local variable
ec. Then, main() uses this reference as a prefix to the new operator to instantiate EnclosedClass,
whose reference is then used to call accessEnclosingClass(), which outputs 1.

Note Prefixing new with a reference to the enclosing class is rare. Instead, you will typically call an
enclosed class’s constructor from within a constructor or an instance method of its enclosing class.

159CHAPTER 5: Mastering Advanced Language Features Part 1

Suppose you need to maintain a to-do list of items, where each item consists of a name and a
description. After some thought, you create Listing 5-7’s ToDo class to implement these items.

Listing 5-7. Implementing To-Do Items as Name-Description Pairs

class ToDo
{
 private String name;
 private String desc;

 ToDo(String name, String desc)
 {
 this.name = name;
 this.desc = desc;
 }

 String getName()
 {
 return name;
 }

 String getDesc()
 {
 return desc;
 }

 @Override
 public String toString()
 {
 return "Name = " + getName() + ", Desc = " + getDesc();
 }
}

You next create a ToDoList class to store ToDo instances. ToDoList uses its ToDoArray nonstatic
member class to store ToDo instances in a growable array—you don’t know how many instances will
be stored, and Java arrays have fixed lengths. See Listing 5-8.

Listing 5-8. Storing a Maximum of Two ToDo Instances in a ToDoArray Instance

class ToDoList
{
 private ToDoArray toDoArray;
 private int index = 0;

 ToDoList()
 {
 toDoArray = new ToDoArray(2);
 }

 boolean hasMoreElements()
 {
 return index < toDoArray.size();
 }

160 CHAPTER 5: Mastering Advanced Language Features Part 1

 ToDo nextElement()
 {
 return toDoArray.get(index++);
 }

 void add(ToDo item)
 {
 toDoArray.add(item);
 }

 private class ToDoArray
 {
 private ToDo[] toDoArray;
 private int index = 0;

 ToDoArray(int initSize)
 {
 toDoArray = new ToDo[initSize];
 }

 void add(ToDo item)
 {
 if (index >= toDoArray.length)
 {
 ToDo[] temp = new ToDo[toDoArray.length*2];
 for (int i = 0; i < toDoArray.length; i++)
 temp[i] = toDoArray[i];
 toDoArray = temp;
 }
 toDoArray[index++] = item;
 }

 ToDo get(int i)
 {
 return toDoArray[i];
 }

 int size()
 {
 return index;
 }
 }
}

As well as providing an add() method to store ToDo instances in the ToDoArray instance, ToDoList
provides hasMoreElements() and nextElement() methods to iterate over and return the stored
instances. Listing 5-9 demonstrates these methods.

161CHAPTER 5: Mastering Advanced Language Features Part 1

Listing 5-9. Creating and Iterating Over a ToDoList of ToDo Instances

public class NSMCDemo
{
 public static void main(String[] args)
 {
 ToDoList toDoList = new ToDoList();
 toDoList.add(new ToDo("#1", "Do laundry."));
 toDoList.add(new ToDo("#2", "Buy groceries."));
 toDoList.add(new ToDo("#3", "Vacuum apartment."));
 toDoList.add(new ToDo("#4", "Write report."));
 toDoList.add(new ToDo("#5", "Wash car."));
 while (toDoList.hasMoreElements())
 System.out.println(toDoList.nextElement());
 }
}

Compile all three listings (javac NSMCDemo.java or javac *.java) and run the application (java
NSMCDemo). You will then observe the following output:

Name = #1, Desc = Do laundry.
Name = #2, Desc = Buy groceries.
Name = #3, Desc = Vacuum apartment.
Name = #4, Desc = Write report.
Name = #5, Desc = Wash car.

Java’s class library presents many examples of nonstatic member classes. For example, the
java.util package’s HashMap class declares private HashIterator, ValueIterator, KeyIterator,
and EntryIterator classes for iterating over a hashmap’s values, keys, and entries. (I will discuss
HashMap in Chapter 9.)

Note Code within an enclosed class can obtain a reference to its enclosing class instance by qualifying
reserved word this with the enclosing class’s name and the member access operator. For example, if code
within accessEnclosingClass() needed to obtain a reference to its EnclosingClass instance, it would
specify EnclosingClass.this.

Anonymous Classes
An anonymous class is a class without a name. Furthermore, it is not a member of its enclosing
class. Instead, an anonymous class is simultaneously declared (as an anonymous extension of a
class or as an anonymous implementation of an interface) and instantiated any place where it is
legal to specify an expression. Listing 5-10 demonstrates an anonymous class declaration and
instantiation.

162 CHAPTER 5: Mastering Advanced Language Features Part 1

Listing 5-10. Declaring and Instantiating an Anonymous Class That Extends a Class

abstract class Speaker
{
 abstract void speak();
}

public class ACDemo
{
 public static void main(final String[] args)
 {
 new Speaker()
 {
 String msg = (args.length == 1) ? args[0] : "nothing to say";

 @Override
 void speak()
 {
 System.out.println(msg);
 }
 }
 .speak();
 }
}

Listing 5-10 introduces an abstract class named Speaker and a concrete class named ACDemo. The
latter class’s main() method declares an anonymous class that extends Speaker and overrides its
speak() method. When this method is called, it outputs main()’s first command-line argument or a
default message when there are no arguments.

An anonymous class doesn’t have a constructor (because the anonymous class doesn’t have a
name). However, its classfile does contain an <init>() method that performs instance initialization.
This method calls the superclass’s noargument constructor (prior to any other initialization), which is
the reason for specifying Speaker() after new.

Anonymous class instances should be able to access the surrounding scope’s local variables and
parameters. However, an instance might outlive the method in which it was conceived (as a result of
storing the instance’s reference in a field) and try to access local variables and parameters that no
longer exist after the method returns.

Because Java cannot allow this illegal access, which would most likely crash the virtual machine,
it lets an anonymous class instance only access local variables and parameters that are declared
final (see Listing 5-10). On encountering a final local variable/parameter name in an anonymous
class instance, the compiler does one of two things:

If the variable’s type is primitive (int or double, for example), the compiler
replaces its name with the variable’s read-only value.

If the variable’s type is reference (String, for example), the compiler introduces,
into the classfile, a synthetic variable (a manufactured variable) and code that
stores the local variable’s/parameter’s reference in the synthetic variable.

Listing 5-11 demonstrates an alternative anonymous class declaration and instantiation.

163CHAPTER 5: Mastering Advanced Language Features Part 1

Listing 5-11. Declaring and Instantiating an Anonymous Class That Implements an Interface

interface Speakable
{
 void speak();
}

public class ACDemo
{
 public static void main(final String[] args)
 {
 new Speakable()
 {
 String msg = (args.length == 1) ? args[0] : "nothing to say";

 @Override
 public void speak()
 {
 System.out.println(msg);
 }
 }
 .speak();
 }
}

Listing 5-11 is very similar to Listing 5-10. However, instead of subclassing a Speaker class, this
listing’s anonymous class implements an interface named Speakable. Apart from the <init>()
method calling java.lang.Object() (interfaces have no constructors), Listing 5-11 behaves like
Listing 5-10.

Although an anonymous class doesn’t have a constructor, you can provide an instance initializer to
handle complex initialization. For example, new Office() {{addEmployee(new Employee
("John Doe"));}}; instantiates an anonymous subclass of Office and adds one Employee object to
this instance by calling Office’s addEmployee() method.

You will often find yourself creating and instantiating anonymous classes for their convenience. For
example, suppose you need to return a list of all filenames having the .java suffix. The following
example shows you how an anonymous class simplifies using the java.io package’s File and
FilenameFilter classes to achieve this objective:

String[] list = new File(directory).list(new FilenameFilter()
 {
 @Override
 public boolean accept(File f, String s)
 {
 return s.endsWith(".java");
 }
 });

164 CHAPTER 5: Mastering Advanced Language Features Part 1

Local Classes
A local class is a class that is declared anywhere that a local variable is declared. Furthermore, it has
the same scope as a local variable. Unlike an anonymous class, a local class has a name and can be
reused. Like anonymous classes, local classes only have enclosing instances when used in nonstatic
contexts.

A local class instance can access the surrounding scope’s local variables and parameters. However,
the local variables and parameters that are accessed must be declared final. For example,
Listing 5-12’s local class declaration accesses a final parameter and a final local variable.

Listing 5-12. Declaring a Local Class

class EnclosingClass
{
 void m(final int x)
 {
 final int y = x * 2;
 class LocalClass
 {
 int a = x;
 int b = y;
 }
 LocalClass lc = new LocalClass();
 System.out.println(lc.a);
 System.out.println(lc.b);
 }
}

Listing 5-12 declares EnclosingClass with its instance method m() declaring a local class named
LocalClass. This local class declares a pair of instance fields (a and b) that are initialized to the
values of final parameter x and final local variable y when LocalClass is instantiated: new
EnclosingClass().m(10);, for example.

Listing 5-13 demonstrates this local class.

Listing 5-13. Demonstrating a Local Class

public class LCDemo
{
 public static void main(String[] args)
 {
 EnclosingClass ec = new EnclosingClass();
 ec.m(10);
 }
}

After instantiating EnclosingClass, Listing 5-13’s main() method invokes m(10). The called m()
method multiplies this argument by 2; instantiates LocalClass, whose <init>() method assigns the

165CHAPTER 5: Mastering Advanced Language Features Part 1

argument and the doubled value to its pair of instance fields (in lieu of using a constructor to perform
this task); and outputs the LocalClass instance fields. The following output results:

10
20

Local classes help improve code clarity because they can be moved closer to where they are
needed. For example, Listing 5-14 declares an Iterator interface and a ToDoList class whose
iterator() method returns an instance of its local Iter class as an Iterator instance (because Iter
implements Iterator).

Listing 5-14. The Iterator Interface and the ToDoList Class

interface Iterator
{
 boolean hasMoreElements();
 Object nextElement();
}

class ToDoList
{
 private ToDo[] toDoList;
 private int index = 0;

 ToDoList(int size)
 {
 toDoList = new ToDo[size];
 }

 Iterator iterator()
 {
 class Iter implements Iterator
 {
 int index = 0;

 @Override
 public boolean hasMoreElements()
 {
 return index < toDoList.length;
 }

 @Override
 public Object nextElement()
 {
 return toDoList[index++];
 }
 }
 return new Iter();
 }

166 CHAPTER 5: Mastering Advanced Language Features Part 1

 void add(ToDo item)
 {
 toDoList[index++] = item;
 }
}

Listing 5-15 demonstrates Iterator, the refactored ToDoList class, and Listing 5-7’s ToDo class.

Listing 5-15. Creating and Iterating Over a ToDoList of ToDo Instances with a Reusable Iterator

public class LCDemo
{
 public static void main(String[] args)
 {
 ToDoList toDoList = new ToDoList(5);
 toDoList.add(new ToDo("#1", "Do laundry."));
 toDoList.add(new ToDo("#2", "Buy groceries."));
 toDoList.add(new ToDo("#3", "Vacuum apartment."));
 toDoList.add(new ToDo("#4", "Write report."));
 toDoList.add(new ToDo("#5", "Wash car."));
 Iterator iter = toDoList.iterator();
 while (iter.hasMoreElements())
 System.out.println(iter.nextElement());
 }
}

The Iterator instance that is returned from iterator() returns ToDo items in the same order as
when they were added to the list. Although you can only use the returned Iterator object once, you
can call iterator() whenever you need a new Iterator object. This capability is a big improvement
over the one-shot iterator presented in Listing 5-9.

Interfaces within Classes
Interfaces can be nested within classes. Once declared, an interface is considered to be static even
when it is not declared static. For example, Listing 5-16 declares an enclosing class named X along
with two nested static interfaces named A and B.

Listing 5-16. Declaring a Pair of Interfaces Within a Class

class X
{
 interface A
 {
 }

 static interface B
 {
 }
}

167CHAPTER 5: Mastering Advanced Language Features Part 1

You would access Listing 5-16’s interfaces in the same way. For example, you would specify class C
implements X.A {} or class D implements X.B {}.

As with nested classes, nested interfaces help to implement top-level class architecture by being
implemented by nested classes. Collectively, these types are nested because they cannot (as in
Listing 5-14’s Iter local class) or need not appear at the same level as a top-level class and pollute
its package namespace.

Note In Chapter 4’s introduction to interfaces, I showed you how to declare constants and method headers
in the body of an interface. You can also declare interfaces and classes in an interface’s body. Because there
are few good reasons to do this (java.util.Map.Entry is one exception), it is probably best to avoid
nesting interfaces and/or classes within interfaces.

Mastering Packages
Hierarchical structures organize items in terms of hierarchical relationships that exist between those
items. For example, a filesystem might contain a taxes directory with multiple year subdirectories,
where each subdirectory contains tax information pertinent to that year. Also, an enclosing class
might contain multiple nested classes that only make sense in the context of the enclosing class.

Hierarchical structures also help to avoid name conflicts. For example, two files cannot have the
same name in a nonhierarchical filesystem (which consists of a single directory). In contrast, a
hierarchical filesystem lets same-named files exist in different directories. Similarly, two enclosing
classes can contain same-named nested classes. Name conflicts don’t exist because items are
partitioned into different namespaces.

Java also supports the partitioning of top-level user-defined types into multiple namespaces to
better organize these types and to also prevent name conflicts. Java uses packages to accomplish
these tasks.

In this section I introduce you to packages. After defining this term and explaining why package
names must be unique, I present the package and import statements. I next explain how the virtual
machine searches for packages and types and then present an example that shows you how to
work with packages. I close this section by showing you how to encapsulate a package of classfiles
into JAR files.

Tip Except for the most trivial of top-level types and (typically) those classes that serve as application
entry points (they have main() methods), you should consider storing your types (especially when they are
reusable) in packages. Get into the habit now because you’ll use packages extensively when developing
Android apps. Each Android app must be stored in its own unique package.

168 CHAPTER 5: Mastering Advanced Language Features Part 1

What Are Packages?
A package is a unique namespace that can contain a combination of top-level classes, other
top-level types, and subpackages. Only types that are declared public can be accessed from
outside the package. Furthermore, the constants, constructors, methods, and nested types that
describe a class’s interface must be declared public to be accessible from beyond the package.

Every package has a name, which must be a nonreserved identifier. The member access operator
separates a package name from a subpackage name and separates a package or subpackage
name from a type name. For example, the two member access operators in graphics.shapes.Circle
separate package name graphics from the shapes subpackage name and separate subpackage
name shapes from the Circle type name.

Note Each of Oracle’s and Google Android’s standard class libraries organizes its many classes and other
top-level types into multiple packages. Many of these packages are subpackages of the standard java
package. Examples include java.io (types related to input/output operations), java.lang
(language-oriented types), java.net (network-oriented types), and java.util (utility types).

Package Names Must Be Unique
Suppose you have two different graphics.shapes packages, and suppose that each shapes
subpackage contains a Circle class with a different interface. When the compiler encounters
System.out.println(new Circle(10.0, 20.0, 30.0).area()); in the source code, it needs to verify
that the area() method exists.

The compiler will search all accessible packages until it finds a graphics.shapes package that
contains a Circle class. If the found package contains the appropriate Circle class with an area()
method, everything is fine. Otherwise, if the Circle class doesn’t have an area() method, the
compiler will report an error.

This scenario illustrates the importance of choosing unique package names. Specifically, the
top-level package name must be unique. The convention in choosing this name is to take
your Internet domain name and reverse it. For example, I would choose ca.tutortutor as my
top-level package name because tutortutor.ca is my domain name. I would then specify
ca.tutortutor.graphics.shapes.Circle to access Circle.

Note Reversed Internet domain names are not always valid package names. One or more of its component
names might start with a digit (6.com), contain a hyphen (−) or other illegal character (aq-x.com), or be
one of Java’s reserved words (int.com). Convention dictates that you prefix the digit with an underscore
(com._6), replace the illegal character with an underscore (com.aq_x), and suffix the reserved word with an
underscore (com.int_).

169CHAPTER 5: Mastering Advanced Language Features Part 1

The Package Statement
The package statement identifies the package in which a source file’s types are located. This
statement consists of reserved word package, followed by a member access operator-separated list
of package and subpackage names, followed by a semicolon.

For example, package graphics; specifies that the source file’s types locate in a package named
graphics, and package graphics.shapes; specifies that the source file’s types locate in the graphics
package’s shapes subpackage.

By convention, a package name is expressed in lowercase. When the name consists of multiple
words, each word except for the first word is capitalized.

Only one package statement can appear in a source file. When it is present, nothing apart from
comments must precede this statement.

Caution Specifying multiple package statements in a source file or placing anything apart from comments
above a package statement causes the compiler to report an error.

Java implementations map package and subpackage names to same-named directories. For
example, an implementation would map graphics to a directory named graphics and would map
graphics.shapes to a shapes subdirectory of graphics. The Java compiler stores the classfiles that
implement the package’s types in the corresponding directory.

Note When a source file doesn’t contain a package statement, the source file’s types are said to belong to
the unnamed package. This package corresponds to the current directory.

The Import Statement
Imagine having to repeatedly specify ca.tutortutor.graphics.shapes.Circle or some other lengthy
package-qualified type name for each occurrence of that type in source code. Java provides an
alternative that lets you avoid having to specify package details. This alternative is the import
statement.

The import statement imports types from a package by telling the compiler where to look for
unqualified type names during compilation. This statement consists of reserved word import,
followed by a member access operator-separated list of package and subpackage names, followed
by a type name or * (asterisk), followed by a semicolon.

The * symbol is a wildcard that represents all unqualified type names. It tells the compiler to look
for such names in the import statement’s specified package, unless the type name is found in a
previously searched package. (Using the wildcard doesn’t have a performance penalty or lead to
code bloat but can lead to name conflicts, as you will see.)

170 CHAPTER 5: Mastering Advanced Language Features Part 1

For example, import ca.tutortutor.graphics.shapes.Circle; tells the compiler that an
unqualified Circle class exists in the ca.tutortutor.graphics.shapes package. Similarly, import
ca.tutortutor.graphics.shapes.*; tells the compiler to look in this package when it encounters a
Rectangle class, a Triangle class, or even an Employee class (if Employee hasn’t already been found).

Tip You should avoid using the * wildcard so that other developers can easily see which types are used in
source code.

Because Java is case sensitive, package and subpackage names specified in an import statement
must be expressed in the same case as that used in the package statement.

When import statements are present in source code, only a package statement and comments can
precede them.

Caution Placing anything other than a package statement, import statements, static import statements
(discussed shortly), and comments above an import statement causes the compiler to report an error.

You can run into name conflicts when using the wildcard version of the import statement because
any unqualified type name matches the wildcard. For example, you have graphics.shapes
and geometry packages that each contain a Circle class, the source code begins with import
geometry.*; and import graphics.shape.*; statements, and it also contains an unqualified
occurrence of Circle. Because the compiler doesn’t know if Circle refers to geometry’s Circle class
or graphics.shape’s Circle class, it reports an error. You can fix this problem by qualifying Circle
with the correct package name.

Note The compiler automatically imports the String class and other types from the java.lang package,
which is why it’s not necessary to qualify String with java.lang.

Searching for Packages and Types
Newcomers to Java who first start to work with packages often become frustrated by “no class
definition found” and other errors. This frustration can be partly avoided by understanding how the
virtual machine searches for packages and types.

In this section I explain how the search process works. To understand this process, you need
to realize that the compiler is a special Java application that runs under the control of the virtual
machine. Furthermore, there are two different forms of search.

171CHAPTER 5: Mastering Advanced Language Features Part 1

Compile-Time Search
When the compiler encounters a type expression (such as a method call) in source code, it must
locate that type’s declaration to verify that the expression is legal (a method exists in the type’s class
whose parameter types match the types of the arguments passed in the method call, for example).

The compiler first searches the Java platform packages (which contain class library types). It then
searches extension packages (for extension types). When the -sourcepath command-line option is
specified when starting the virtual machine (via javac), the compiler searches the indicated path’s
source files.

Note Java platform packages are stored in rt.jar and a few other important JAR files. Extension
packages are stored in a special extensions directory named ext.

Otherwise, the compiler searches the user classpath (in left-to-right order) for the first user classfile
or source file containing the type. If no user classpath is present, the current directory is searched. If
no package matches or the type still cannot be found, the compiler reports an error. Otherwise, the
compiler records the package information in the classfile.

Note The user classpath is specified via the -classpath option used to start the virtual machine or, when
not present, the CLASSPATH environment variable.

Runtime Search
When the compiler or any other Java application runs, the virtual machine will encounter types and
must load their associated classfiles via special code known as a classloader. The virtual machine
will use the previously stored package information that is associated with the encountered type in a
search for that type’s classfile.

The virtual machine searches the Java platform packages, followed by extension packages, followed
by the user classpath (in left-to-right order) for the first classfile that contains the type. If no user
classpath is present, the current directory is searched. If no package matches or the type cannot be
found, a “no class definition found” error is reported. Otherwise, the classfile is loaded into memory.

Note Whether you use the -classpath option or the CLASSPATH environment variable to specify a user
classpath, there is a specific format that must be followed. Under Windows, this format is expressed as
path1;path2;..., where path1, path2, and so on are the locations of package directories. Under Unix
and Linux, this format changes to path1:path2:....

172 CHAPTER 5: Mastering Advanced Language Features Part 1

Playing with Packages
Suppose your application needs to log messages to the console, to a file, or to another destination.
It can accomplish this task with the help of a logging library. My implementation of this library
consists of an interface named Logger, an abstract class named LoggerFactory, and a pair of
package-private classes named Console and File.

Note The logging library that I present is an example of the Abstract Factory design pattern, which is
presented on page 87 of Design Patterns: Elements of Reusable Object-Oriented Software by Erich Gamma,
Richard Helm, Ralph Johnson, and John Vlissides (Addison-Wesley, 1995; ISBN: 0201633612).

Listing 5-17 presents the Logger interface, which describes objects that log messages.

Listing 5-17. Describing Objects That Log Messages via the Logger Interface

package logging;

public interface Logger
{
 boolean connect();
 boolean disconnect();
 boolean log(String msg);
}

Each of the connect(), disconnect(), and log() methods returns true on success and false on
failure. (Later in this chapter you will discover a better technique for dealing with failure.) These
methods are not declared public explicitly because an interface’s methods are implicitly public.

Listing 5-18 presents the LoggerFactory abstract class.

Listing 5-18. Obtaining a Logger for Logging Messages to a Specific Destination

package logging;

public abstract class LoggerFactory
{
 public final static int CONSOLE = 0;
 public final static int FILE = 1;

 public static Logger newLogger(int dstType, String... dstName)
 {
 switch (dstType)
 {
 case CONSOLE: return new Console(dstName.length == 0 ? null
 : dstName[0]);

173CHAPTER 5: Mastering Advanced Language Features Part 1

 case FILE : return new File(dstName.length == 0 ? null
 : dstName[0]);
 default : return null;
 }
 }
}

newLogger() returns a Logger object for logging messages to an appropriate destination. It uses the
varargs (variable arguments) feature (see Chapter 3) to optionally accept an extra String argument
for those destination types that require the argument. For example, FILE requires a filename.

Listing 5-19 presents the package-private Console class—this class is not accessible beyond the
classes in the logging package because reserved word class is not preceded by reserved word
public.

Listing 5-19. Logging Messages to the Console

package logging;

class Console implements Logger
{
 private String dstName;

 Console(String dstName)
 {
 this.dstName = dstName;
 }

 @Override
 public boolean connect()
 {
 return true;
 }

 @Override
 public boolean disconnect()
 {
 return true;
 }

 @Override
 public boolean log(String msg)
 {
 System.out.println(msg);
 return true;
 }
}

Console’s package-private constructor saves its argument, which most likely will be null because
there is no need for a String argument. Perhaps a future version of Console will use this argument to
identify one of multiple console windows.

174 CHAPTER 5: Mastering Advanced Language Features Part 1

Listing 5-20 presents the package-private File class.

Listing 5-20. Logging Messages to a File (Eventually)

package logging;

class File implements Logger
{
 private String dstName;

 File(String dstName)
 {
 this.dstName = dstName;
 }

 @Override
 public boolean connect()
 {
 if (dstName == null)
 return false;
 System.out.println("opening file " + dstName);
 return true;
 }

 @Override
 public boolean disconnect()
 {
 if (dstName == null)
 return false;
 System.out.println("closing file " + dstName);
 return true;
 }

 @Override
 public boolean log(String msg)
 {
 if (dstName == null)
 return false;
 System.out.println("writing "+msg+" to file " + dstName);
 return true;
 }
}

Unlike Console, File requires a nonnull argument. Each method first verifies that this argument is not
null. If the argument is null, the method returns false to signify failure. (In Chapter 11, I refactor File
to incorporate appropriate file-writing code.)

The logging library allows us to introduce portable logging code into an application. Apart from a call
to newLogger(), this code will remain the same regardless of the logging destination. Listing 5-21
presents an application that tests this library.

175CHAPTER 5: Mastering Advanced Language Features Part 1

Listing 5-21. Testing the Logging Library

import logging.Logger;
import logging.LoggerFactory;

public class TestLogger
{
 public static void main(String[] args)
 {
 Logger logger = LoggerFactory.newLogger(LoggerFactory.CONSOLE);
 if (logger.connect())
 {
 logger.log("test message #1");
 logger.disconnect();
 }
 else
 System.out.println("cannot connect to console-based logger");
 logger = LoggerFactory.newLogger(LoggerFactory.FILE, "x.txt");
 if (logger.connect())
 {
 logger.log("test message #2");
 logger.disconnect();
 }
 else
 System.out.println("cannot connect to file-based logger");
 logger = LoggerFactory.newLogger(LoggerFactory.FILE);
 if (logger.connect())
 {
 logger.log("test message #3");
 logger.disconnect();
 }
 else
 System.out.println("cannot connect to file-based logger");
 }
}

Follow the steps (which assume that the JDK has been installed) to create the logging package and
TestLogger application, and to run this application:

1. Create a new directory and make this directory current.

2. Create a logging directory in the current directory.

3. Copy Listing 5-17 to a file named Logger.java in the logging directory.

4. Copy Listing 5-18 to a file named LoggerFactory.java in the logging
directory.

5. Copy Listing 5-19 to a file named Console.java in the logging directory.

176 CHAPTER 5: Mastering Advanced Language Features Part 1

6. Copy Listing 5-20 to a file named File.java in the logging directory.

7. Copy Listing 5-21 to a file named TestLogger.java in the current directory.

8. Execute javac TestLogger.java, which also compiles logger’s source files.

9. Execute java TestLogger.

After completing the previous step, you should observe the following output from the TestLogger
application:

test message #1
opening file x.txt
writing test message #2 to file x.txt
closing file x.txt
cannot connect to file-based logger

What happens when logging is moved to another location? For example, move logging to the root
directory and run TestLogger. You will now observe an error message about the virtual machine not
finding the logging package and its LoggerFactory classfile.

You can solve this problem by specifying -classpath when running the java tool or by adding the
location of the logging package to the CLASSPATH environment variable. For example, I chose to use
-classpath (which I find more convenient) in the following Windows-specific command line:

java -classpath \;. TestLogger

The backslash represents the root directory in Windows. (I could have specified a forward slash as
an alternative.) Also, the period represents the current directory. If it is missing, the virtual machine
complains about not finding the TestLogger classfile.

Tip If you discover an error message where the virtual machine reports that it cannot find an application
classfile, try appending a period character to the classpath. Doing so will probably fix the problem.

Packages and JAR Files
The JDK provides a jar tool that is used to archive classfiles in JAR (Java ARchive) files and is also
used to extract a JAR file’s classfiles. It probably comes as no surprise that you can store packages
in JAR files, which greatly simplify the distribution of your package-based class libraries.

To show you how easy it is to store a package in a JAR file, you will create a logger.jar file that
contains the logging package’s four classfiles (Logger.class, LoggerFactory.class, Console.class,
and File.class). Complete the following steps to accomplish this task:

1. Make sure that the current directory contains the previously created logging
directory with its four classfiles.

2. Execute jar cf logger.jar logging*.class. You could alternatively
execute jar cf logger.jar logging/*.class. (The c option stands for
“create new archive” and the f option stands for “specify archive filename”.)

177CHAPTER 5: Mastering Advanced Language Features Part 1

You should now find a logger.jar file in the current directory. To prove to yourself that this file
contains the four classfiles, execute jar tf logger.jar. (The t option stands for “list table of
contents”.)

You can run TestLogger.class by adding logger.jar to the classpath. For example, you can run
TestLogger under Windows via java -classpath logger.jar;. TestLogger.

Note If you need a logging capability, you can either create your own logging framework as previously
demonstrated or leverage the java.util.logging package that’s included in the standard class library.

Mastering Static Imports
An interface should only be used to declare a type. However, some developers violate this principle
by using interfaces to only export constants. Such interfaces are known as constant interfaces,
and Listing 5-22 presents an example.

Listing 5-22. Declaring a Constant Interface

interface Directions
{
 int NORTH = 0;
 int SOUTH = 1;
 int EAST = 2;
 int WEST = 3;
}

Developers who resort to constant interfaces do so to avoid having to prefix a constant’s name with
the name of its class (as in Math.PI, where PI is a constant in the java.lang.Math class). They do
this by implementing the interface—see Listing 5-23.

Listing 5-23. Implementing a Constant Interface

public class TrafficFlow implements Directions
{
 public static void main(String[] args)
 {
 showDirection((int) (Math.random()* 4));
 }

 static void showDirection(int dir)
 {
 switch (dir)
 {
 case NORTH: System.out.println("Moving north"); break;
 case SOUTH: System.out.println("Moving south"); break;

178 CHAPTER 5: Mastering Advanced Language Features Part 1

 case EAST : System.out.println("Moving east"); break;
 case WEST : System.out.println("Moving west");
 }
 }
}

Listing 5-23’s TrafficFlow class implements Directions for the sole purpose of not having to
specify Directions.NORTH, Directions.SOUTH, Directions.EAST, and Directions.WEST.

This is an appalling misuse of an interface. These constants are nothing more than an
implementation detail that should not be allowed to leak into the class’s exported interface because
they might confuse the class’s users (what is the purpose of these constants?). Also, they represent
a future commitment: even when the class no longer uses these constants, the interface must
remain to ensure binary compatibility.

Java 5 introduced an alternative that satisfies the desire for constant interfaces while avoiding their
problems. This static imports feature lets you import a class’s static members so that you don’t
have to qualify them with their class names. It’s implemented via a small modification to the import
statement as follows:

import static packagespec . classname . (staticmembername | *);

The static import statement specifies static after import. It then specifies a member access
operator-separated list of package and subpackage names, which is followed by the member
access operator and a class’s name. Once again, the member access operator is specified, followed
by a single static member name or the asterisk wildcard.

Caution Placing anything apart from a package statement, import/static import statements, and comments
above a static import statement causes the compiler to report an error.

You specify a single static member name to import only that name:

import static java.lang.Math.PI; // Import the PI static field only.
import static java.lang.Math.cos; // Import the cos() static method only.

In contrast, you specify the wildcard to import all static member names:

import static java.lang.Math.*; // Import all static members from Math.

You can now refer to the static member(s) without having to specify the class name:

System.out.println(cos(PI));

Using multiple static import statements can result in name conflicts, which causes the compiler
to report errors. For example, suppose your geom package contains a Circle class with a static
member named PI. Now suppose you specify import static java.lang.Math.*; and import static
geom.Circle.*; at the top of your source file. Finally, suppose you specify System.out.println(PI);
somewhere in that file’s code. The compiler reports an error because it doesn’t know whether PI
belongs to Math or to Circle.

179CHAPTER 5: Mastering Advanced Language Features Part 1

Mastering Exceptions
In an ideal world, nothing bad ever happens when an application runs. For example, a file always
exists when the application needs to open the file, the application is always able to connect to a
remote computer, and the virtual machine never runs out of memory when the application needs to
instantiate objects.

In contrast, real-world applications occasionally attempt to open files that don’t exist, attempt to
connect to remote computers that are unable to communicate with them, and require more memory
than the virtual machine can provide. Your goal is to write code that properly responds to these and
other exceptional situations (exceptions).

In this section I introduce you to exceptions. After defining this term, I look at representing
exceptions in source code. I then examine the topics of throwing and handling exceptions and
conclude by discussing how to perform cleanup tasks before a method returns, whether or not an
exception has been thrown.

What Are Exceptions?
An exception is a divergence from an application’s normal behavior. For example, the application
attempts to open a nonexistent file for reading. The normal behavior is to successfully open the file
and begin reading its contents. However, the file cannot be read when the file doesn’t exist.

This example illustrates an exception that cannot be prevented. However, a workaround is possible.
For example, the application can detect that the file doesn’t exist and take an alternate course of
action, which might include telling the user about the problem. Unpreventable exceptions where
workarounds are possible must not be ignored.

Exceptions can occur because of poorly written code. For example, an application might contain
code that accesses each element in an array. Because of careless oversight, the array-access code
might attempt to access a nonexistent array element, which leads to an exception. This kind of
exception is preventable by writing correct code.

Finally, an exception might occur that cannot be prevented and for which there is no workaround.
For example, the virtual machine might run out of memory, or perhaps it cannot find a classfile. This
kind of exception, known as an error, is so serious that it’s impossible (or at least inadvisable) to
work around; the application must terminate, presenting a message to the user that explains why
it’s terminating.

Representing Exceptions in Source Code
An exception can be represented via error codes or objects. After discussing each kind of
representation and explaining why objects are superior, I introduce you to Java’s exception and error
class hierarchy, emphasizing the difference between checked and runtime exceptions. I close my
discussion on representing exceptions in source code by discussing custom exception classes.

180 CHAPTER 5: Mastering Advanced Language Features Part 1

Error Codes vs. Objects
One way to represent exceptions in source code is to use error codes. For example, a method might
return true on success and false when an exception occurs. Alternatively, a method might return 0
on success and a nonzero integer value that identifies a specific kind of exception.

Developers traditionally designed methods to return error codes; I demonstrated this tradition in
each of the three methods in Listing 5-17’s Logger interface. Each method returns true on success or
returns false to represent an exception (unable to connect to the logger, for example).

Although a method’s return value must be examined to see if it represents an exception, error
codes are all too easy to ignore. For example, a lazy developer might ignore the return code from
Logger’s connect() method and attempt to call log(). Ignoring error codes is one reason why a new
approach to dealing with exceptions has been invented.

This new approach is based on objects. When an exception occurs, an object representing the
exception is created by the code that was running when the exception occurred. Details describing
the exception’s surrounding context are stored in the object. These details are later examined to
work around the exception.

The object is then thrown or handed off to the virtual machine to search for a handler, code
that can handle the exception. (If the exception is an error, the application should not provide a
handler because errors are so serious [e.g., the virtual machine has run out of memory] that there’s
practically nothing that can be done about them.) When a handler is located, its code is executed to
provide a workaround. Otherwise, the virtual machine terminates the application.

Caution Code that handles exceptions can be a source of bugs because it’s often not thoroughly tested.
Always make sure to test any code that handles exceptions.

Apart from being too easy to ignore, an error code’s Boolean or integer value is less meaningful than
an object name. For example, fileNotFound is self-evident, but what does false mean? Also, an
object can contain information about what led to the exception. These details can be helpful to a
suitable workaround.

The Throwable Class Hierarchy
Java provides a hierarchy of classes that represent different kinds of exceptions. These classes
are rooted in java.lang.Throwable, the ultimate superclass for all throwables (exception and error
objects—exceptions and errors, for short—that can be thrown). Table 5-1 identifies and describes
most of Throwable’s constructors and methods.

181CHAPTER 5: Mastering Advanced Language Features Part 1

It’s not uncommon for a class’s public methods to call helper methods that throw various
exceptions. A public method will probably not document exceptions thrown from a helper
method because they are implementation details that often should not be visible to the public
method’s caller.

However, because this exception might be helpful in diagnosing the problem, the public method can
wrap the lower-level exception in a higher-level exception that is documented in the public method’s
contract interface. The wrapped exception is known as a cause because its existence causes the
higher-level exception to be thrown.

A cause is created by invoking the Throwable(Throwable cause) or Throwable(String message,
Throwable cause) constructor, which invoke the initCause() method to store the cause. If you
don’t call either constructor, you can alternatively call initCause() directly, but you must do so
immediately after creating the throwable. Call the getCause() method to return the cause.

When an exception is thrown, it leaves behind a stack of unfinished method calls. Throwable’s
constructors call fillInStackTrace() to record this stack trace information, which is output by
calling printStackTrace().

Table 5-1. Throwable’s Constructors and Methods

Method Description

Throwable() Create a throwable with a null detail message and cause.

Throwable(String message) Create a throwable with the specified detail message and a
null cause.

Throwable(String message, Throwable
cause)

Create a throwable with the specified detail message and cause.

Throwable(Throwable cause) Create a throwable whose detail message is the string
representation of a nonnull cause or null.

Throwable fillInStackTrace() Fill in the execution stack trace. This method records information
about the current state of the stack frames for the current thread
within this throwable. (I discuss threads in Chapter 8.)

Throwable getCause() Return the cause of this throwable. When there is no cause, null
is returned.

String getMessage() Return this throwable’s detail message, which might be null.

StackTraceElement[] getStackTrace() Provide programmatic access to the stack trace information
printed by printStackTrace() as an array of stack trace
elements, each representing one stack frame.

Throwable initCause(Throwable cause) Initialize the cause of this throwable to the specified value.

void printStackTrace() Print this throwable and its backtrace of stack frames to the
standard error stream.

void setStackTrace(StackTraceElement[]
stackTrace)

Set the stack trace elements that will be returned by
getStackTrace() and printed by printStackTrace() and related
methods.

182 CHAPTER 5: Mastering Advanced Language Features Part 1

The getStackTrace() method provides programmatic access to the stack trace by returning this
information as an array of java.lang.StackTraceElement instances—each instance represents one
entry. StackTraceElement provides methods to return stack trace information. For example, String
getMethodName() returns the name of an unfinished method.

The setStackTrace() method is designed for use by Remote Procedure Call (RPC) frameworks (see
http://en.wikipedia.org/wiki/Remote_procedure_call) and other advanced systems, allowing the
client to override the default stack trace that is generated by fillInStackTrace() when a throwable
is constructed or deserialized when a throwable is read from a serialization stream. (I will discuss
serialization in Chapter 11.)

Moving down the throwable hierarchy, you encounter the java.lang.Exception and java.lang.Error
classes, which respectively represent exceptions and errors. Each class offers four constructors that
pass their arguments to their Throwable counterparts but provides no methods apart from those that
are inherited from Throwable.

Exception is itself subclassed by java.lang.CloneNotSupportedException (discussed in Chapter 4),
java.lang.IOException (discussed in Chapter 11), and other classes. Similarly, Error is itself
subclassed by java.lang.AssertionError (discussed in Chapter 6), java.lang.OutOfMemoryError,
and other classes.

Caution Never instantiate Throwable, Exception, or Error. The resulting objects are meaningless
because they are too generic.

Checked Exceptions vs. Runtime Exceptions
A checked exception is an exception that represents a problem with the possibility of recovery and
for which the developer must provide a workaround. The developer should check (examine) the code
to ensure that the exception is handled in the method where it is thrown or is explicitly identified as
being handled elsewhere.

Exception and all subclasses except for java.lang.RuntimeException (and its subclasses) describe
checked exceptions. For example, the CloneNotSupportedException and IOException classes
describe checked exceptions. (CloneNotSupportedException should not be checked because there
is no runtime workaround for this kind of exception.)

A runtime exception is an exception that represents a coding mistake. This kind of exception is also
known as an unchecked exception because it doesn’t need to be handled or explicitly identified—the
mistake must be fixed. Because these exceptions can occur in many places, it would be
burdensome to be forced to handle them.

RuntimeException and its subclasses describe unchecked exceptions. For example,
java.lang.ArithmeticException describes arithmetic problems such as integer division by zero.
Another example is java.lang.ArrayIndexOutOfBoundsException, which is thrown when you
attempt to access an array element with a negative index or an index that is greater than or
equal to the length of the array. (In hindsight, RuntimeException should have been named
UncheckedException because all exceptions occur at runtime.)

183CHAPTER 5: Mastering Advanced Language Features Part 1

Note Many developers are unhappy with checked exceptions because of the work involved in having to
handle them. This problem is made worse by libraries providing methods that throw checked exceptions
when they should throw unchecked exceptions. As a result, many modern languages support only unchecked
exceptions.

Custom Exception Classes
You can declare your own exception classes. Before doing so, ask yourself if an existing exception
class in the standard class library meets your needs. If you find a suitable class, you should reuse
it. (Why reinvent the wheel?) Other developers will already be familiar with the existing class, and
this knowledge will make your code easier to learn. When no existing class meets your needs, think
about whether to subclass Exception or RuntimeException. In other words, will your exception class
be checked or unchecked? As a rule of thumb, your class should subclass RuntimeException if you
think that it will describe a coding mistake.

Tip When you name your class, follow the convention of providing an Exception suffix. This suffix clarifies
that your class describes an exception.

Suppose you are creating a Media class whose static methods are to perform media-oriented utility
tasks. For example, one method converts sound files in non-MP3 media formats to MP3 format. This
method will be passed source file and destination file arguments and will convert the source file to
the format implied by the destination file’s extension.

Before performing the conversion, the method needs to verify that the source file’s format agrees
with the format implied by its file extension. If there is no agreement, an exception must be thrown.
Furthermore, this exception must store the expected and existing media formats so that a handler
can identify them when presenting a message to the user.

Because Java’s class library doesn’t provide a suitable exception class, you decide to introduce a
class named InvalidMediaFormatException. Detecting an invalid media format is not the result of a
coding mistake, and so you also decide to extend Exception to indicate that the exception
is checked. Listing 5-24 presents this class’s declaration.

Listing 5-24. Declaring a Custom Exception Class

package media;

public class InvalidMediaFormatException extends Exception
{
 private String expectedFormat;
 private String existingFormat;

184 CHAPTER 5: Mastering Advanced Language Features Part 1

 public InvalidMediaFormatException(String expectedFormat,
 String existingFormat)
 {
 super("Expected format: " + expectedFormat + ", Existing format: " +
 existingFormat);
 this.expectedFormat = expectedFormat;
 this.existingFormat = existingFormat;
 }

 public String getExpectedFormat()
 {
 return expectedFormat;
 }

 public String getExistingFormat()
 {
 return existingFormat;
 }
}

InvalidMediaFormatException provides a constructor that calls Exception’s public
Exception(String message) constructor with a detail message that includes the expected and
existing formats. It is wise to capture such details in the detail message because the problem that
led to the exception might be hard to reproduce.

InvalidMediaFormatException also provides getExpectedFormat() and getExistingFormat()
methods that return these formats. Perhaps a handler will present this information in a message
to the user. Unlike the detail message, this message might be localized, expressed in the user’s
language (French, German, English, etc.).

Throwing Exceptions
Now that you have created an InvalidMediaFormatException class, you can declare the Media class
and begin to code its convert() method. The initial version of this method validates its arguments
and then verifies that the source file’s media format agrees with the format implied by its file
extension. Check out Listing 5-25.

Listing 5-25. Throwing Exceptions from the convert() Method

package media;

import java.io.IOException;

public final class Media
{
 public static void convert(String srcName, String dstName)
 throws InvalidMediaFormatException, IOException

185CHAPTER 5: Mastering Advanced Language Features Part 1

 {
 if (srcName == null)
 throw new NullPointerException(srcName + " is null");
 if (dstName == null)
 throw new NullPointerException(dstName + " is null");
 // Code to access source file and verify that its format matches the
 // format implied by its file extension.
 //
 // Assume that the source file's extension is RM (for Real Media) and
 // that the file's internal signature suggests that its format is
 // Microsoft WAVE.
 String expectedFormat = "RM";
 String existingFormat = "WAVE";
 throw new InvalidMediaFormatException(expectedFormat, existingFormat);
 }
}

Listing 5-25 declares the Media class to be final because this utility class will only consist of class
methods and there’s no reason to extend it.

Media’s convert() method appends throws InvalidMediaFormatException, IOException to
its header. A throws clause identifies all checked exceptions that are thrown out of the method
and must be handled by some other method. It consists of reserved word throws followed by a
comma-separated list of checked exception class names and is always appended to a method
header. The convert() method’s throws clause indicates that this method is capable of throwing an
InvalidMediaException or IOException instance to the virtual machine.

convert() also demonstrates the throw statement, which consists of reserved word throw followed
by an instance of Throwable or a subclass. (You will typically instantiate an Exception subclass.) This
statement throws the instance to the virtual machine, which then searches for a suitable handler to
handle the exception.

The first use of the throw statement is to throw a java.lang.NullPointerException instance when
a null reference is passed as the source or destination filename. This unchecked exception is
commonly thrown to indicate that a contract has been violated via a passed null reference. For
example, you cannot pass null filenames to convert().

The second use of the throw statement is to throw a media.InvalidMediaFormatException instance
when the expected media format doesn’t match the existing format. In the contrived example, the
exception is thrown because the expected format is RM and the existing format is WAVE.

Unlike InvalidMediaFormatException, NullPointerException is not listed in convert()’s throws
clause because NullPointerException instances are unchecked. They can occur so frequently
that it is too big a burden to force the developer to properly handle these exceptions. Instead, the
developer should write code that minimizes their occurrences.

Although not thrown from convert(), IOException is listed in this method’s throws clause in
preparation for refactoring this method to perform the conversion with the help of file-handling code.

186 CHAPTER 5: Mastering Advanced Language Features Part 1

NullPointerException is one kind of exception that is thrown when an argument proves to
be invalid. The java.lang.IllegalArgumentException class generalizes the illegal argument
scenario to include other kinds of illegal arguments. For example, the following method throws an
IllegalArgumentException instance when a numeric argument is negative:

public static double sqrt(double x)
{
 if (x < 0)
 throw new IllegalArgumentException(x + " is negative");
 // Calculate the square root of x.
}

There are a few additional items to keep in mind when working with throws clauses and throw
statements:

You can append a throws clause to a constructor and throw an exception from
the constructor when something goes wrong while the constructor is executing.
The resulting object will not be created.

When an exception is thrown out of an application’s main() method, the virtual
machine terminates the application and calls the exception’s printStackTrace()
method to print, to the console, the sequence of nested method calls that was
awaiting completion when the exception was thrown.

If a superclass method declares a throws clause, the overriding subclass
method doesn’t have to declare a throws clause. However, if the subclass
method does declare a throws clause, the clause must not include the names of
checked exception classes that are not also included in the superclass method’s
throws clause, unless they are the names of exception subclasses. For example,
given superclass method void foo() throws IOException {}, the overriding
subclass method could be declared as void foo() {}, void foo() throws
IOException {}, or void foo() throws FileNotFoundException {}—the
java.io.FileNotFoundException class subclasses IOException.

A checked exception class name doesn’t need to appear in a throws clause
when the name of its superclass appears.

The compiler reports an error when a method throws a checked exception and
doesn’t also handle the exception or list the exception in its throws clause.

Don’t include the names of unchecked exception classes in a throws clause.
These names are not required because such exceptions should never occur.
Furthermore, they only clutter source code and possibly confuse someone who
is trying to understand that code.

You can declare a checked exception class name in a method’s throws clause
without throwing an instance of this class from the method. (Perhaps the
method has yet to be fully coded.) However, Java requires that you provide code
to handle this exception, even though it is not thrown.

187CHAPTER 5: Mastering Advanced Language Features Part 1

Handling Exceptions
A method indicates its intention to handle one or more exceptions by specifying a try statement that
includes one or more appropriate catch blocks. The try statement consists of reserved word try
followed by a brace-delimited body. You place code that throws exceptions into this block.

A catch block consists of reserved word catch, followed by a round bracket-delimited single-parameter
list that specifies an exception class name, followed by a brace-delimited body. You place code that
handles exceptions whose types match the type of the catch block’s parameter list’s exception class
parameter in this block.

A catch block is specified immediately after a try block. When an exception is thrown, the virtual
machine will search for a handler. It first examines the catch block to see whether its parameter type
matches or is the superclass type of the exception that has been thrown.

If the catch block is found, its body executes and the exception is handled. Otherwise, the virtual
machine proceeds up the method-call stack, looking for the first method whose try statement
contains an appropriate catch block. This process continues unless a catch block is found or
execution leaves the main() method.

The following example illustrates try and catch:

try
{
 int x = 1 / 0;
}
catch (ArithmeticException ae)
{
 System.out.println("attempt to divide by zero");
}

When execution enters the try block, an attempt is made to divide integer 1 by integer 0. The virtual
machine responds by instantiating ArithmeticException and throwing this exception. It then detects
the catch block, which is capable of handling thrown ArithmeticException objects, and transfers
execution to this block, which invokes System.out.println() to output a suitable message—the
exception is handled.

Because ArithmeticException is an example of an unchecked exception type, and because
unchecked exceptions represent coding mistakes that must be fixed, you typically don’t catch them,
as demonstrated previously. Instead, you would fix the problem that led to the thrown exception.

Tip You might want to name your catch block parameters using the abbreviated style shown in the
preceding section. Not only does this convention result in more meaningful exception-oriented parameter
names (ae indicates that an ArithmeticException has been thrown), it can help reduce compiler errors.
For example, it is common practice to name a catch block’s parameter e, for convenience. (Why type a long
name?) However, the compiler will report an error when a previously declared local variable or parameter also
uses e as its name—multiple same-named local variables and parameters cannot exist in the same scope.

188 CHAPTER 5: Mastering Advanced Language Features Part 1

Handling Multiple Exception Types
You can specify multiple catch blocks after a try block. For example, Listing 5-25’s convert()
method specifies a throws clause indicating that convert() can throw InvalidMediaFormatException,
which is currently thrown, and IOException, which will be thrown when convert() is refactored. This
refactoring will result in convert() throwing IOException when it cannot read from the source file or
write to the destination file and throwing FileNotFoundException (a subclass of IOException) when
it cannot open the source file or create the destination file. All these exceptions must be handled, as
demonstrated in Listing 5-26.

Listing 5-26. Handling Different Kinds of Exceptions

import java.io.FileNotFoundException;
import java.io.IOException;

import media.InvalidMediaFormatException;
import media.Media;

public class Converter
{
 public static void main(String[] args)
 {
 if (args.length != 2)
 {
 System.err.println("usage: java Converter srcfile dstfile");
 return;
 }
 try
 {
 Media.convert(args[0], args[1]);
 }
 catch (InvalidMediaFormatException imfe)
 {
 System.out.println("Unable to convert " + args[0] + " to " + args[1]);
 System.out.println("Expecting " + args[0] + " to conform to " +
 imfe.getExpectedFormat() + " format.");
 System.out.println("However, " + args[0] + " conformed to " +
 imfe.getExistingFormat() + " format.");
 }
 catch (FileNotFoundException fnfe)
 {
 }
 catch (IOException ioe)
 {
 }
 }
}

The call to Media’s convert() method in Listing 5-26 is placed in a try block because this method
is capable of throwing an instance of the checked InvalidMediaFormatException, IOException, or
FileNotFoundException class—checked exceptions must be handled or be declared to be thrown
via a throws clause that is appended to the method.

189CHAPTER 5: Mastering Advanced Language Features Part 1

The catch (InvalidMediaFormatException imfe) block’s statements are designed to provide a
descriptive error message to the user. A more sophisticated application would localize these names
so that the user could read the message in the user’s language. The developer-oriented detail
message is not output because it is not necessary in this trivial application.

Note A developer-oriented detail message is typically not localized. Instead, it is expressed in the
developer’s language. Users should never see detail messages.

Although not thrown, a catch block for IOException is required because this checked exception
type appears in convert()’s throws clause. Because the catch (IOException ioe) block can also
handle thrown FileNotFoundException instances (because FileNotFoundException subclasses
IOException), the catch (FileNotFoundException fnfe) block isn’t necessary at this point but is
present to separate out the handling of a situation where a file cannot be opened for reading or
created for writing (which will be addressed once convert() is refactored to include file code).

Assuming that the current directory contains Listing 5-26 and a media subdirectory containing
InvalidMediaFormatException.java and Media.java, compile this listing (javac Converter.java),
which also compiles media’s source files, and run the application, as in java Converter A B.
Converter responds by presenting the following output:

Unable to convert A to B
Expecting A to conform to RM format.
However, A conformed to WAVE format.

Listing 5-26’s empty FileNotFoundException and IOException catch blocks illustrate the often-seen
problem of leaving catch blocks empty because they are inconvenient to code. Unless you have a
good reason, don’t create an empty catch block. It swallows exceptions and you don’t know that the
exceptions were thrown. (For brevity, I don’t always code catch blocks in this book’s examples.)

Caution The compiler reports an error when you specify two or more catch blocks with the same
parameter type after a try body. Example: try {} catch (IOException ioe1) {} catch
(IOException ioe2) {}. You must merge these catch blocks into one block.

Although you can write catch blocks in any order, the compiler restricts this order when one
catch block’s parameter is a supertype of another catch block’s parameter. The subtype
parameter catch block must precede the supertype parameter catch block; otherwise, the
subtype parameter catch block will never be executed.

For example, the FileNotFoundException catch block must precede the IOException catch block.
If the compiler allowed the IOException catch block to be specified first, the FileNotFoundException
catch block would never execute because a FileNotFoundException instance is also an instance of
its IOException superclass.

190 CHAPTER 5: Mastering Advanced Language Features Part 1

Rethrowing Exceptions
While discussing the Throwable class, I discussed wrapping lower-level exceptions in higher-level
exceptions. This activity will typically take place in a catch block and is illustrated in the following
example:

catch (IOException ioe)
{
 throw new ReportCreationException(ioe);
}

This example assumes that a helper method has just thrown a generic IOException instance as the
result of trying to create a report. The public method’s contract states that ReportCreationException
is thrown in this case. To satisfy the contract, the latter exception is thrown. To satisfy the developer
who is responsible for debugging a faulty application, the IOException instance is wrapped inside
the ReportCreationException instance that is thrown to the public method’s caller.

Sometimes, a catch block might not be able to fully handle an exception. Perhaps it needs access
to information provided by some ancestor method in the method-call stack. However, the catch
block might be able to partly handle the exception. In this case, it should partly handle the exception
and then rethrow the exception so that a handler in an ancestor method can finish handling it.
Another possibility is to log the exception (for later analysis), which is demonstrated in the following
example:

catch (FileNotFoundException fnfe)
{
 logger.log(fnfe);
 throw fnfe; // Rethrow the exception here.
}

Performing Cleanup
In some situations, you might want to execute cleanup code before execution leaves a method
following a thrown exception. For example, you might want to close a file that was opened, but
could not be written, possibly because of insufficient disk space. Java provides the finally block for
this situation.

The finally block consists of reserved word finally followed by a body, which provides the cleanup
code. A finally block follows either a catch block or a try block. In the former case, the exception
may be handled (and possibly rethrown) before finally executes. In the latter case, the exception is
handled (and possibly rethrown) after finally executes.

Listing 5-27 demonstrates the first scenario in the context of a simulated file-copying application’s
main() method.

191CHAPTER 5: Mastering Advanced Language Features Part 1

Listing 5-27. Cleaning Up by Closing Files After Handling a Thrown Exception

import java.io.IOException;

public class Copy
{
 public static void main(String[] args)
 {
 if (args.length != 2)
 {
 System.err.println("usage: java Copy srcFile dstFile");
 return;
 }

 int fileHandleSrc = 0;
 int fileHandleDst = 1;
 try
 {
 fileHandleSrc = open(args[0]);
 fileHandleDst = create(args[1]);
 copy(fileHandleSrc, fileHandleDst);
 }
 catch (IOException ioe)
 {
 System.err.println("I/O error: " + ioe.getMessage());
 return;
 }
 finally
 {
 close(fileHandleSrc);
 close(fileHandleDst);
 }
 }

 static int open(String filename)
 {
 return 1; // Assume that filename is mapped to integer.
 }

 static int create(String filename)
 {
 return 2; // Assume that filename is mapped to integer.
 }

 static void close(int fileHandle)
 {
 System.out.println("closing file: " + fileHandle);
 }

 static void copy(int fileHandleSrc, int fileHandleDst) throws IOException
 {
 System.out.println("copying file " + fileHandleSrc + " to file " +
 fileHandleDst);

192 CHAPTER 5: Mastering Advanced Language Features Part 1

 if (Math.random() < 0.5)
 throw new IOException("unable to copy file");
 }
}

Listing 5-27 presents a Copy application class that simulates the copying of bytes from a source
file to a destination file. The try block invokes the open() method to open the source file and the
create() method to create the destination file. Each method returns an integer-based file handle that
uniquely identifies the file.

Next, this block calls the copy() method to perform the copy. After outputting a suitable message,
copy() invokes the Math class’s random() method (officially discussed in Chapter 7) to return a
random number between 0 and 1. When this method returns a value less than 0.5, which simulates
a problem (perhaps the disk is full), the IOException class is instantiated and this instance is thrown.

The virtual machine locates the catch block that follows the try block and causes its handler to execute,
which outputs a message. Then, the code in the finally block that follows the catch block is allowed to
execute. Its purpose is to close both files by invoking the close() method on the passed file handle.

Compile this source code (javac Copy.java) and run the application with two arbitrary arguments
(java Copy x.txt x.bak). You should observe the following output when there is no problem:

copying file 1 to file 2
closing file: 1
closing file: 2

When something goes wrong, you should observe the following output:

copying file 1 to file 2
I/O error: unable to copy file
closing file: 1
closing file: 2

Whether or not an I/O error occurs, notice that the finally block is the final code to execute. The
finally block executes even though the catch block ends with a return statement.

This example illustrates finally block execution after a thrown exception is handled. However, you
might want to perform cleanup before the exception is handled. Listing 5-28 presents a variation of
the Copy application that demonstrates this alternative.

Listing 5-28. Cleaning Up by Closing Files Before Handling a Thrown Exception

import java.io.IOException;

public class Copy
{
 public static void main(String[] args) throws IOException
 {
 if (args.length != 2)
 {
 System.err.println("usage: java Copy srcFile dstFile");
 return;
 }

193CHAPTER 5: Mastering Advanced Language Features Part 1

 int fileHandleSrc = 0;
 int fileHandleDst = 1;
 try
 {
 fileHandleSrc = open(args[0]);
 fileHandleDst = create(args[1]);
 copy(fileHandleSrc, fileHandleDst);
 }
 finally
 {
 close(fileHandleSrc);
 close(fileHandleDst);
 }
 }

 static int open(String filename)
 {
 return 1; // Assume that filename is mapped to integer.
 }

 static int create(String filename)
 {
 return 2; // Assume that filename is mapped to integer.
 }

 static void close(int fileHandle)
 {
 System.out.println("closing file: " + fileHandle);
 }

 static void copy(int fileHandleSrc, int fileHandleDst) throws IOException
 {
 System.out.println("copying file " + fileHandleSrc + " to file " +
 fileHandleDst);
 if (Math.random() < 0.5)
 throw new IOException("unable to copy file");
 }
}

Listing 5-28 is nearly identical to Listing 5-27. The only difference is the throws clause appended
to the main() method header and the removal of the catch block. When IOException is thrown,
the finally block executes before execution leaves the main() method. This time, Java’s default
exception handler executes printStackTrace() and you observe output similar to the following:

copying file 1 to file 2
closing file: 1
closing file: 2
Exception in thread "main" java.io.IOException: unable to copy file
 at Copy.copy(Copy.java:48)
 at Copy.main(Copy.java:19)

194 CHAPTER 5: Mastering Advanced Language Features Part 1

EXERCISES

The following exercises are designed to test your understanding of Chapter 5’s content:

1. What is a nested class?

2. Identify the four kinds of nested classes.

3. Which nested classes are also known as inner classes?

4. True or false: A static member class has an enclosing instance.

5. How do you instantiate a nonstatic member class from beyond its enclosing class?

6. When is it necessary to declare local variables and parameters final?

7. True or false: An interface can be declared within a class or within another interface.

8. Define package.

9. How do you ensure that package names are unique?

10. What is a package statement?

11. True or false: You can specify multiple package statements in a source file.

12. What is an import statement?

13. How do you indicate that you want to import multiple types via a single import statement?

14. During a runtime search, what happens when the virtual machine cannot find a classfile?

15. How do you specify the user classpath to the virtual machine?

16. Define constant interface.

17. Why are constant interfaces used?

18. Why are constant interfaces bad?

19. What is a static import statement?

20. How do you specify a static import statement?

21. What is an exception?

22. In what ways are objects superior to error codes for representing exceptions?

23. What is a throwable?

24. What does the getCause() method return?

25. What is the difference between Exception and Error?

26. What is a checked exception?

27. What is a runtime exception?

28. Under what circumstance would you introduce your own exception class?

195CHAPTER 5: Mastering Advanced Language Features Part 1

29. True or false: You use a throw statement to identify exceptions that are thrown from a method by
appending this statement to a method’s header.

30. What is the purpose of a try statement, and what is the purpose of a catch block?

31. What is the purpose of a finally block?

32. A 2D graphics package supports two-dimensional drawing and transformations (rotation, scaling,
translation, etc.). These transformations require a 3-by-3 matrix (a table). Declare a G2D class that
encloses a private Matrix nonstatic member class. Instantiate Matrix within G2D’s no argument
constructor, and initialize the Matrix instance to the identity matrix (a matrix where all entries are 0
except for those on the upper-left to lower-right diagonal, which are 1).

33. Extend the logging package to support a null device in which messages are thrown away.

34. Modify the logging package so that Logger’s connect() method throws CannotConnectException
when it cannot connect to its logging destination, and the other two methods each throw
NotConnectedException when connect() was not called or when it threw
CannotConnectException.

35. Modify TestLogger to respond appropriately to thrown CannotConnectException and
NotConnectedException objects.

Summary
Classes that are declared outside of any class are known as top-level classes. Java also supports
nested classes, which are classes that are declared as members of other classes or scopes.

There are four kinds of nested classes: static member classes, nonstatic member classes,
anonymous classes, and local classes. The latter three categories are known as inner classes.

Java supports the partitioning of top-level types into multiple namespaces, to better organize these
types and to also prevent name conflicts. Java uses packages to accomplish these tasks.

The package statement identifies the package in which a source file’s types are located. The import
statement imports types from a package by telling the compiler where to look for unqualified type
names during compilation.

An exception is a divergence from an application’s normal behavior. Although it can be represented
by an error code or object, Java uses objects because error codes are meaningless and cannot
contain information about what led to the exception.

Java provides a hierarchy of classes that represent different kinds of exceptions. These classes are
rooted in Throwable. Moving down the throwable hierarchy, you encounter the Exception and Error
classes, which represent nonerror exceptions and errors.

Exception and its subclasses, except for RuntimeException (and its subclasses), describe checked
exceptions. They are checked because you must check the code to ensure that an exception is
handled where thrown or identified as being handled elsewhere.

RuntimeException and its subclasses describe unchecked exceptions. You don’t have to handle
these exceptions because they represent coding mistakes (fix the mistakes). Although the names of
their classes can appear in throws clauses, doing so adds clutter.

196 CHAPTER 5: Mastering Advanced Language Features Part 1

The throw statement throws an exception to the virtual machine, which searches for an appropriate
handler. When the exception is checked, its name must appear in the method’s throws clause,
unless the name of the exception’s superclass is listed in this clause.

A method handles one or more exceptions by specifying a try statement and appropriate catch
blocks. A finally block can be included to execute cleanup code whether an exception is thrown or
not and before a thrown exception leaves the method.

Chapter 6 continues to explore the Java language by focusing on assertions, annotations, generics,
and enums.

197

Chapter 6
Mastering Advanced Language
Features Part 2

In Chapters 2 through 4 I laid a foundation for learning the Java language and in Chapter 5 built
onto this foundation by introducing some of Java’s more advanced language features. In Chapter 6
I continue to cover advanced language features by focusing on those features related to assertions,
annotations, generics, and enums.

Mastering Assertions
Writing source code is not an easy task. All too often, bugs are introduced into the code. When a
bug is not discovered before compiling the source code, it makes it into runtime code, which will
probably fail unexpectedly (or show no sign of failure but give wrong output). At this point, the cause
of failure can be very difficult to determine.

Developers often make assumptions about application correctness, and some developers think that
specifying comments that state their beliefs about what they think is true at the comment locations is
sufficient for determining correctness. However, comments are useless for preventing bugs because
the compiler ignores them.

Many languages address this problem by providing a language feature called assertions that lets
the developer codify assumptions about application correctness. When the application runs, and if
an assertion fails, the application terminates with a message that helps the developer diagnose the
failure’s cause. (You might think of assertions as comments that the compiler understands.)

198 CHAPTER 6: Mastering Advanced Language Features Part 2

In this section I introduce you to Java’s assertions language feature. After defining this term, showing
you how to declare assertions, and providing examples, I look at using and avoiding assertions.
Finally, you learn how to selectively enable and disable assertions via the javac compiler tool’s
command-line arguments.

Declaring Assertions
An assertion is a statement that lets you express an assumption of program correctness via a
Boolean expression. If this expression evaluates to true, execution continues with the next
statement. Otherwise, an error that identifies the cause of failure is thrown.

There are two forms of the assertion statement, with each form beginning with reserved word
assert:

assert expression1 ;
assert expression1 : expression2 ;

In both forms of this statement, expression1 is the Boolean expression. In the second form,
expression2 is any expression that returns a value. It cannot be a call to a method whose return
type is void.

When expression1 evaluates to false, this statement instantiates class java.lang.AssertionError.
The first statement form calls this class’s noargument constructor, which doesn’t associate a
message identifying failure details with the AssertionError instance. The second form calls an
AssertionError constructor whose type matches the type of expression2’s value. This value is
passed to the constructor and its string representation is used as the error’s detail message.

When the error is thrown, the name of the source file and the number of the line from where the error
was thrown are output to the console as part of the thrown error’s stack trace. In many situations,
this information is sufficient for identifying what led to the failure, and the first form of the assertion
statement should be used.

Listing 6-1 demonstrates the first form of the assertion statement.

Note In his “Assert Statements Shine Light Into Dark Corners” blog post
(www.drdobbs.com/cpp/assert-statements-shine-light-into-dark/240012746), computer
scientist Andrew Koenig mentions that assertions are used to detect invariant failures, where an invariant is
something in your code that should not change. For example, you might want to verify the expectation that a list
of data items is sorted (an invariant) before attempting to search that list via the Binary Search algorithm, which
requires that the list be sorted. You would use an assertion to learn whether the invariant holds or not.

199CHAPTER 6: Mastering Advanced Language Features Part 2

Listing 6-1. Throwing an Assertion Error Without a Detail Message

public class AssertionDemo
{
 public static void main(String[] args)
 {
 int x = 1;
 assert x == 0;
 }
}

When assertions are enabled (I discuss this task later), running the previous application results in the
following output:

Exception in thread "main" java.lang.AssertionError
 at AssertionDemo.main(AssertionDemo.java:6)

In other situations, more information is needed to help diagnose the cause of failure. For example,
suppose expression1 compares variables x and y and throws an error when x’s value exceeds y’s
value. Because this should never happen, you would probably use the second statement form to
output these values so you could diagnose the problem.

Listing 6-2 demonstrates the second form of the assertion statement.

Listing 6-2. Throwing an Assertion Error with a Detail Message

public class AssertionDemo
{
 public static void main(String[] args)
 {
 int x = 1;
 assert x == 0: x;
 }
}

Once again, it is assumed that assertions are enabled. Running the previous application results in
the following output:

Exception in thread "main" java.lang.AssertionError: 1
 at AssertionDemo.main(AssertionDemo.java:6)

The value in x is appended to the end of the first output line, which is somewhat cryptic. To make
this output more meaningful, you might want to specify an expression that also includes the
variable’s name: assert x == 0: "x = " + x;, for example.

Using Assertions
There are many situations where assertions should be used. These situations organize into internal
invariant, control-flow invariant, and design-by-contract categories. An invariant is something in your
code that should not change.

200 CHAPTER 6: Mastering Advanced Language Features Part 2

Internal Invariants
An internal invariant is expression-oriented behavior that is not expected to change. For example,
Listing 6-3 introduces an internal invariant by way of chained if-else statements that output the state
of water based on its temperature.

Listing 6-3. Discovering That an Internal Invariant Can Vary

public class IIDemo
{
 public static void main(String[] args)
 {
 double temperature = 50.0; // Celsius
 if (temperature < 0.0)
 System.out.println("water has solidified");
 else
 if (temperature >= 100.0)
 System.out.println("water is boiling into a gas");
 else
 {
 // temperature > 0.0 and temperature < 100.0
 assert(temperature > 0.0 && temperature < 100.0): temperature;
 System.out.println("water is remaining in its liquid state");
 }
 }
}

A developer might specify only a comment stating an assumption as to what expression causes the
final else to be reached. Because the comment might not be enough to detect the lurking < 0.0
expression bug (water is also solid at zero degrees), an assertion statement is necessary.

Another example of an internal invariant concerns a switch statement with no default case. The
default case is avoided because the developer believes that all paths have been covered. However,
this is not always true, as Listing 6-4 demonstrates.

Listing 6-4. Another Buggy Internal Invariant

public class IIDemo
{
 final static int NORTH = 0;
 final static int SOUTH = 1;
 final static int EAST = 2;
 final static int WEST = 3;

 public static void main(String[] args)
 {
 int direction = (int) (Math.random() * 5);
 switch (direction)
 {
 case NORTH: System.out.println("travelling north"); break;
 case SOUTH: System.out.println("travelling south"); break;
 case EAST : System.out.println("travelling east"); break;

201CHAPTER 6: Mastering Advanced Language Features Part 2

 case WEST : System.out.println("travelling west"); break;
 default : assert false;
 }
 }
}

Listing 6-4 assumes that the expression tested by switch will only evaluate to one of four integer
constants. However, (int) (Math.random() * 5) can also return 4, causing the default case to
execute assert false;, which always throws AssertionError. (You might have to run this application
a few times to see the assertion error, but first you need to learn how to enable assertions, which I
discuss later in this chapter.)

Tip When assertions are disabled, assert false; doesn’t execute and the bug goes undetected. To
always detect this bug, replace assert false; with throw new AssertionError(direction);.

Control-Flow Invariants
A control-flow invariant is a flow of control that is not expected to change. For example, Listing 6-4
uses an assertion to test an assumption that switch’s default case will not execute. Listing 6-5, which
fixes Listing 6-4’s bug, provides another example.

Listing 6-5. A Buggy Control-Flow Invariant

public class CFDemo
{
 final static int NORTH = 0;
 final static int SOUTH = 1;
 final static int EAST = 2;
 final static int WEST = 3;

 public static void main(String[] args)
 {
 int direction = (int) (Math.random() * 4);
 switch (direction)
 {
 case NORTH: System.out.println("travelling north"); break;
 case SOUTH: System.out.println("travelling south"); break;
 case EAST : System.out.println("travelling east"); break;
 case WEST : System.out.println("travelling west");
 default : assert false;
 }
 }
}

Because the original bug has been fixed, the default case should never be reached. However, the omission
of a break statement that terminates case WEST causes execution to reach the default case. This control-flow
invariant has been broken. (Again, you might have to run this application a few times to see the assertion
error, but first you need to learn how to enable assertions, which I discuss later in this chapter.)

202 CHAPTER 6: Mastering Advanced Language Features Part 2

Caution Be careful when using an assertion statement to detect code that should never be executed. If the
assertion statement cannot be reached according to the rules set forth in The Java Language Specification,
Third Edition, by James Gosling, Bill Joy, Guy Steele, and Gilad Bracha (Addison-Wesley, 2005; ISBN:
0321246780; also available at http://docs.oracle.com/javase/specs/), the compiler will report an
error. For example, for (;;); assert false; causes the compiler to report an error because the infinite
for loop prevents the assertion statement from executing.

Design-by-Contract
Design-by-Contract (http://en.wikipedia.org/wiki/Design_by_contract) is a way to design
software based on preconditions, postconditions, and class invariants. Assertion statements support
an informal design-by-contract style of development.

Preconditions
A precondition is something that must be true when a method is called. Assertion statements are
often used to satisfy a helper method’s preconditions by checking that its arguments are legal.
Listing 6-6 provides an example.

Listing 6-6. Verifying a Precondition

public class Lotto649
{
 public static void main(String[] args)
 {
 // Lotto 649 requires that six unique numbers be chosen.
 int[] selectedNumbers = new int[6];
 // Assign a unique random number from 1 to 49 (inclusive) to each slot
 // in the selectedNumbers array.
 for (int slot = 0; slot < selectedNumbers.length; slot++)
 {
 int num;
 // Obtain a random number from 1 to 49. That number becomes the
 // selected number if it has not previously been chosen.
 try_again:
 do
 {
 num = rnd(49) + 1;
 for (int i = 0; i < slot; i++)
 if (selectedNumbers[i] == num)
 continue try_again;
 break;
 }
 while (true);
 // Assign selected number to appropriate slot.
 selectedNumbers[slot] = num;
 }

203CHAPTER 6: Mastering Advanced Language Features Part 2

 // Sort all selected numbers into ascending order and then print these
 // numbers.
 sort(selectedNumbers);
 for (int i = 0; i < selectedNumbers.length; i++)
 System.out.print(selectedNumbers[i] + " ");
 }

 static int rnd(int limit)
 {
 // This method returns a random number (actually, a pseudorandom number)
 // ranging from 0 through limit - 1 (inclusive).
 assert limit > 1: "limit = " + limit;
 return (int) (Math.random() * limit);
 }

 static void sort(int[] x)
 {
 // This method sorts the integers in the passed array into ascending
 // order.
 for (int pass = 0; pass < x.length - 1; pass++)
 for (int i = x.length - 1; i > pass; i--)
 if (x[i] < x[pass])
 {
 int temp = x[i];
 x[i] = x[pass];
 x[pass] = temp;
 }
 }
}

Listing 6-6’s application simulates Lotto 6/49, one of Canada’s national lottery games. The rnd()
helper method returns a randomly chosen integer between 0 and limit - 1. An assertion statement
verifies the precondition that limit’s value must be 2 or higher.

Note The sort() helper method sorts (orders) the selectedNumbers array’s integers into ascending
order by implementing an algorithm (a recipe for accomplishing some task) called Bubble Sort.

Bubble Sort works by making multiple passes over the array. During each pass, various comparisons and
swaps ensure that the next smallest element value “bubbles” toward the top of the array, which would be the
element at index 0.

Bubble Sort is not efficient but is more than adequate for sorting a six-element array. Although I
could have used one of the efficient sort() methods located in the java.util package’s Arrays
class (e.g., Arrays.sort(selectedNumbers); accomplishes the same objective as Listing 6-6’s
sort(selectedNumbers); method call, but does so more efficiently), I chose to use Bubble Sort because
I prefer to wait until Chapter 9 before getting into the Arrays class.

204 CHAPTER 6: Mastering Advanced Language Features Part 2

Postconditions
A postcondition is something that must be true after a method successfully completes. Assertion
statements are often used to satisfy a helper method’s postconditions by checking that its result is
legal. Listing 6-7 provides an example.

Listing 6-7. Verifying a Postcondition in Addition to Preconditions

public class MergeArrays
{
 public static void main(String[] args)
 {
 int[] x = { 1, 2, 3, 4, 5 };
 int[] y = { 1, 2, 7, 9 };
 int[] result = merge(x, y);
 for (int i = 0; i < result.length; i++)
 System.out.println(result[i]);
 }

 static int[] merge(int[] a, int[] b)
 {
 if (a == null)
 throw new NullPointerException("a is null");
 if (b == null)
 throw new NullPointerException("b is null");
 int[] result = new int[a.length + b.length];
 // Precondition
 assert result.length == a.length + b.length: "length mismatch";
 for (int i = 0; i < a.length; i++)
 result[i] = a[i];
 for (int i = 0; i < b.length; i++)
 result[a.length + i - 1] = b[i];
 // Postcondition
 assert containsAll(result, a, b): "value missing from array";
 return result;
 }

 static boolean containsAll(int[] result, int[] a, int[] b)
 {
 for (int i = 0; i < a.length; i++)
 if (!contains(result, a[i]))
 return false;
 for (int i = 0; i < b.length; i++)
 if (!contains(result, b[i]))
 return false;
 return true;
 }

205CHAPTER 6: Mastering Advanced Language Features Part 2

 static boolean contains(int[] a, int val)
 {
 for (int i = 0; i < a.length; i++)
 if (a[i] == val)
 return true;
 return false;
 }
}

Listing 6-7 uses an assertion statement to verify the postcondition that all of the values in the two
arrays being merged are present in the merged array. The postcondition is not satisfied, however,
because this listing contains a bug.

Listing 6-7 also shows preconditions and postconditions being used together. The solitary
precondition verifies that the merged array length equals the lengths of the arrays being merged prior
to the merge logic.

Class Invariants
A class invariant is a kind of internal invariant that applies to every instance of a class at all times,
except when an instance is transitioning from one consistent state to another.

For example, suppose instances of a class contain arrays whose values are sorted in ascending
order. You might want to include an isSorted() method in the class that returns true when the array
is still sorted and verify that each constructor and method that modifies the array specifies assert
isSorted(); prior to exit, to satisfy the assumption that the array is still sorted when the constructor
or method exits.

Avoiding Assertions
Although there are many situations where assertions should be used, there also are situations where
they should be avoided. For example, you should not use assertions to check the arguments that are
passed to public methods for the following reasons:

Checking a public method’s arguments is part of the contract that exists
between the method and its caller. If you use assertions to check these
arguments, and if assertions are disabled, this contract is violated because the
arguments will not be checked.

Assertions also prevent appropriate exceptions from being thrown. For example,
when an illegal argument is passed to a public method, it is common to throw
java.lang.IllegalArgumentException or java.lang.NullPointerException.
However, AssertionError is thrown instead.

You should also avoid using assertions to perform work required by the application to function
correctly. This work is often performed as a side effect of the assertion’s Boolean expression. When
assertions are disabled, the work is not performed.

206 CHAPTER 6: Mastering Advanced Language Features Part 2

For example, suppose you have a list of Employee objects and a few null references that are also
stored in this list and you want to remove all of the null references. It would not be correct to remove
these references via the following assertion statement:

assert employees.removeAll(null);

Although the assertion statement will not throw AssertionError because there is at least one null
reference in the employees list, the application that depends on this statement executing will fail
when assertions are disabled.

Instead of depending on the former code to remove the null references, you would be better off
using code similar to the following:

boolean allNullsRemoved = employees.removeAll(null);
assert allNullsRemoved;

This time, all null references are removed regardless of whether assertions are enabled or disabled
and you can still specify an assertion to verify that nulls were removed.

Enabling and Disabling Assertions
The compiler records assertions in the classfile. However, assertions are disabled at runtime
because they can affect performance. An assertion might call a method that takes awhile to
complete, and this would impact the running application’s performance.

You must enable the classfile’s assertions before you can test assumptions about the behaviors of
your classes. Accomplish this task by specifying the -enableassertions or -ea command-line option
when running the java application launcher tool.

The -enableassertions and -ea command-line options let you enable assertions at various
granularities based on one of the following arguments (except for the noargument scenario, you
must use a colon to separate the option from its argument):

 No argument: Assertions are enabled in all classes except system classes.

 PackageName . . . : Assertions are enabled in the specified package and its
subpackages by specifying the package name followed by. . ..

. . . : Assertions are enabled in the unnamed package, which happens to be
whatever directory is current.

 ClassName: Assertions are enabled in the named class by specifying the class name.

For example, you can enable all assertions except system assertions when running the MergeArrays
application via java –ea MergeArrays. Also, you could enable any assertions that you might add to
Chapter 5’s logging package by specifying java –ea:logging TestLogger.

Assertions can be disabled, and also at various granularities, by specifying either of the
–disableassertions or –da command-line options. These options take the same arguments as
-enableassertions and -ea. For example, java -ea –da:loneclass mainclass enables all assertions
except for those in loneclass. (Think of loneclass and mainclass as placeholders for the actual
classes that you specify.)

207CHAPTER 6: Mastering Advanced Language Features Part 2

The previous options apply to all classloaders. Except when taking no arguments, they also apply to
system classes. This exception simplifies the enabling of assertion statements in all classes except
for system classes, which is often desirable.

To enable system assertions, specify either -enablesystemassertions or -esa, for example, java
-esa –ea:logging TestLogger. Specify either -disablesystemassertions or -dsa to disable system
assertions.

Mastering Annotations
While developing a Java application, you might want to annotate (associate metadata [data that
describes other data] with) various application elements. For example, you might want to identify
methods that are not fully implemented so that you will not forget to implement them. Java’s
annotations language feature lets you accomplish this task.

In this section I introduce you to annotations. After defining this term and presenting three kinds
of compiler-supported annotations as examples, I show you how to declare your own annotation
types and use these types to annotate source code. Finally, you discover how to process your own
annotations to accomplish useful tasks.

Note Java has always supported ad hoc annotation mechanisms. For example, the java.lang.Cloneable
interface identifies classes whose instances can be shallowly cloned via java.lang.Object’s clone()
method; the transient reserved word marks fields that are to be ignored during serialization, and the
@deprecated Javadoc tag documents methods that are no longer supported. In contrast, the annotations
feature is a standard for annotating code.

Discovering Annotations
An annotation is an instance of an annotation type and associates metadata with an application
element. It is expressed in source code by prefixing the type name with the @ symbol. For example,
@Readonly is an annotation and Readonly is its type.

Note You can use annotations to associate metadata with constructors, fields, local variables, methods,
packages, parameters, and types (annotation, class, enum, and interface).

The compiler supports the Override, Deprecated, and SuppressWarnings annotation types. These
types are located in the java.lang package.

208 CHAPTER 6: Mastering Advanced Language Features Part 2

@Override annotations are useful for expressing that a subclass method overrides a method in the
superclass and doesn’t overload that method instead. The following example reveals this annotation
being used to prefix the overriding method:

@Override
public void draw(int color)
{
 // drawing code
}

@Deprecated annotations are useful for indicating that the marked application element is deprecated
(phased out) and should no longer be used. The compiler warns you when a deprecated application
element is accessed by nondeprecated code.

In contrast, the @deprecated javadoc tag and associated text warns you against using the
deprecated item and tells you what to use instead. The following example demonstrates that
@Deprecated and @deprecated can be used together:

/**
 * Allocates a <code>Date</code> object and initializes it so that
 * it represents midnight, local time, at the beginning of the day
 * specified by the <code>year</code>, <code>month</code>, and
 * <code>date</code> arguments.
 *
 * @param year the year minus 1900.
 * @param month the month between 0-11.
 * @param date the day of the month between 1-31.
 * @see java.util.Calendar
 * @deprecated As of JDK version 1.1,
 * replaced by <code>Calendar.set(year + 1900, month, date)</code>
 * or <code>GregorianCalendar(year + 1900, month, date)</code>.
 */
@Deprecated
public Date(int year, int month, int date)
{
 this(year, month, date, 0, 0, 0);
}

This example excerpts one of the constructors in Java’s Date class (located in the java.util
package). Its Javadoc comment reveals that Date(int year, int month, int date) has been
deprecated in favor of using the set() method in the Calendar class (also located in the java.util
package. I explore Date in Chapter 10.)

The compiler suppresses warnings when a compilation unit (typically a class or interface) refers to
a deprecated class, method, or field. This feature lets you modify legacy APIs without generating
deprecation warnings and is demonstrated in Listing 6-8.

209CHAPTER 6: Mastering Advanced Language Features Part 2

Listing 6-8. Referencing a Deprecated Field from Within the Same Class Declaration

public class Employee
{
 /**
 * Employee's name
 * @deprecated New version uses firstName and lastName fields.
 */
 @Deprecated
 String name;
 String firstName;
 String lastName;

 public static void main(String[] args)
 {
 Employee emp = new Employee();
 emp.name = "John Doe";
 }
}

Listing 6-8 declares an Employee class with a name field that has been deprecated. Although
Employee’s main() method refers to name, the compiler will suppress a deprecation warning because
the deprecation and reference occur in the same class.

Suppose you refactor this listing by introducing a new UseEmployee class and moving Employee’s
main() method to this class. Listing 6-9 presents the resulting class structure.

Listing 6-9. Referencing a Deprecated Field from Within Another Class Declaration

class Employee
{
 /**
 * Employee's name
 * @deprecated New version uses firstName and lastName fields.
 */
 @Deprecated
 String name;
 String firstName;
 String lastName;
}

public class UseEmployee
{
 public static void main(String[] args)
 {
 Employee emp = new Employee();
 emp.name = "John Doe";
 }
}

210 CHAPTER 6: Mastering Advanced Language Features Part 2

If you attempt to compile this source code via the javac compiler tool, you will discover the following
messages:

Note: UseEmployee.java uses or overrides a deprecated API.
Note: Recompile with -Xlint:deprecation for details.

You will need to specify -Xlint:deprecation as one of javac’s command-line arguments (as in javac
-Xlint:deprecation UseEmployee.java) to discover the deprecated item and the code that refers to
this item:

Employee.java:18: warning: [deprecation] name in Employee has been deprecated
 emp.name = "John Doe";
 ^
1 warning

@SuppressWarnings annotations are useful for suppressing deprecation or unchecked warnings via
a "deprecation" or an "unchecked" argument. (Unchecked warnings occur when mixing code that
uses generics with pre-generics legacy code. I discuss generics and unchecked warnings later in
this chapter.)

For example, Listing 6-10 uses @SuppressWarnings with a "deprecation" argument to suppress the
compiler’s deprecation warnings when code within the UseEmployee class’s main() method accesses
the Employee class’s name field.

Listing 6-10. Suppressing the Previous Deprecation Warning

public class UseEmployee
{
 @SuppressWarnings("deprecation")
 public static void main(String[] args)
 {
 Employee emp = new Employee();
 emp.name = "John Doe";
 }
}

Note As a matter of style, you should always specify @SuppressWarnings on the most deeply nested
element where it is effective. For example, if you want to suppress a warning in a particular method, you
should annotate that method rather than its class.

Declaring Annotation Types and Annotating Source Code
Before you can annotate source code, you need annotation types that can be instantiated. Java
supplies many annotation types in addition to Override, Deprecated, and SuppressWarnings. Java
also lets you declare your own types.

211CHAPTER 6: Mastering Advanced Language Features Part 2

You declare an annotation type by specifying the @ symbol, immediately followed by reserved word
interface, followed by the type’s name, followed by a body. For example, Listing 6-11 uses
@interface to declare an annotation type named Stub.

Listing 6-11. Declaring the Stub Annotation Type

public @interface Stub
{
}

Instances of annotation types that supply no data apart from a name—their bodies are empty—are
known as marker annotations because they mark application elements for some purpose. As
Listing 6-12 reveals, @Stub is used to mark empty methods (stubs).

Listing 6-12. Annotating a Stubbed-Out Method

public class Deck // Describes a deck of cards.
{
 @Stub
 public void shuffle()
 {
 // This method is empty and will presumably be filled in with appropriate
 // code at some later date.
 }
}

Listing 6-12’s Deck class declares an empty shuffle() method. This fact is indicated by instantiating
Stub and prefixing shuffle()’s method header with the resulting @Stub annotation.

Note Although marker interfaces (introduced in Chapter 4) appear to have been replaced by marker
annotations, this is not the case because marker interfaces have advantages over marker annotations. One
advantage is that a marker interface specifies a type that is implemented by a marked class, which lets you
catch problems at compile time. For example, when a class doesn’t implement the Cloneable interface, its
instances cannot be shallowly cloned via Object’s clone() method. If Cloneable had been implemented
as a marker annotation, this problem would not be detected until runtime.

Although marker annotations are useful (@Override and @Deprecated are good examples), you will
typically want to enhance an annotation type so that you can store metadata via its instances. You
accomplish this task by adding elements to the type.

An element is a method header that appears in the annotation type’s body. It cannot have
parameters or a throws clause, and its return type must be a primitive type (such as int),
java.lang.String, java.lang.Class, an enum, an annotation type, or an array of the preceding
types. However, it can have a default value.

Listing 6-13 adds three elements to Stub.

212 CHAPTER 6: Mastering Advanced Language Features Part 2

Listing 6-13. Adding Three Elements to the Stub Annotation Type

public @interface Stub
{
 int id(); // A semicolon must terminate an element declaration.
 String dueDate();
 String developer() default "unassigned";
}

The id() element specifies a 32-bit integer that identifies the stub. The dueDate() element specifies
a String-based date that identifies when the method stub is to be implemented. Finally, developer()
specifies the String-based name of the developer responsible for coding the method stub.

Unlike id() and dueDate(), developer() is declared with a default value, "unassigned". When you
instantiate Stub and don’t assign a value to developer() in that instance, as is the case with
Listing 6-14, this default value is assigned to developer().

Listing 6-14. Initializing a Stub Instance’s Elements

public class Deck
{
 @Stub
 (
 id = 1,
 dueDate = "12/21/2012"
)
 public void shuffle()
 {
 }
}

Listing 6-14 reveals one @Stub annotation that initializes its id() element to 1 and its dueDate()
element to "12/21/2012". Each element name doesn’t have a trailing (), and the comma-separated
list of two element initializers appears between (and).

Suppose you decide to replace Stub’s id(), dueDate(), and developer() elements with a single
String value() element whose string specifies comma-separated ID, due date, and developer name
values. Listing 6-15 shows you two ways to initialize value.

Listing 6-15. Initializing Each Stub Instance’s value() Element

public class Deck
{
 @Stub(value = "1,12/21/2012,unassigned")
 public void shuffle()
 {
 }

 @Stub("2,12/21/2012,unassigned")
 public Card[] deal(int ncards)
 {
 return null;
 }
}

213CHAPTER 6: Mastering Advanced Language Features Part 2

Listing 6-15 reveals special treatment for the value() element. When it’s an annotation type’s
only element, you can omit value()’s name and = from the initializer. I used this fact to specify
@SuppressWarnings("deprecation") in Listing 6-10.

Using Meta-Annotations in Annotation Type Declarations
Each of the Override, Deprecated, and SuppressWarnings annotation types is itself annotated with
meta-annotations (annotations that annotate annotation types). For example, Listing 6-16 shows you
that the SuppressWarnings annotation type is annotated with two meta-annotations.

Listing 6-16. The Annotated SuppressWarnings Type Declaration

@Target(value={TYPE,FIELD,METHOD,PARAMETER,CONSTRUCTOR,LOCAL_VARIABLE})
@Retention(value=SOURCE)
public @interface SuppressWarnings

The Target annotation type, which is located in the java.lang.annotation package, identifies
the kinds of application elements to which an annotation type applies. @Target indicates that
@SuppressWarnings annotations can be used to annotate types, fields, methods, parameters,
constructors, and local variables.

Each of TYPE, FIELD, METHOD, PARAMETER, CONSTRUCTOR, and LOCAL_VARIABLE is a member of the
ElementType enum, which is also located in the java.lang.annotation package. (I discuss enums
later in this chapter.)

The { and } characters surrounding the comma-separated list of values assigned to Target’s value()
element signify an array—value()’s return type is String[]. Although these braces are necessary
(unless the array consists of one item), value= could be omitted when initializing @Target because
Target declares only a value() element.

The Retention annotation type, which is located in the java.lang.annotation package, identifies
the retention (also known as lifetime) of an annotation type’s annotations. @Retention indicates
that @SuppressWarnings annotations have a lifetime that is limited to source code—they don’t exist
after compilation.

SOURCE is one of the members of the RetentionPolicy enum (located in the java.lang.annotation
package). The other members are CLASS and RUNTIME. These three members specify the following
retention policies:

 CLASS: The compiler records annotations in the classfile, but the virtual machine
doesn’t retain them (to save memory space). This policy is the default.

 RUNTIME: The compiler records annotations in the classfile, and the virtual
machine retains them so that they can be read via the Reflection API at runtime.

 SOURCE: The compiler discards annotations after using them.

There are two problems with the Stub annotation type shown in Listings 6-11 and 6-13. First, the
lack of an @Target meta-annotation means that you can annotate any application element @Stub.
However, this annotation only makes sense when applied to methods and constructors. Check out
Listing 6-17.

214 CHAPTER 6: Mastering Advanced Language Features Part 2

Listing 6-17. Annotating Undesirable Application Elements

@Stub("1,12/21/2012,unassigned")
public class Deck
{
 @Stub("2,12/21/2012,unassigned")
 private Card[] cardsRemaining = new Card[52];

 @Stub("3,12/21/2012,unassigned")
 public Deck()
 {
 }

 @Stub("4,12/21/2012,unassigned")
 public void shuffle()
 {
 }

 @Stub("5,12/21/2012,unassigned")
 public Card[] deal(@Stub("5,12/21/2012,unassigned") int ncards)
 {
 return null;
 }
}

Listing 6-17 uses @Stub to annotate the Deck class, the cardsRemaining field, and the ncards
parameter as well as annotating the constructor and the two methods. The first three application
elements are inappropriate to annotate because they are not stubs.

You can fix this problem by prefixing the Stub annotation type declaration with
@Target({ElementType.METHOD, ElementType.CONSTRUCTOR}) so that Stub only applies to methods
and constructors. After doing this, the javac compiler tool will output the following error messages
when you attempt to compile Listing 6-17:

Deck.java:1: error: annotation type not applicable to this kind of declaration
@Stub("1,12/21/2012,unassigned")
^
Deck.java:4: error: annotation type not applicable to this kind of declaration
 @Stub("2,12/21/2012,unassigned")
 ^
Deck.java:18: error: annotation type not applicable to this kind of declaration
 public Card[] deal(@Stub("5,12/21/2012,unassigned") int ncards)
 ^
3 errors

The second problem is that the default CLASS retention policy makes it impossible to process
@Stub annotations at runtime. You can fix this problem by prefixing the Stub type declaration with
@Retention(RetentionPolicy.RUNTIME).

Listing 6-18 presents the Stub annotation type with the desired @Target and @Retention
meta-annotations.

215CHAPTER 6: Mastering Advanced Language Features Part 2

Listing 6-18. A Revamped Stub Annotation Type

import java.lang.annotation.ElementType;
import java.lang.annotation.Retention;
import java.lang.annotation.RetentionPolicy;
import java.lang.annotation.Target;

@Target({ElementType.METHOD, ElementType.CONSTRUCTOR})
@Retention(RetentionPolicy.RUNTIME)
public @interface Stub
{
 String value();
}

Note Java also provides Documented and Inherited meta-annotation types in the java.lang.annotation
package. Instances of @Documented-annotated annotation types are to be documented by javadoc
and similar tools, whereas instances of @Inherited-annotated annotation types are automatically
inherited. According to Inherited’s Java documentation, if “the user queries the annotation type on a
class declaration, and the class declaration has no annotation for this type, then the class’s superclass will
automatically be queried for the annotation type. This process will be repeated until an annotation for this
type is found, or the top of the class hierarchy (Object) is reached. If no superclass has an annotation for this
type, then the query will indicate that the class in question has no such annotation.”

Processing Annotations
It’s not enough to declare an annotation type and use that type to annotate source code. Unless
you do something specific with those annotations, they remain dormant. One way to accomplish
something specific is to write an application that processes the annotations. Listing 6-19’s
StubFinder application does just that.

Listing 6-19. The StubFinder Application

import java.lang.reflect.Method;

public class StubFinder
{
 public static void main(String[] args) throws Exception
 {
 if (args.length != 1)
 {
 System.err.println("usage: java StubFinder classfile");
 return;
 }
 Method[] methods = Class.forName(args[0]).getMethods();
 for (int i = 0; i < methods.length; i++)

216 CHAPTER 6: Mastering Advanced Language Features Part 2

 if (methods[i].isAnnotationPresent(Stub.class))
 {
 Stub stub = methods[i].getAnnotation(Stub.class);
 String[] components = stub.value().split(",");
 System.out.println("Stub ID = " + components[0]);
 System.out.println("Stub Date = " + components[1]);
 System.out.println("Stub Developer = " + components[2]);
 System.out.println();
 }
 }
}

StubFinder loads a classfile whose name is specified as a command-line argument and outputs the
metadata associated with each @Stub annotation that precedes each public method header. These
annotations are instances of Listing 6-18’s Stub annotation type.

StubFinder next uses a special class named Class and its forName() class method to load a classfile.
Class also provides a getMethods() method that returns an array of java.lang.reflect.Method
objects describing the loaded class’s public methods.

For each loop iteration, a Method object’s isAnnotationPresent() method is called to determine if the
method is annotated with the annotation described by the Stub class (referred to as Stub.class).

If isAnnotationPresent() returns true, Method’s getAnnotation() method is called to return the
annotation Stub instance. This instance’s value() method is called to retrieve the string stored in
the annotation.

Next, String’s split() method is called to split the string’s comma-separated list of ID, date, and
developer values into an array of String objects. Each object is then output along with descriptive
text. (You will be formally introduced to split() in Chapter 7.)

Class’s forName() method is capable of throwing various exceptions that must be handled
or explicitly declared as part of a method’s header. For simplicity, I chose to append a throws
Exception clause to the main() method’s header.

Caution There are two problems with throws Exception. First, it is often better to handle the exception
and present a suitable error message than to “pass the buck” by throwing it out of main(). Second,
Exception is generic—it hides the names of the kinds of exceptions that are thrown. However, I find it
convenient to specify throws Exception in a throwaway utility.

After compiling StubFinder (javac StubFinder.java), Stub (javac Stub.java), and Listing 6-15’s
Deck class (javac Deck.java), run StubFinder with Deck as its single command-line argument
(java StubFinder Deck). You will observe the following output:

Stub ID = 1
Stub Date = 12/21/2012
Stub Developer = unassigned

217CHAPTER 6: Mastering Advanced Language Features Part 2

Stub ID = 2
Stub Date = 12/21/2012
Stub Developer = unassigned

Mastering Generics
Java 5 introduced generics, language features for declaring and using type-agnostic classes and
interfaces. While working with Java’s Collections Framework (which I introduce in Chapter 9), these
features help you avoid java.lang.ClassCastExceptions.

Note Although the main use for generics is the Collections Framework, the standard class library also
contains generified (retrofitted to make use of generics) classes that have nothing to do with this framework:
java.lang.Class, java.lang.ThreadLocal, and java.lang.ref.WeakReference are three
examples.

In this section I introduce you to generics. You first learn how generics promote type safety in the
context of the Collections Framework classes, and then you explore generics in the contexts of
generic types and generic methods. Finally, you learn about generics in the context of arrays.

Collections and the Need for Type Safety
Java’s Collections Framework makes it possible to store objects in various kinds of containers (known
as collections) and later retrieve those objects. For example, you can store objects in a list, a set, or a
map. You can then retrieve a single object, or iterate over the collection and retrieve all objects.

Before Java 5 overhauled the Collections Framework to take advantage of generics, there was no
way to prevent a collection from containing objects of mixed types. The compiler didn’t check an
object’s type to see if it was suitable before it was added to a collection, and this lack of static type
checking led to ClassCastExceptions.

Listing 6-20 demonstrates how easy it is to generate a ClassCastException.

Listing 6-20. Lack of Type Safety Leading to a ClassCastException at Runtime

import java.util.ArrayList;
import java.util.Iterator;
import java.util.List;

class Employee
{
 private String name;

 Employee(String name)
 {
 this.name = name;
 }

218 CHAPTER 6: Mastering Advanced Language Features Part 2

 String getName()
 {
 return name;
 }
}

public class TypeSafety
{
 public static void main(String[] args)
 {
 List employees = new ArrayList();
 employees.add(new Employee("John Doe"));
 employees.add(new Employee("Jane Smith"));
 employees.add("Jack Frost");
 Iterator iter = employees.iterator();
 while (iter.hasNext())
 {
 Employee emp = (Employee) iter.next();
 System.out.println(emp.getName());
 }
 }
}

Listing 6-20’s main() method first instantiates java.util.ArrayList and then uses this list collection
object’s reference to add a pair of Employee objects to the list. It then adds a String object, which
violates the implied contract that ArrayList is supposed to store only Employee objects.

main() next obtains a java.util.Iterator instance for iterating over the list of Employees. As long as
Iterator’s hasNext() method returns true, its next() method is called to return an object stored in
the array list.

The Object that next() returns must be downcast to Employee so that the Employee object’s
getName() method can be called to return the employee’s name. The string that this method returns
is then output to the standard output device via System.out.println().

The (Employee) cast checks the type of each object returned by next() to make sure that it is an
Employee. Although this is true of the first two objects, it’s not true of the third object. The attempt to
cast "Jack Frost" to Employee results in a ClassCastException.

The ClassCastException occurs because of an assumption that a list is homogenous. In other
words, a list stores only objects of a single type or a family of related types. In reality, the list is
heterogeneous in that it can store any Object.

Listing 6-21’s generics-based homogenous list avoids ClassCastException.

Listing 6-21. Lack of Type Safety Leading to a Compiler Error

import java.util.ArrayList;
import java.util.Iterator;
import java.util.List;

class Employee
{
 private String name;

219CHAPTER 6: Mastering Advanced Language Features Part 2

 Employee(String name)
 {
 this.name = name;
 }

 String getName()
 {
 return name;
 }
}

public class TypeSafety
{
 public static void main(String[] args)
 {
 List<Employee> employees = new ArrayList<Employee>();
 employees.add(new Employee("John Doe"));
 employees.add(new Employee("Jane Smith"));
 employees.add("Jack Frost");
 Iterator<Employee> iter = employees.iterator();
 while (iter.hasNext())
 {
 Employee emp = iter.next();
 System.out.println(emp.getName());
 }
 }
}

Listing 6-21’s refactored main() method illustrates the central feature of generics, which is the
parameterized type (a class or interface name followed by an angle-bracket delimited type list
identifying what kinds of objects are legal in that context).

For example, java.util.List<Employee> indicates only Employee objects can be stored in the List.
As shown, the <Employee> designation must be repeated with ArrayList, as in ArrayList<Employee>,
which is the collection implementation that stores the Employees.

Also, Iterator<Employee> indicates that iterator() returns an Iterator whose next() method
returns only Employee objects. It’s not necessary to cast iter.next()’s returned value to Employee
because the compiler inserts the cast on your behalf.

If you attempt to compile this listing, the compiler will report an error when it encounters
employees.add("Jack Frost");. The error message will tell you that the compiler cannot find an
add(java.lang.String) method in the java.util.List<Employee> interface.

Unlike in the pre-generics List interface, which declares an add(Object) method, the generified List
interface’s add() method parameter reflects the interface’s parameterized type name. For example,
List<Employee> implies add(Employee).

Listing 6-20 reveals that the unsafe code causing the ClassCastException (employees.add("Jack
Frost");) and the code that triggers the exception ((Employee) iter.next()) are quite close.
However, they are often farther apart in larger applications.

220 CHAPTER 6: Mastering Advanced Language Features Part 2

Rather than having to deal with angry clients while hunting down the unsafe code that ultimately
led to the ClassCastException, you can rely on the compiler saving you this frustration and effort by
reporting an error when it detects this code during compilation. Detecting type safety violations at
compile time is the main benefit of using generics.

Generic Types
A generic type is a class or interface that introduces a family of parameterized types by declaring
a formal type parameter list (a comma-separated list of type parameter names between angle
brackets). This syntax is expressed as follows:

class identifier<formal_type_parameter_list> {}
interface identifier<formal_type_parameter_list> {}

For example, List<E> is a generic type, where List is an interface and type parameter E identifies
the list’s element type. Similarly, Map<K, V> is a generic type, where Map is an interface and type
parameters K and V identify the map’s key and value types.

Note When declaring a generic type, it’s conventional to specify single uppercase letters as type parameter
names. Furthermore, these names should be meaningful. For example, E indicates element, T indicates type,
K indicates key, and V indicates value. If possible, you should avoid choosing a type parameter name that is
meaningless where it is used. For example, List<E> means list of elements, but what does List<S> mean?

Parameterized types are instances of generic types. Each parameterized type replaces the generic
type’s type parameters with type names. For example, List<Employee> (List of Employee) and
List<String> (List of String) are examples of parameterized types based on List<E>. Similarly,
Map<String, Employee> is an example of a parameterized type based on Map<K, V>.

The type name that replaces a type parameter is known as an actual type argument. Five kinds of
actual type arguments are supported by generics:

 Concrete type: The name of a class or interface is passed to the type parameter.
For example, List<Employee> employees; specifies that the list elements are
Employee instances.

 Concrete parameterized type: The name of a parameterized type is passed to
the type parameter. For example, List<List<String>> nameLists; specifies that
the list elements are lists of strings.

 Array type: An array is passed to the type parameter. For example,
List<String[]> countries; specifies that the list elements are arrays of
Strings, possibly city names.

 Type parameter: A type parameter is passed to the type parameter. For example,
given class declaration class X<E> { List<E> queue; }, X’s type parameter E is
passed to List’s type parameter E.

221CHAPTER 6: Mastering Advanced Language Features Part 2

 Wildcard: The ? is passed to the type parameter. For example, List<?> list;
specifies that the list elements are unknown. You will learn about wildcards later
in this chapter.

A generic type also identifies a raw type, which is a generic type without its type parameters. For
example, List<Employee>’s raw type is List. Raw types are nongeneric and can hold any Object.

Note Java allows raw types to be intermixed with generic types to support the vast amount of legacy code
that was written prior to the arrival of generics. However, the compiler outputs a warning message whenever
it encounters a raw type in source code.

Declaring and Using Your Own Generic Types
It’s not difficult to declare your own generic types. In addition to specifying a formal type parameter
list, your generic type specifies its type parameter(s) throughout its implementation. For example,
Listing 6-22 declares a Queue<E> generic type.

Listing 6-22. Declaring and Using a Queue<E> Generic Type

public class Queue<E>
{
 private E[] elements;
 private int head, tail;

 @SuppressWarnings("unchecked")
 Queue(int size)
 {
 if (size < 2)
 throw new IllegalArgumentException("" + size);
 elements = (E[]) new Object[size];
 head = 0;
 tail = 0;
 }

 void insert(E element) throws QueueFullException
 {
 if (isFull())
 throw new QueueFullException();
 elements[tail] = element;
 tail = (tail + 1) % elements.length;
 }

 E remove() throws QueueEmptyException
 {
 if (isEmpty())
 throw new QueueEmptyException();

222 CHAPTER 6: Mastering Advanced Language Features Part 2

 E element = elements[head];
 head = (head + 1) % elements.length;
 return element;
 }

 boolean isEmpty()
 {
 return head == tail;
 }

 boolean isFull()
 {
 return (tail + 1) % elements.length == head;
 }

 public static void main(String[] args)
 throws QueueFullException, QueueEmptyException
 {
 Queue<String> queue = new Queue<String>(6);
 System.out.println("Empty: " + queue.isEmpty());
 System.out.println("Full: " + queue.isFull());
 System.out.println("Adding A");
 queue.insert("A");
 System.out.println("Adding B");
 queue.insert("B");
 System.out.println("Adding C");
 queue.insert("C");
 System.out.println("Adding D");
 queue.insert("D");
 System.out.println("Adding E");
 queue.insert("E");
 System.out.println("Empty: " + queue.isEmpty());
 System.out.println("Full: " + queue.isFull());
 System.out.println("Removing " + queue.remove());
 System.out.println("Empty: " + queue.isEmpty());
 System.out.println("Full: " + queue.isFull());
 System.out.println("Adding F");
 queue.insert("F");
 while (!queue.isEmpty())
 System.out.println("Removing " + queue.remove());
 System.out.println("Empty: " + queue.isEmpty());
 System.out.println("Full: " + queue.isFull());
 }
}

class QueueEmptyException extends Exception
{
}

class QueueFullException extends Exception
{
}

223CHAPTER 6: Mastering Advanced Language Features Part 2

Listing 6-22 declares Queue, QueueEmptyException, and QueueFullException classes. The latter two
classes describe checked exceptions that are thrown from methods of the former class.

Queue implements a queue, a data structure that stores elements in first-in, first-out order. An
element is inserted at the tail and removed at the head. The queue is empty when the head equals
the tail and full when the tail is one less than the head. As a result, a queue of size n can store a
maximum of n - 1 elements.

Notice that Queue<E>’s E type parameter appears throughout the source code. For example, E
appears in the elements array declaration to denote the array’s element type. E is also specified as
the type of insert()’s parameter and as remove()’s return type.

E also appears in elements = (E[]) new Object[size];. (I will explain later why I specified this
expression instead of specifying the more compact elements = new E[size]; expression.)

The E[] cast results in the compiler warning about this cast being unchecked. The compiler is
concerned that downcasting from Object[] to E[] might result in a violation of type safety because
any kind of object can be stored in Object[].

The compiler’s concern isn’t justified in this example. There is no way that a non-E object can appear
in the E[] array. Because the warning is meaningless in this context, it is suppressed by prefixing the
constructor with @SuppressWarnings("unchecked").

Caution Be careful when suppressing an unchecked warning. You must first prove that a
ClassCastException cannot occur, and then you can suppress the warning.

When you run this application, it generates the following output:

Empty: true
Full: false
Adding A
Adding B
Adding C
Adding D
Adding E
Empty: false
Full: true
Removing A
Empty: false
Full: false
Adding F
Removing B
Removing C
Removing D
Removing E
Removing F
Empty: true
Full: false

224 CHAPTER 6: Mastering Advanced Language Features Part 2

Type Parameter Bounds
List<E>’s E type parameter and Map<K, V>’s K and V type parameters are examples of unbounded
type parameters. You can pass any actual type argument to an unbounded type parameter.

It is sometimes necessary to restrict the kinds of actual type arguments that can be passed to a type
parameter. For example, you might want to declare a class whose instances can only store instances
of classes that subclass an abstract Shape class (such as Circle and Rectangle).

To restrict actual type arguments, you can specify an upper bound, a type that serves as an upper
limit on the types that can be chosen as actual type arguments. The upper bound is specified via
reserved word extends followed by a type name.

For example, ShapesList<E extends Shape> identifies Shape as an upper bound. You can
specify ShapesList<Circle>, ShapesList<Rectangle>, and even ShapesList<Shape>, but not
ShapesList<String> because String is not a subclass of Shape.

You can assign more than one upper bound to a type parameter, where the first bound is a class or
interface and where each additional upper bound is an interface, by using the ampersand character
(&) to separate bound names. Consider Listing 6-23.

Listing 6-23. Assigning Multiple Upper Bounds to a Type Parameter

abstract class Shape
{
}

class Circle extends Shape implements Comparable<Circle>
{
 private double x, y, radius;

 Circle(double x, double y, double radius)
 {
 this.x = x;
 this.y = y;
 this.radius = radius;
 }

 @Override
 public int compareTo(Circle circle)
 {
 if (radius < circle.radius)
 return -1;
 else
 if (radius > circle.radius)
 return 1;
 else
 return 0;
 }

225CHAPTER 6: Mastering Advanced Language Features Part 2

 @Override
 public String toString()
 {
 return "(" + x + ", " + y + ", " + radius + ")";
 }
}

class SortedShapesList<S extends Shape & Comparable<S>>
{
 @SuppressWarnings("unchecked")
 private S[] shapes = (S[]) new Shape[2];
 private int index = 0;

 void add(S shape)
 {
 shapes[index++] = shape;
 if (index < 2)
 return;
 System.out.println("Before sort: " + this);
 sort();
 System.out.println("After sort: " + this);
 }

 private void sort()
 {
 if (index == 1)
 return;
 if (shapes[0].compareTo(shapes[1]) > 0)
 {
 S shape = (S) shapes[0];
 shapes[0] = shapes[1];
 shapes[1] = shape;
 }
 }

 @Override
 public String toString()
 {
 return shapes[0].toString() + " " + shapes[1].toString();
 }
}

public class SortedShapesListDemo
{
 public static void main(String[] args)
 {
 SortedShapesList<Circle> ssl = new SortedShapesList<Circle>();
 ssl.add(new Circle(100, 200, 300));
 ssl.add(new Circle(10, 20, 30));
 }
}

226 CHAPTER 6: Mastering Advanced Language Features Part 2

Listing 6-23’s Circle class extends Shape and implements the java.lang.Comparable interface,
which is used to specify the natural ordering of Circle objects. The interface’s compareTo() method
implements this ordering by returning a value to reflect the order:

A negative value is returned when the current object should precede the object
passed to compareTo() in some fashion.

A zero value is returned when the current and argument objects are the same.

A positive value is returned when the current object should succeed the
argument object.

Circle’s overriding compareTo() method compares two Circle objects based on their radii. This
method orders a Circle instance with the smaller radius before a Circle instance with a larger radius.

The SortedShapesList class specifies <S extends Shape & Comparable<S>> as its parameter list. The
actual type argument passed to the S parameter must subclass Shape, and it must also implement
the Comparable interface.

Note A type parameter bound that includes the type parameter is known as a recursive type bound. For
example, Comparable<S> in S extends Shape & Comparable<S> is a recursive type bound. Recursive
type bounds are rare and typically show up in conjunction with the Comparable interface for specifying a
type’s natural ordering.

Circle satisfies both criteria: it subclasses Shape and implements Comparable. As a result, the
compiler doesn’t report an error when it encounters the main() method’s SortedShapesList<Circle>
ssl = new SortedShapesList<Circle>(); statement.

An upper bound offers extra static type checking that guarantees that a parameterized type adheres
to its bounds. This assurance means that the upper bound’s methods can be called safely. For
example, sort() can call Comparable’s compareTo() method.

If you run this application, you will discover the following output, which shows that the two Circle
objects are sorted in ascending order of radius:

Before sort: (100.0, 200.0, 300.0) (10.0, 20.0, 30.0)
After sort: (10.0, 20.0, 30.0) (100.0, 200.0, 300.0)

Note Type parameters cannot have lower bounds. Angelika Langer explains the rationale for this restriction
in her “Java Generics FAQs” at www.angelikalanger.com/GenericsFAQ/FAQSections/
TypeParameters.html#FAQ107 .

227CHAPTER 6: Mastering Advanced Language Features Part 2

Type Parameter Scope
A type parameter’s scope (visibility) is its generic type except where masked (hidden). This scope
includes the formal type parameter list of which the type parameter is a member. For example, the
scope of S in SortedShapesList<S extends Shape & Comparable<S>> is all of SortedShapesList and
the formal type parameter list.

It is possible to mask a type parameter by declaring a same-named type parameter in a nested
type’s formal type parameter list. For example, Listing 6-24 masks an enclosing class’s T type
parameter.

Listing 6-24. Masking a Type Variable

class EnclosingClass<T>
{
 static class EnclosedClass<T extends Comparable<T>>
 {
 }
}

EnclosingClass’s T type parameter is masked by EnclosedClass’s T type parameter, which specifies
an upper bound where only those types that implement the Comparable interface can be passed
to EnclosedClass. Referencing T from within EnclosedClass refers to the bounded T and not the
unbounded T passed to EnclosingClass.

If masking is undesirable, it is best to choose a different name for the type parameter. For example,
you might specify EnclosedClass<U extends Comparable<U>>. Although U is not as meaningful a
name as T, this situation justifies this choice.

The Need for Wildcards
Suppose that you have created a List of String and want to output this list. Because you might
create a List of Employee and other kinds of lists, you want this method to output an arbitrary
List of Object. You end up creating Listing 6-25.

Listing 6-25. Attempting to Output a List of Object

import java.util.ArrayList;
import java.util.List;

public class OutputList
{
 public static void main(String[] args)
 {
 List<String> ls = new ArrayList<String>();
 ls.add("first");
 ls.add("second");
 ls.add("third");
 outputList(ls);
 }

228 CHAPTER 6: Mastering Advanced Language Features Part 2

 static void outputList(List<Object> list)
 {
 for (int i = 0; i < list.size(); i++)
 System.out.println(list.get(i));
 }
}

Now that you’ve accomplished your objective (or so you think), you compile Listing 6-25 via javac
OutputList.java. Much to your surprise, you receive the following error message:

OutputList.java:12: error: method outputList in class OutputList cannot be applied to given types;
 outputList(ls);
 ^
 required: List<Object>
 found: List<String>
 reason: actual argument List<String> cannot be converted to List<Object> by method invocation
conversion
1 error

This error message results from being unaware of the fundamental rule of generic types: for a given
subtype x of type y, and given G as a raw type declaration, G<x> is not a subtype of G<y>.

To understand this rule, you must refresh your understanding of subtype polymorphism (see
Chapter 4). Basically, a subtype is a specialized kind of its supertype. For example, Circle is a
specialized kind of Shape and String is a specialized kind of Object. This polymorphic behavior
also applies to related parameterized types with the same type parameters (e.g., List<Object> is a
specialized kind of java.util.Collection<Object>).

However, this polymorphic behavior doesn’t apply to multiple parameterized types that differ only in
regard to one type parameter being a subtype of another type parameter. For example, List<String>
is not a specialized kind of List<Object>. The following example reveals why parameterized types
differing only in type parameters are not polymorphic:

List<String> ls = new ArrayList<String>();
List<Object> lo = ls;
Lo.add(new Employee());
String s = ls.get(0);

This example will not compile because it violates type safety. If it compiled, a ClassCastException
instance would be thrown at runtime because of the implicit cast to String on the final line.

The first line instantiates a List of String and the second line upcasts its reference to a List of
Object. The third line adds a new Employee object to the List of Object. The fourth line obtains the
Employee object via get() and attempts to assign it to the List of String reference variable. However,
ClassCastException is thrown because of the implicit cast to String—an Employee is not a String.

Note Although you cannot upcast List<String> to List<Object>, you can upcast List<String> to
the raw type List to interoperate with legacy code.

229CHAPTER 6: Mastering Advanced Language Features Part 2

The aforementioned error message reveals that List of String is not also List of Object. To call
Listing 6-25’s outputList() method without violating type safety, you can only pass an argument of
List<Object> type, which limits the usefulness of this method.

However, generics offer a solution: the wildcard argument (?), which stands for any type. By
changing outputList()’s parameter type from List<Object> to List<?>, you can call outputList()
with a List of String, a List of Employee, and so on.

Generic Methods
Suppose you need a method to copy a List of any kind of object to another List. Although you
might consider coding a void copyList(List<Object> src, List<Object> dest) method, this
method would have limited usefulness because it could only copy lists whose element type is
Object. You couldn’t copy a List<Employee>, for example.

If you want to pass source and destination lists whose elements are of arbitrary type (but their
element types agree), you need to specify the wildcard character as a placeholder for that type.
For example, you might consider writing the following copyList() class method that accepts
collections of arbitrary-typed objects as its arguments:

static void copyList(List<?> src, List<?> dest)
{
 for (int i = 0; i < src.size(); i++)
 dest.add(src.get(i));
}

This method’s parameter list is correct, but there is another problem: the compiler outputs the
following error message when it encounters dest.add(src.get(i));.

CopyList.java:19: error: no suitable method found for add(Object)
 dest.add(src.get(i));
 ^
 method List.add(int,CAP#1) is not applicable
 (actual and formal argument lists differ in length)
 method List.add(CAP#1) is not applicable
 (actual argument Object cannot be converted to CAP#1 by method invocation conversion)
 where CAP#1 is a fresh type-variable:
 CAP#1 extends Object from capture of ?
1 error

This error message assumes that copyList() is part of a class named CopyList. Although it appears
to be incomprehensible, the message basically means that the dest.add(src.get(i)) method call
violates type safety. Because ? implies that any type of object can serve as a list’s element type, it’s
possible that the destination list’s element type is incompatible with the source list’s element type.

For example, suppose you create a List of String as the source list and a List of Employee as the
destination list. Attempting to add the source list’s elements to the destination list, which expects
Employees, violates type safety. If this copy operation were allowed, a ClassCastException instance
would be thrown when trying to obtain the destination list’s elements.

230 CHAPTER 6: Mastering Advanced Language Features Part 2

 You could solve this problem in a limited way as follows:

static void copyList(List<? extends String> src,
 List<? super String> dest)
{
 for (int i = 0; i < src.size(); i++)
 dest.add(src.get(i));
}

This method demonstrates a wildcard argument feature in which you can supply an upper bound
or (unlike with a type parameter) a lower bound to limit the types that can be passed as actual type
arguments to the generic type. Specifically, it shows an upper bound via extends followed by the upper
bound type after the ?, and a lower bound via super followed by the lower bound type after the ?.

You interpret ? extends String to mean that any actual type argument that is String or a subclass
of this type can be passed, and you interpret ? super String to imply that any actual type argument
that is String or a superclass of this type can be passed. Because String cannot be subclassed,
this means that you can only pass source lists of String and destination lists of String or Object.

The problem of copying lists of arbitrary element types to other lists can be solved through the use
of a generic method (a class or instance method with a type-generalized implementation). Generic
methods are syntactically expressed as follows:

<formal_type_parameter_list> return_type identifier(parameter_list)

The formal_type_parameter_list is the same as when specifying a generic type: it consists of type
parameters with optional bounds. A type parameter can appear as the method’s return_type, and
type parameters can appear in the parameter_list. The compiler infers the actual type arguments
from the context in which the method is invoked.

You’ll discover many examples of generic methods in the Collections Framework. For example, its
java.util.Collections class provides a public static <T extends Object & Comparable<? super
T>> T min(Collection<? extends T> coll) method for returning the minimum element in the given
collection according to the natural ordering of its elements.

You can easily convert copyList() into a generic method by prefixing the return type with <T> and
replacing each wildcard with T. The resulting method header is <T> void copyList(List<T> src,
List<T> dest), and Listing 6-26 presents its source code as part of an application that copies a
List of Circle to another List of Circle.

Listing 6-26. Declaring and Using a copyList() Generic Method

import java.util.ArrayList;
import java.util.List;

class Circle
{
 private double x, y, radius;

 Circle(double x, double y, double radius)
 {
 this.x = x;
 this.y = y;
 this.radius = radius;
 }

231CHAPTER 6: Mastering Advanced Language Features Part 2

 @Override
 public String toString()
 {
 return "(" + x + ", " + y + ", " + radius + ")";
 }
}

public class CopyList
{
 public static void main(String[] args)
 {
 List<String> ls = new ArrayList<String>();
 ls.add("A");
 ls.add("B");
 ls.add("C");
 outputList(ls);
 List<String> lsCopy = new ArrayList<String>();
 copyList(ls, lsCopy);
 outputList(lsCopy);
 List<Circle> lc = new ArrayList<Circle>();
 lc.add(new Circle(10.0, 20.0, 30.0));
 lc.add(new Circle (5.0, 4.0, 16.0));
 outputList(lc);
 List<Circle> lcCopy = new ArrayList<Circle>();
 copyList(lc, lcCopy);
 outputList(lcCopy);
 }

 static <T> void copyList(List<T> src, List<T> dest)
 {
 for (int i = 0; i < src.size(); i++)
 dest.add(src.get(i));
 }

 static void outputList(List<?> list)
 {
 for (int i = 0; i < list.size(); i++)
 System.out.println(list.get(i));
 System.out.println();
 }
}

The generic method’s type parameters are inferred from the context in which the method was
invoked. For example, the compiler determines that copyList(ls, lsCopy); copies a List of String
to another List of String. Similarly, it determines that copyList(lc, lcCopy); copies a List of
Circle to another List of Circle.

When you run this application, it generates the following output:

A
B
C

232 CHAPTER 6: Mastering Advanced Language Features Part 2

A
B
C

(10.0, 20.0, 30.0)
(5.0, 4.0, 16.0)

(10.0, 20.0, 30.0)
(5.0, 4.0, 16.0)

Arrays and Generics
After presenting Listing 6-22’s Queue<E> generic type, I mentioned that I would explain why I
specified elements = (E[]) new Object[size]; instead of the more compact elements = new
E[size]; expression. Because of Java’s generics implementation, it isn’t possible to specify
array-creation expressions that involve type parameters (e.g., new E[size] or new List<E>[50]) or
actual type arguments (e.g., new Queue<String>[15]). If you attempt to do so, the compiler will report
a generic array creation error message.

Before I present an example that demonstrates why allowing array-creation expressions that involve
type parameters or actual type arguments is dangerous, you need to understand reification and
covariance in the context of arrays, and erasure, which is at the heart of how generics are implemented.

Reification is representing the abstract as if it was concrete—for example, making a memory address
available for direct manipulation by other language constructs. Java arrays are reified in that they’re
aware of their element types (an element type is stored internally) and can enforce these types at
runtime. Attempting to store an invalid element in an array causes the virtual machine to throw an
instance of the java.lang.ArrayStoreException class.

Listing 6-27 teaches you how array manipulation can lead to an ArrayStoreException.

Listing 6-27. How an ArrayStoreException Arises

class Point
{
 int x, y;
}

class ColoredPoint extends Point
{
 int color;
}

public class ReificationDemo
{
 public static void main(String[] args)
 {
 ColoredPoint[] cptArray = new ColoredPoint[1];
 Point[] ptArray = cptArray;
 ptArray[0] = new Point();
 }
}

233CHAPTER 6: Mastering Advanced Language Features Part 2

Listing 6-27’s main() method first instantiates a ColoredPoint array that can store one element. In
contrast to this legal assignment (the types are compatible), specifying ColoredPoint[] cptArray =
new Point[1]; is illegal (and won’t compile) because it would result in a ClassCastException at
runtime—the array knows that the assignment is illegal.

Note If it’s not obvious, ColoredPoint[] cptArray = new Point[1]; is illegal because Point
instances have fewer members (only x and y) than ColoredPoint instances (x, y, and color). Attempting to
access a Point instance’s nonexistent color field from its entry in the ColoredPoint array would result in a
memory violation (because no memory has been assigned to color) and ultimately crash the virtual machine.

The second line (Point[] ptArray = cptArray;) is legal because of covariance (an array of
supertype references is a supertype of an array of subtype references). In this case, an array of
Point references is a supertype of an array of ColoredPoint references. The nonarray analogy is
that a subtype is also a supertype. For example, a java.lang.Throwable instance is a kind of
Object instance.

Covariance is dangerous when abused. For example, the third line (ptArray[0] = new Point();) results
in ArrayStoreException at runtime because a Point instance is not a ColoredPoint instance. Without
this exception, an attempt to access the nonexistent member color crashes the virtual machine.

Unlike with arrays, a generic type’s type parameters are not reified. They’re not available at runtime
because they’re thrown away after the source code is compiled. This “throwing away of type
parameters” is a result of erasure, which also involves inserting casts to appropriate types when the
code isn’t type correct and replacing type parameters by their upper bounds (such as Object).

Note The compiler performs erasure to let generic code interoperate with legacy (nongeneric) code. It
transforms generic source code into nongeneric runtime code. One consequence of erasure is that you cannot
use the instanceof operator with parameterized types apart from unbounded wildcard types. For example,
it’s illegal to specify List<Employee> le = null; if (le instanceof ArrayList<Employee>)
{}. Instead, you must change the instanceof expression to le instanceof ArrayList<?> (unbounded
wildcard) or le instanceof ArrayList (raw type, which is the preferred use).

Suppose you could specify an array-creation expression involving a type parameter or an actual type
argument. Why would this be bad? For an answer, consider the following example, which should
generate an ArrayStoreException instead of a ClassCastException but doesn’t do so:

List<Employee>[] empListArray = new List<Employee>[1];
List<String> strList = new ArrayList<String>();
strList.add("string");
Object[] objArray = empListArray;
objArray[0] = strList;
Employee e = empListArray[0].get(0);

234 CHAPTER 6: Mastering Advanced Language Features Part 2

Assume that the first line, which creates a one-element array where this element stores a List of
Employee, is legal. The second line creates a List of String, and the third line stores a single String
object in this list.

The fourth line assigns empListArray to objArray. This assignment is legal because arrays are
covariant and erasure converts List<Employee>[] to the List runtime type and List subtypes Object.

Because of erasure, the virtual machine doesn’t throw ArrayStoreException when it encounters
objArray[0] = strList;. After all, you’re assigning a List reference to a List[] array at runtime.
However, this exception would be thrown if generic types were reified because you’d then be
assigning a List<String> reference to a List<Employee>[] array.

However, there is a problem. A List<String> instance has been stored in an array that can
only hold List<Employee> instances. When the compiler-inserted cast operator attempts to
cast empListArray[0].get(0)’s return value ("string") to Employee, the cast operator throws a
ClassCastException object.

Mastering Enums
An enumerated type is a type that specifies a named sequence of related constants as its legal
values. The months in a calendar, the coins in a currency, and the days of the week are examples of
enumerated types.

Java developers have traditionally used sets of named integer constants to represent enumerated
types. Because this form of representation has proven to be problematic, Java 5 introduced the
enum alternative.

In this section I introduce you to enums. After discussing the problems with traditional enumerated
types, I present the enum alternative. I then introduce you to the Enum class, from which enums
originate.

The Trouble with Traditional Enumerated Types
Listing 6-28 declares a Coin enumerated type whose set of constants identifies different kinds of
coins in a currency.

Listing 6-28. An Enumerated Type Identifying Coins

class Coin
{
 final static int PENNY = 0;
 final static int NICKEL = 1;
 final static int DIME = 2;
 final static int QUARTER = 3;
}

Listing 6-29 declares a Weekday enumerated type whose constants identify the days of the week.

235CHAPTER 6: Mastering Advanced Language Features Part 2

Listing 6-29. An Enumerated Type Identifying Weekdays

class Weekday
{
 final static int SUNDAY = 0;
 final static int MONDAY = 1;
 final static int TUESDAY = 2;
 final static int WEDNESDAY = 3;
 final static int THURSDAY = 4;
 final static int FRIDAY = 5;
 final static int SATURDAY = 6;
}

Listing 6-28’s and 6-29’s approach to representing an enumerated type is problematic, where the
biggest problem is the lack of compile-time type safety. For example, you can pass a coin to a
method that requires a weekday and the compiler will not complain.

You can also compare coins to weekdays, as in Coin.NICKEL == Weekday.MONDAY, and specify even
more meaningless expressions, such as Coin.DIME + Weekday.FRIDAY - 1 / Coin.QUARTER. The
compiler doesn’t complain because it only sees ints.

Applications that depend on enumerated types are brittle. Because the type’s constants are
compiled into an application’s classfiles, changing a constant’s int value requires you to recompile
dependent applications or risk them behaving erratically.

Another problem with enumerated types is that int constants cannot be translated into meaningful
string descriptions. For example, what does the number 4 mean when debugging a faulty
application? Being able to see THURSDAY instead of 4 would be more helpful.

Note You could circumvent the previous problem by using String constants. For example, you might
specify public final static String THURSDAY = "THURSDAY";. Although the constant value
is more meaningful, String-based constants can impact performance because you cannot use == to
efficiently compare just any old strings (as you will discover in Chapter 7). Other problems related to
String-based constants include hard-coding the constant’s value ("THURSDAY") instead of the constant’s
name (THURSDAY) into source code, which makes it very difficult to change the constant’s value at a later time;
and misspelling a hard-coded constant ("THURZDAY"), which compiles correctly but is problematic at runtime.

The Enum Alternative
Java 5 introduced enums as a better alternative to traditional enumerated types. An enum is an
enumerated type that is expressed via reserved word enum. The following example uses enum to
declare Listing 6-28’s and 6-29’s enumerated types:

enum Coin { PENNY, NICKEL, DIME, QUARTER }
enum Weekday { SUNDAY, MONDAY, TUESDAY, WEDNESDAY, THURSDAY, FRIDAY, SATURDAY }

236 CHAPTER 6: Mastering Advanced Language Features Part 2

Despite their similarity to the int-based enumerated types found in C++ and other languages, this
example’s enums are classes. Each constant is a public static final field that represents an
instance of its enum class.

Because constants are final and because you cannot call an enum’s constructors to create more
constants, you can use == to compare constants efficiently and (unlike string constant comparisons)
safely. For example, you can specify c == Coin.NICKEL.

Enums promote compile-time type safety by preventing you from comparing constants in different
enums. For example, the compiler will report an error when it encounters Coin.PENNY == Weekday.
SUNDAY.

The compiler also frowns on passing a constant of the wrong enum kind to a method. For example,
you cannot pass Weekday.FRIDAY to a method whose parameter type is Coin.

Applications depending on enums are not brittle because the enum’s constants are not compiled
into an application’s classfiles. Also, the enum provides a toString() method for returning a more
useful description of a constant’s value.

Because enums are so useful, Java 5 enhanced the switch statement to support them. Listing 6-30
demonstrates this statement switching on one of the constants in the previous example’s Coin enum.

Listing 6-30. Using the Switch Statement with an Enum

public class EnhancedSwitch
{
 enum Coin { PENNY, NICKEL, DIME, QUARTER }

 public static void main(String[] args)
 {
 Coin coin = Coin.NICKEL;
 switch (coin)
 {
 case PENNY : System.out.println("1 cent"); break;
 case NICKEL : System.out.println("5 cents"); break;
 case DIME : System.out.println("10 cents"); break;
 case QUARTER: System.out.println("25 cents"); break;
 default : assert false;
 }
 }
}

Listing 6-30 demonstrates switching on an enum’s constants. This enhanced statement only allows
you to specify the name of a constant as a case label. If you prefix the name with the enum, as in
case Coin.DIME, the compiler reports an error.

Enhancing an Enum
You can add fields, constructors, and methods to an enum—you can even have the enum implement
interfaces. For example, Listing 6-31 adds a field, a constructor and two methods to Coin to
associate a denomination value with a Coin constant (such as 1 for penny and 5 for nickel) and
convert pennies to the denomination.

237CHAPTER 6: Mastering Advanced Language Features Part 2

Listing 6-31. Enhancing the Coin Enum

enum Coin
{
 PENNY(1),
 NICKEL(5),
 DIME(10),
 QUARTER(25);

 private final int denomValue;

 Coin(int denomValue)
 {
 this.denomValue = denomValue;
 }

 int denomValue()
 {
 return denomValue;
 }

 int toDenomination(int numPennies)
 {
 return numPennies / denomValue;
 }
}

Listing 6-31’s constructor accepts a denomination value, which it assigns to a private blank final
field named denomValue—all fields should be declared final because constants are immutable.
Notice that this value is passed to each constant during its creation (PENNY(1), for example).

Caution When the comma-separated list of constants is followed by anything other than an enum’s closing
brace, you must terminate the list with a semicolon or the compiler will report an error.

Furthermore, this listing’s denomValue() method returns denomValue, and its toDenomination()
method returns the number of coins of that denomination that are contained within the number of
pennies passed to this method as its argument. For example, 3 nickels are contained in 16 pennies.

Listing 6-32 shows how to use the enhanced Coin enum.

Listing 6-32. Exercising the Enhanced Coin Enum

public class Coins
{
 public static void main(String[] args)
 {
 if (args.length == 1)
 {
 int numPennies = Integer.parseInt(args[0]);
 System.out.println(numPennies + " pennies is equivalent to:");

238 CHAPTER 6: Mastering Advanced Language Features Part 2

 int numQuarters = Coin.QUARTER.toDenomination(numPennies);
 System.out.println(numQuarters + " " + Coin.QUARTER.toString() +
 (numQuarters != 1 ? "s," : ","));
 numPennies -= numQuarters * Coin.QUARTER.denomValue();
 int numDimes = Coin.DIME.toDenomination(numPennies);
 System.out.println(numDimes + " " + Coin.DIME.toString() +
 (numDimes != 1 ? "s, " : ","));
 numPennies -= numDimes * Coin.DIME.denomValue();
 int numNickels = Coin.NICKEL.toDenomination(numPennies);
 System.out.println(numNickels + " " + Coin.NICKEL.toString() +
 (numNickels != 1 ? "s, " : ", and"));
 numPennies -= numNickels*Coin.NICKEL.denomValue();
 System.out.println(numPennies + " " + Coin.PENNY.toString() +
 (numPennies != 1 ? "s" : ""));
 }
 System.out.println();
 System.out.println("Denomination values:");
 for (int i = 0; i < Coin.values().length; i++)
 System.out.println(Coin.values()[i].denomValue());
 }
}

Listing 6-32 describes an application that converts its solitary “pennies” command-line argument
to an equivalent amount expressed in quarters, dimes, nickels, and pennies. In addition to calling
a Coin constant’s denomValue() and toDenomValue() methods, the application calls toString() to
output a string representation of the coin.

Another called enum method is values(). This method returns an array of all Coin constants that
are declared in the Coin enum (value()’s return type, in this example, is Coin[]). This array is useful
when you need to iterate over these constants. For example, Listing 6-32 calls this method to output
each coin’s denomination.

When you run this application with 119 as its command-line argument (java Coins 119), it generates
the following output:

119 pennies is equivalent to:
4 QUARTERs,
1 DIME,
1 NICKEL, and
4 PENNYs

Denomination values:
1
5
10
25

The output shows that toString() returns a constant’s name. It is sometimes useful to override
this method to return a more meaningful value. For example, a method that extracts tokens
(named character sequences) from a string might use a Token enum to list token names and, via an
overriding toString() method, values—see Listing 6-33.

239CHAPTER 6: Mastering Advanced Language Features Part 2

Listing 6-33. Overriding toString() to Return a Token Constant’s Value

public enum Token
{
 IDENTIFIER("ID"),
 INTEGER("INT"),
 LPAREN("("),
 RPAREN(")"),
 COMMA(",");

 private final String tokValue;

 Token(String tokValue)
 {
 this.tokValue = tokValue;
 }

 @Override
 public String toString()
 {
 return tokValue;
 }

 public static void main(String[] args)
 {
 System.out.println("Token values:");
 for (int i = 0; i < Token.values().length; i++)
 System.out.println(Token.values()[i].name() + " = " +
 Token.values()[i]);
 }
}

Listing 6-33’s main() method calls values() to return the array of Token constants. For each
constant, it calls the constant’s name() method to return the constant’s name and implicitly calls
toString() to return the constant’s value. If you were to run this application, you would observe the
following output:

Token values:
IDENTIFIER = ID
INTEGER = INT
LPAREN = (
RPAREN =)
COMMA = ,

Another way to enhance an enum is to assign a different behavior to each constant. You can
accomplish this task by introducing an abstract method into the enum and overriding this method
in an anonymous subclass of the constant. Listing 6-34’s TempConversion enum demonstrates
this technique.

240 CHAPTER 6: Mastering Advanced Language Features Part 2

Listing 6-34. Using Anonymous Subclasses to Vary the Behaviors of Enum Constants

public enum TempConversion
{
 C2F("Celsius to Fahrenheit")
 {
 @Override
 double convert(double value)
 {
 return value * 9.0 / 5.0 + 32.0;
 }
 },

 F2C("Fahrenheit to Celsius")
 {
 @Override
 double convert(double value)
 {
 return (value - 32.0) * 5.0 / 9.0;
 }
 };

 TempConversion(String desc)
 {
 this.desc = desc;
 }

 private String desc;

 @Override
 public String toString()
 {
 return desc;
 }

 abstract double convert(double value);

 public static void main(String[] args)
 {
 System.out.println(C2F + " for 100.0 degrees = " + C2F.convert(100.0));
 System.out.println(F2C + " for 98.6 degrees = " + F2C.convert(98.6));
 }
}

When you run this application, it generates the following output:

Celsius to Fahrenheit for 100.0 degrees = 212.0
Fahrenheit to Celsius for 98.6 degrees = 37.0

241CHAPTER 6: Mastering Advanced Language Features Part 2

The Enum Class
The compiler regards enum as syntactic sugar. When it encounters an enum type declaration
(enum Coin {}), it generates a class whose name (Coin) is specified by the declaration, which also
subclasses the abstract Enum class (in the java.lang package), the common base class of all Java
language-based enumeration types.

If you examine Enum’s Java documentation, you will discover that it overrides Object’s clone(),
equals(), finalize(), hashCode(), and toString() methods:

 clone() is overridden to prevent constants from being cloned so that there is
never more than one copy of a constant; otherwise, constants could not be
compared via ==.

 equals() is overridden to compare constants via their references—constants
with the same identities (==) must have the same contents (equals()), and
different identities imply different contents.

 finalize() is overridden to ensure that constants cannot be finalized.

 hashCode() is overridden because equals() is overridden.

 toString() is overridden to return the constant’s name.

Except for toString(), all of the overriding methods are declared final so that they cannot be
overridden in a subclass.

Enum also provides its own methods. These methods include the final compareTo() (Enum
implements Comparable), getDeclaringClass(), name(), and ordinal() methods:

 compareTo() compares the current constant with the constant passed as an
argument to see which constant precedes the other constant in the enum and
returns a value indicating their order. This method makes it possible to sort an
array of unsorted constants.

 getDeclaringClass() returns the Class object corresponding to the current
constant’s enum. For example, the Class object for Coin is returned when
calling Coin.PENNY.getDeclaringClass() for enum Coin { PENNY, NICKEL, DIME,
QUARTER}. Also, TempConversion is returned when calling TempConversion.C2F.
getDeclaringClass() for Listing 6-34’s TempConversion enum. The compareTo()
method uses Class’s getClass() method and Enum’s getDeclaringClass()
method to ensure that only constants belonging to the same enum are
compared. Otherwise, a ClassCastException is thrown.

 name() returns the constant’s name. Unless overridden to return something more
descriptive, toString() also returns the constant’s name.

 ordinal() returns a zero-based ordinal, an integer that identifies the position of
the constant within the enum type. compareTo() compares ordinals.

Enum also provides the public static <T extends Enum<T>> T valueOf(Class<T> enumType, String
name) method for returning the enum constant from the specified enum with the specified name:

 enumType identifies the Class object of the enum from which to return a constant.

 name identifies the name of the constant to return.

242 CHAPTER 6: Mastering Advanced Language Features Part 2

For example, Coin penny = Enum.valueOf(Coin.class, "PENNY"); assigns the Coin constant whose
name is PENNY to penny.

You will not discover a values() method in Enum’s Java documentation because the compiler
synthesizes (manufactures) this method while generating the class.

Extending the Enum Class
Enum’s generic type is Enum<E extends Enum<E>>. Although the formal type parameter list looks
ghastly, it’s not that hard to understand. But first, take a look at Listing 6-35.

Listing 6-35. The Coin Class As It Appears from the Perspective of Its Classfile

public final class Coin extends Enum<Coin>
{
 public static final Coin PENNY = new Coin("PENNY", 0);
 public static final Coin NICKEL = new Coin("NICKEL", 1);
 public static final Coin DIME = new Coin("DIME", 2);
 public static final Coin QUARTER = new Coin("QUARTER", 3);
 private static final Coin[] $VALUES = { PENNY, NICKEL, DIME, QUARTER };

 public static Coin[] values()
 {
 return Coin.$VALUES.clone();
 }

 public static Coin valueOf(String name)
 {
 return Enum.valueOf(Coin.class, "Coin");
 }

 private Coin(String name, int ordinal)
 {
 super(name, ordinal);
 }
}

Behind the scenes, the compiler converts enum Coin { PENNY, NICKEL, DIME, QUARTER} into a class
declaration that is similar to Listing 6-35.

The following rules show you how to interpret Enum<E extends Enum<E>> in the context of Coin
extends Enum<Coin>:

Any subclass of Enum must supply an actual type argument to Enum. For example,
Coin’s header specifies Enum<Coin>.

The actual type argument must be a subclass of Enum. For example, Coin is a
subclass of Enum.

A subclass of Enum (such as Coin) must follow the idiom that it supplies its own
name (Coin) as an actual type argument.

243CHAPTER 6: Mastering Advanced Language Features Part 2

The third rule allows Enum to declare methods—compareTo(), getDeclaringClass(), and valueOf()—
whose parameter and/or return types are specified in terms of the subclass (Coin) and not in terms
of Enum. The rationale for doing this is to avoid having to specify casts. For example, you don’t need
to cast valueOf()’s return value to Coin in Coin penny = Enum.valueOf(Coin.class, "PENNY");.

Note You cannot compile Listing 6-35 because the compiler will not compile any class that extends Enum.
It will also complain about super(name, ordinal);.

EXERCISES

The following exercises are designed to test your understanding of Chapter 6’s content:

1. What is an assertion?

2. When would you use assertions?

3. True or false: Specifying the -ea command-line option with no argument enables all assertions,
including system assertions.

4. Define annotation.

5. What kinds of application elements can be annotated?

6. Identify the three compiler-supported annotation types.

7. How do you declare an annotation type?

8. What is a marker annotation?

9. What is an element?

10. How do you assign a default value to an element?

11. What is a meta-annotation?

12. Identify Java’s four meta-annotation types.

13. Define generics.

14. Why would you use generics?

15. What is the difference between a generic type and a parameterized type?

16. Which one of the nonstatic member class, local class, and anonymous class inner class categories
cannot be generic?

17. Identify the five kinds of actual type arguments.

18. True or false: You cannot specify the name of a primitive type (such as double or int) as an actual
type argument.

19. What is a raw type?

20. When does the compiler report an unchecked warning message and why?

244 CHAPTER 6: Mastering Advanced Language Features Part 2

21. How do you suppress an unchecked warning message?

22. True or false: List<E>’s E type parameter is unbounded.

23. How do you specify a single upper bound?

24. What is a recursive type bound?

25. Why are wildcard type arguments necessary?

26. What is a generic method?

27. In Listing 6-36, which overloaded method does the methodCaller() generic method call?

Listing 6-36. Which someOverloadedMethod() Is Called?

import java.util.Date;

public class CallOverloadedNGMethodFromGMethod
{
 public static void someOverloadedMethod(Object o)
 {
 System.out.println("call to someOverloadedMethod(Object o)");
 }
 public static void someOverloadedMethod(Date d)
 {
 System.out.println("call to someOverloadedMethod(Date d)");
 }
 public static <T> void methodCaller(T t)
 {
 someOverloadedMethod(t);
 }
 public static void main(String[] args)
 {
 methodCaller(new Date());
 }
}

28. What is reification?

29. True or false: Type parameters are reified.

30. What is erasure?

31. Define enumerated type.

32. Identify three problems that can arise when you use enumerated types whose constants are int
based.

33. What is an enum?

34. How do you use the switch statement with an enum?

35. In what ways can you enhance an enum?

36. What is the purpose of the abstract Enum class?

245CHAPTER 6: Mastering Advanced Language Features Part 2

37. What is the difference between Enum’s name() and toString() methods?

38. True or false: Enum’s generic type is Enum<E extends Enum<E>>.

39. Declare a ToDo marker annotation type that annotates only type elements and that also uses the
default retention policy.

40. Rewrite the StubFinder application to work with Listing 6-13’s Stub annotation type (with
appropriate @Target and @Retention annotations) and Listing 6-14’s Deck class.

41. Implement a Stack<E> generic type in a manner that is similar to Listing 6-22’s Queue
class. Stack must declare push(), pop(), and isEmpty() methods (it could also declare
an isFull() method, but that method is not necessary in this exercise); push() must
throw a StackFullException instance when the stack is full; and pop() must throw
a StackEmptyException instance when the stack is empty. (You must create your own
StackFullException and StackEmptyException helper classes because they are not provided
for you in the standard class library.) Declare a similar main() method and insert two assertions
into this method that validate your assumptions about the stack being empty immediately after being
created and immediately after popping the last element.

42. Declare a Compass enum with NORTH, SOUTH, EAST, and WEST members. Declare a UseCompass
class whose main() method randomly selects one of these constants and then switches on that
constant. Each of the switch statement’s cases should output a message such as heading north.

Summary
An assertion is a statement that lets you express an assumption of application correctness via
a Boolean expression. If this expression evaluates to true, execution continues with the next
statement. Otherwise, an error that identifies the cause of failure is thrown.

There are many situations where assertions should be used. These situations organize into internal
invariant, control-flow invariant, and design-by-contract categories. An invariant is something that
doesn’t change.

Although there are many situations where assertions should be used, there also are situations where
they should be avoided. For example, you should not use assertions to check the arguments that are
passed to public methods.

The compiler records assertions in the classfile. However, assertions are disabled at runtime
because they can affect performance. You must enable the classfile’s assertions before you can test
assumptions about the behaviors of your classes.

Annotations are instances of annotation types and associate metadata with application elements.
They are expressed in source code by prefixing their type names with @ symbols. For example,
@Readonly is an annotation and Readonly is its type.

Java supplies a wide variety of annotation types, including the compiler-oriented Override,
Deprecated, and SuppressWarnings types. However, you can also declare your own annotation types
by using the @interface syntax.

246 CHAPTER 6: Mastering Advanced Language Features Part 2

Annotation types can be annotated with meta-annotations that identify the application elements
they can target (such as constructors, methods, or fields), their retention policies, and other
characteristics.

Annotations whose types are assigned a runtime retention policy via @Retention annotations can be
processed at runtime using custom applications. (Java 5 introduced an apt tool for this purpose, but
its functionality was largely integrated into the compiler starting with Java 6.)

Java 5 introduced generics, language features for declaring and using type-agnostic classes
and interfaces. While working with Java’s Collections Framework, these features help you avoid
ClassCastExceptions.

A generic type is a class or interface that introduces a family of parameterized types by declaring a
formal type parameter list. The type name that replaces a type parameter is known as an actual type
argument.

There are five kinds of actual type arguments: concrete type, concrete parameterized type, array
type, type parameter, and wildcard. Furthermore, a generic type also identifies a raw type, which is a
generic type without its type parameters.

A generic method is a class or instance method with a type-generalized implementation, for
example, <T> void copyList(List<T> src, List<T> dest). The compiler infers the actual type
argument from the context in which the method is invoked.

An enumerated type is a type that specifies a named sequence of related constants as its legal
values. Java developers have traditionally used sets of named integer constants to represent
enumerated types.

Because sets of named integer constants have proven to be problematic, Java 5 introduced the
enum alternative. An enum is an enumerated type that is expressed in source code via reserved
word enum.

You can add fields, constructors, and methods to an enum—you can even have the enum implement
interfaces. Also, you can override toString() to provide a more useful description of a constant’s
value and subclass constants to assign different behaviors.

The compiler regards enum as syntactic sugar for a class that subclasses Enum. This abstract class
overrides various Object methods to provide default behaviors (usually for safety reasons) and
provides additional methods for various purposes.

This chapter largely completes a tour of the Java language. In Chapter 7 I begin to emphasize Java
APIs by focusing on those APIs related to mathematics, string management, and packages.

247

Chapter 7
Exploring the Basic APIs Part 1

The standard class library’s java.lang and java.math packages provide many basic APIs, which are
designed to support language features. You have already encountered a few of these APIs, such as
the Object and String classes and the Throwable class hierarchy. In this chapter I introduce you to
those basic library APIs that pertain to mathematics, string management, and packages.

Exploring the Math APIs
In Chapter 2 I presented Java’s +, -, *, /, and % operators for performing basic arithmetic on
primitive-type values. Java also provides classes for performing trigonometry and other advanced
math operations, representing monetary values accurately, and supporting extremely long integers
for use in RSA encryption (http://en.wikipedia.org/wiki/RSA_(algorithm)) and other contexts.

Math and StrictMath
The java.lang.Math class declares double constants E and PI that represent the natural logarithm
base value (2.71828 . . .) and the ratio of a circle’s circumference to its diameter (3.14159 . . .). E
is initialized to 2.718281828459045 and PI is initialized to 3.141592653589793. Math also declares
assorted class methods to perform various math operations. Table 7-1 describes many of these
methods.

248 CHAPTER 7: Exploring the Basic APIs Part 1

Table 7-1. Math Methods

Method Description

double abs(double d) Return the absolute value of d. There are four special cases: abs(−0.0)
= +0.0, abs(+infinity) = +infinity, abs(−infinity) = +infinity, and
abs(NaN) = NaN.

float abs(float f) Return the absolute value of f. There are four special cases: abs(−0.0)
= +0.0, abs(+infinity) = +infinity, abs(−infinity) = +infinity, and
abs(NaN) = NaN.

int abs(int i) Return the absolute value of i. There is one special case: the absolute value
of Integer.MIN_VALUE is Integer.MIN_VALUE.

long abs(long l) Return the absolute value of l. There is one special case: the absolute value
of Long.MIN_VALUE is Long.MIN_VALUE.

double acos(double d) Return angle d’s arc cosine within the range 0 through PI. There are three
special cases: acos(anything > 1) = NaN, acos(anything < −1) = NaN, and
acos(NaN) = NaN.

double asin(double d) Return angle d’s arc sine within the range -PI/2 through PI/2. There are three
special cases: asin(anything > 1) = NaN, asin(anything < −1) = NaN, and
asin(NaN) = NaN.

double atan(double d) Return angle d’s arc tangent within the range -PI/2 through PI/2. There are
five special cases: atan(+0.0) = +0.0, atan(−0.0) = −0.0, atan(+infinity)
= +PI/2, atan(−infinity) = −PI/2, and atan(NaN) = NaN.

double ceil(double d) Return the smallest value (closest to negative infinity) that is not less than d
and is equal to an integer. There are six special cases: ceil(+0.0) = +0.0,
ceil(−0.0) = −0.0, ceil(anything > −1.0 and < 0.0) = −0.0, ceil(+infinity)
= +infinity, ceil(−infinity) = −infinity, and ceil(NaN) = NaN.

double cos(double d) Return the cosine of angle d (expressed in radians). There are three special
cases: cos(+infinity) = NaN, cos(−infinity) = NaN, and cos(NaN) = NaN.

double exp(double d) Return Euler’s number e to the power d. There are three special cases:
exp(+infinity) = +infinity, exp(−infinity) = +0.0, and exp(NaN) = NaN.

double floor(double d) Return the largest value (closest to positive infinity) that is not greater than d
and is equal to an integer. There are five special cases: floor(+0.0) = +0.0,
floor(−0.0) = −0.0, floor(+infinity) = +infinity, floor(−infinity) =
−infinity, and floor(NaN) = NaN.

double log(double d) Return the natural logarithm (base e) of d. There are six special cases:
log(+0.0) = −infinity, log(−0.0) = −infinity, log(anything < 0) = NaN,
log(+infinity) = +infinity, log(−infinity) = NaN, and log(NaN) = NaN.

double log10(double d) Return the base 10 logarithm of d. There are six special cases: log10(+0.0)
= −infinity, log10(−0.0) = −infinity, log10(anything < 0) = NaN,
log10(+infinity) = +infinity, log10(−infinity) = NaN, and
log10(NaN) = NaN.

(continued)

249CHAPTER 7: Exploring the Basic APIs Part 1

Method Description

double max(double d1,
double d2)

Return the most positive (closest to positive infinity) of d1 and d2. There are
four special cases: max(NaN, anything) = NaN, max(anything, NaN) = NaN,
max(+0.0, -0.0) = +0.0, and max(−0.0, +0.0) = +0.0.

float max(float f1, float
f2)

Return the most positive (closest to positive infinity) of f1 and f2. There are
four special cases: max(NaN, anything) = NaN, max(anything, NaN) = NaN,
max(+0.0, -0.0) = +0.0, and max(−0.0, +0.0) = +0.0.

int max(int i1, int i2) Return the most positive (closest to positive infinity) of i1 and i2.

long max(long l1, long l2) Return the most positive (closest to positive infinity) of l1 and l2.

double min(double d1,
double d2)

Return the most negative (closest to negative infinity) of d1 and d2. There are
four special cases: min(NaN, anything) = NaN, min(anything, NaN) = NaN,
min(+0.0, -0.0) = −0.0, and min(−0.0, +0.0) = −0.0.

float min(float f1, float
f2)

Return the most negative (closest to negative infinity) of f1 and f2. There are
four special cases: min(NaN, anything) = NaN, min(anything, NaN) = NaN,
min(+0.0, -0.0) = −0.0, and min(−0.0, +0.0) = −0.0.

int min(int i1, int i2) Return the most negative (closest to negative infinity) of i1 and i2.

long min(long l1, long l2) Return the most negative (closest to negative infinity) of l1 and l2.

double random() Return a pseudorandom number between 0.0 (inclusive) and 1.0 (exclusive).

long round(double d) Return the result of rounding d to a long integer. The result is equivalent to
(long) Math.floor(d + 0.5). There are seven special cases: round(+0.0)
= +0.0, round(−0.0) = +0.0, round(anything > Long.MAX_VALUE) =
Long.MAX_VALUE, round(anything < Long.MIN_VALUE) = Long.MIN_VALUE,
round(+infinity) = Long.MAX_VALUE, round(−infinity) = Long.MIN_VALUE,
and round(NaN) = +0.0.

int round(float f) Return the result of rounding f to an integer. The result is equivalent to (int)
Math.floor(f + 0.5). There are seven special cases: round(+0.0) = +0.0,
round(−0.0) = +0.0, round(anything > Integer.MAX_VALUE) = Integer.
MAX_VALUE, round(anything < Integer.MIN_VALUE) = Integer.MIN_VALUE,
round(+infinity) = Integer.MAX_VALUE, round(−infinity) = Integer.
MIN_VALUE, and round(NaN) = +0.0.

double signum(double d) Return the sign of d as −1.0 (d less than 0.0), 0.0 (d equals 0.0), and 1.0
(d greater than 0.0). There are five special cases: signum(+0.0) = +0.0,
signum(−0.0) = −0.0, signum(+infinity) = +1.0, signum(−infinity) =
−1.0, and signum(NaN) = NaN.

float signum(float f) Return the sign of f as −1.0 (f less than 0.0), 0.0 (f equals 0.0), and 1.0
(f greater than 0.0). There are five special cases: signum(+0.0) = +0.0,
signum(−0.0) = −0.0, signum(+infinity) = +1.0, signum(−infinity)
= −1.0, and signum(NaN) = NaN.

Table 7-1. (continued)

(continued)

250 CHAPTER 7: Exploring the Basic APIs Part 1

Table 7-1 reveals a wide variety of useful math-oriented methods. For example, each abs() method
returns its argument’s absolute value (number without regard for sign).

abs(double) and abs(float) are useful for comparing double precision floating-point and floating-
point values safely. For example, 0.3 == 0.1 + 0.1 + 0.1 evaluates to false because 0.1 has no
exact representation. However, you can compare these expressions with abs() and a tolerance
value, which indicates an acceptable range of error. For example, Math.abs(0.3 - (0.1 + 0.1 +
0.1)) < 0.1 returns true because the absolute difference between 0.3 and 0.1 + 0.1 + 0.1 is less
than a 0.1 tolerance value.

In previous chapters I demonstrated other Math methods. For example, in Chapter 3 I demonstrated
Math’s sin(), toRadians(), cos(), and random() methods.

As Chapter 6’s Lotto649 application revealed, random() (which returns a number that appears
to be randomly chosen but is actually chosen by a predictable math calculation and hence is
pseudorandom) is useful in simulations (as well as in games and wherever an element of chance is
needed). However, its double precision floating-point range of 0.0 through (almost) 1.0 isn’t practical.
To make random() more useful, its return value must be transformed into a more useful range,
perhaps integer values 0 through 49, or maybe -100 through 100. You will find the following rnd()
method useful for making these transformations:

static int rnd(int limit)
{
 return (int) (Math.random() * limit);
}

Method Description

double sin(double d) Return the sine of angle d (expressed in radians). There are five special cases:
sin(+0.0) = +0.0, sin(−0.0) = −0.0, sin(+infinity) = NaN, sin(−infinity)
= NaN, and sin(NaN) = NaN.

double sqrt(double d) Return the square root of d. There are five special cases: sqrt(+0.0) =
+0.0, sqrt(−0.0) = −0.0, sqrt(anything < 0) = NaN, sqrt(+infinity) =
+infinity, and sqrt(NaN) = NaN.

double tan(double d) Return the tangent of angle d (expressed in radians). There are five special
cases: tan(+0.0) = +0.0, tan(−0.0) = −0.0, tan(+infinity) = NaN,
tan(−infinity) = NaN, and tan(NaN) = NaN.

double toDegrees(double
angrad)

Convert angle angrad from radians to degrees via expression angrad * 180 / PI.
There are five special cases: toDegrees(+0.0) = +0.0, toDegrees(−0.0)
= −0.0, toDegrees(+infinity) = +infinity, toDegrees(−infinity) =
−infinity, and toDegrees(NaN) = NaN.

double toRadians(double
angdeg)

Convert angle angdeg from degrees to radians via expression angdeg / 180 * PI.
There are five special cases: toRadians(+0.0) = +0.0, toRadians(−0.0) = −0.0,
toRadians(+infinity) = +infinity, toRadians(−infinity) = −infinity,
and toRadians(NaN) = NaN.

Table 7-1. (continued)

251CHAPTER 7: Exploring the Basic APIs Part 1

rnd() transforms random()’s 0.0 to (almost) 1.0 double precision floating-point range to a 0 through
limit - 1 integer range. For example, rnd(50) returns an integer ranging from 0 through 49. Also,
-100 + rnd(201) transforms 0.0 to (almost) 1.0 into −100 through 100 by adding a suitable offset
and passing an appropriate limit value.

Caution Don’t specify (int) Math.random() * limit because this expression always evaluates
to 0. The expression first casts random()’s double precision floating-point fractional value (0.0 through
0.99999 . . .) to integer 0 by truncating the fractional part and then multiplies 0 by limit, which results in 0.

The sin() and cos() methods implement the sine and cosine trigonometric functions—see
http://en.wikipedia.org/wiki/Trigonometric_functions. These functions have uses ranging
from the study of triangles to modeling periodic phenomena (such as simple harmonic motion—see
http://en.wikipedia.org/wiki/Simple_harmonic_motion).

You can use sin() and cos() to generate and display sine and cosine waves. Listing 7-1 presents
the source code to an application that does just this.

Listing 7-1. Graphing Sine and Cosine Waves

public class Graph
{
 final static int ROWS = 11; // Must be odd
 final static int COLS = 23;

 public static void main(String[] args)
 {
 char[][] screen = new char[ROWS][COLS];
 double scaleX = COLS / 360.0;
 for (int degree = 0; degree < 360; degree++)
 {
 int row = ROWS / 2 +
 (int) Math.round(ROWS / 2 * Math.sin(Math.toRadians(degree)));
 int col = (int) (degree * scaleX);
 screen[row][col] = 'S';
 row = ROWS / 2 +
 (int) Math.round(ROWS / 2 * Math.cos(Math.toRadians(degree)));
 screen[row][col] = (screen[row][col] == 'S') ? '*' : 'C';
 }
 for (int row = ROWS - 1; row >= 0; row--)
 {
 for (int col = 0; col < COLS; col++)
 System.out.print(screen[row][col]);
 System.out.println();
 }
 }
}

252 CHAPTER 7: Exploring the Basic APIs Part 1

Listing 7-1 introduces a Graph class that first declares a pair of constants: ROWS and COLS. These
constants specify the dimensions of an array on which the graphs are generated. ROWS must be
assigned an odd integer; otherwise, an instance of the java.lang.ArrayIndexOutOfBoundsException
class is thrown.

Tip It’s a good idea to use constants wherever possible. The source code is easier to maintain because you
only need to change the constant’s value in one place instead of having to change each corresponding value
throughout the source code.

Graph next declares its main() method, which first creates a two-dimensional screen array of
characters. This array is used to simulate an old-style character-based screen for viewing the
graphs.

main() next calculates a horizontal scale value for scaling each graph horizontally so that 360
horizontal (degree) positions fit into the number of columns specified by COLS.

Continuing, main() enters a for loop that, for each of the sine and cosine graphs, creates (row,
column) coordinates for each degree value, and assigns a character to the screen array at those
coordinates. The character is S for the sine graph, C for the cosine graph, and * when the cosine
graph intersects the sine graph.

The row calculation invokes toRadians() to convert its degree argument to radians, which is required
by the sin() and cos() methods. The value returned from sin() or cos() (−1 to 1) is then multiplied
by ROWS / 2 to scale this value to half the number of rows in the screen array. After rounding the
result to the nearest long integer via the long round(double d) method, a cast is used to convert
from long integer to integer, and this integer is added to ROW / 2 to offset the row coordinate so that
it’s relative to the array’s middle row. The column calculation is simpler, multiplying the degree value
by the horizontal scale factor.

The screen array is dumped to the standard output device via a pair of nested for loops. The outer
for loop reverses the array output so that it appears right side up—row number 0 should output last.

Compile Listing 7-1 (javac Graph.java) and run the application (java Graph). You will observe the
following output:

CC SSSS CC
 CSSS SS CC
 S*C SS CC
 S CC SS CC
SS CC SS CC
S CC S CC S
 C SS C SS
 CC SS CC S
 CC SCC SS
 CC CSS SSS
 CCCCC SSSS

253CHAPTER 7: Exploring the Basic APIs Part 1

Table 7-1 also reveals some curiosities beginning with +infinity, −infinity, +0.0, −0.0, and NaN (Not a
Number).

Java’s floating-point calculations are capable of returning +infinity, −infinity, +0.0, −0.0, and NaN
because Java largely conforms to IEEE 754 (http://en.wikipedia.org/wiki/IEEE_754), a standard
for floating-point calculations. The following are the circumstances under which these special
values arise:

+infinity returns from attempting to divide a positive number by 0.0.
For example, System.out.println(1.0 / 0.0); outputs Infinity.

−infinity returns from attempting to divide a negative number by 0.0.
For example, System.out.println(−1.0 / 0.0); outputs -Infinity.

NaN returns from attempting to divide 0.0 by 0.0, attempting to calculate the
square root of a negative number, and attempting other strange operations.
For example, System.out.println(0.0 / 0.0); and
System.out.println(Math.sqrt(−1.0)); each output NaN.

+0.0 results from attempting to divide a positive number by +infinity.
For example, System.out.println(1.0 / (1.0 / 0.0)); outputs
0.0 (+0.0 without the + sign).

−0.0 results from attempting to divide a negative number by +infinity.
For example, System.out.println(−1.0 / (1.0 / 0.0)); outputs −0.0.

After an operation yields +infinity, -infinity, or NaN, the rest of the expression usually equals that
special value. For example, System.out.println(1.0 / 0.0 * 20.0); outputs Infinity. Also, an
expression that first yields +infinity or -infinity might devolve into NaN. For example, expression
1.0 / 0.0 * 0.0 first yields +infinity (1.0 / 0.0) and then yields NaN (+infinity * 0.0).

Another curiosity is Integer.MAX_VALUE, Integer.MIN_VALUE, Long.MAX_VALUE, and Long.MIN_VALUE.
Each of these items is a primitive wrapper class constant that identifies the maximum or minimum
value that can be represented by the class’s associated primitive type. (I discuss the primitive type
wrapper classes in Chapter 8.)

Finally, you might wonder why the abs(), max(), and min() overloaded methods don’t include
byte and short versions, as in byte abs(byte b) and short abs(short s). There is no need for
these methods because the limited ranges of bytes and short integers make them unsuitable in
calculations. If you need such a method, check out Listing 7-2.

Listing 7-2. Obtaining Absolute Values for Byte Integers and Short Integers

public class AbsByteShort
{
 static byte abs(byte b)
 {
 return (b < 0) ? (byte) -b : b;
 }

 static short abs(short s)
 {
 return (s < 0) ? (short) -s : s;
 }

254 CHAPTER 7: Exploring the Basic APIs Part 1

 public static void main(String[] args)
 {
 byte b = −2;
 System.out.println(abs(b)); // Output: 2
 short s = −3;
 System.out.println(abs(s)); // Output: 3
 }
}

Listing 7-2’s (byte) and (short) casts are necessary because -b converts b’s value from a byte to
an int, and -s converts s’s value from a short to an int. In contrast, these casts are not needed with
(b < 0) and (s < 0), which automatically cast b’s and s’s values to an int before comparing them
with int-based 0.

Tip Their absence from Math suggests that byte and short are not very useful in method declarations.
However, these types are useful when declaring arrays whose elements store small values (such as a binary
file’s byte values). If you declared an array of int or long to store such values, you would end up wasting
heap space (and might even run out of memory).

While searching through the java.lang package documentation, you will probably encounter a
class named StrictMath. Apart from a longer name, this class appears to be identical to Math. The
differences between these classes can be summed up as follows:

 StrictMath’s methods return exactly the same results on all platforms. In
contrast, some of Math’s methods might return values that vary ever so slightly
from platform to platform.

Because StrictMath cannot utilize platform-specific features such as an
extended-precision math coprocessor, an implementation of StrictMath might
be less efficient than an implementation of Math.

For the most part, Math’s methods call their StrictMath counterparts. Two exceptions are
toDegrees() and toRadians(). Although these methods have identical code bodies in both classes,
StrictMath’s implementations include reserved word strictfp in the method headers:

public static strictfp double toDegrees(double angrad)
public static strictfp double toRadians(double angdeg)

Wikipedia’s “strictfp” entry (http://en.wikipedia.org/wiki/Strictfp) mentions that strictfp
restricts floating-point calculations to ensure portability. This reserved word accomplishes portability
in the context of intermediate floating-point representations and overflows/underflows (generating
a value too large or small to fit a representation).

Without strictfp, an intermediate calculation is not limited to the IEEE 754 32-bit and 64-bit
floating-point representations that Java supports. Instead, the calculation can take advantage of
a larger representation (perhaps 128 bits) on a platform that supports this representation.

255CHAPTER 7: Exploring the Basic APIs Part 1

An intermediate calculation that overflows or underflows when its value is represented in 32/64
bits might not overflow/underflow when its value is represented in more bits. Because of this
discrepancy, portability is compromised. strictfp levels the playing field by requiring all platforms to
use 32/64 bits for intermediate calculations.

When applied to a method, strictfp ensures that all floating-point calculations performed in that
method are in strict compliance. However, strictfp can be used in a class header declaration (as
in public strictfp class FourierTransform) to ensure that all floating-point calculations performed
in that class are strict.

Note Math and StrictMath are declared final so that they cannot be extended. Also, they declare
private empty noargument constructors so that they cannot be instantiated. Finally, Math and StrictMath
are examples of utility classes because they exist as placeholders for utility constants and utility (static)
methods.

BigDecimal
In Chapter 3 I introduced a SavingsAccount class with a balance field of type int. This field records
the number of dollars in this account. Alternatively, it could represent the number of pennies that the
account contains.

Perhaps you are wondering why I didn’t declare balance to be of type double or float. That way,
balance could store values such as 18.26 (18 dollars in the whole number part and 26 pennies in the
fraction part). I didn’t declare balance to be a double or float for the following reasons:

Not all floating-point values that can represent monetary amounts (dollars and
cents) can be stored exactly in memory. For example, 0.1 (which you might use
to represent 10 cents), has no exact storage representation. If you executed
double total = 0.1; for (int i = 0; i < 50; i++) total += 0.1;
System.out.println(total);, you would observe 5.099999999999998 instead
of the correct 5.1 as the output.

The result of each floating-point calculation needs to be rounded to the nearest
cent. Failure to do so introduces tiny errors that can cause the final result to
differ from the correct result. Although Math supplies a pair of round() methods
that you might consider using to round a calculation to the nearest cent, these
methods round to the nearest integer (dollar).

Listing 7-3’s InvoiceCalc application demonstrates both problems. However, the first problem isn’t
serious because it contributes very little to the inaccuracy. The more serious problem occurs from
failing to round to the nearest cent after performing a calculation.

256 CHAPTER 7: Exploring the Basic APIs Part 1

Listing 7-3. Floating-Point-Based Invoice Calculations Leading to Confusing Results

import java.text.NumberFormat;

public class InvoiceCalc
{
 final static double DISCOUNT_PERCENT = 0.1; // 10%
 final static double TAX_PERCENT = 0.05; // 5%

 public static void main(String[] args)
 {
 double invoiceSubtotal = 285.36;
 double discount = invoiceSubtotal * DISCOUNT_PERCENT;
 double subtotalBeforeTax = invoiceSubtotal - discount;
 double salesTax = subtotalBeforeTax * TAX_PERCENT;
 double invoiceTotal = subtotalBeforeTax + salesTax;
 NumberFormat currencyFormat = NumberFormat.getCurrencyInstance();
 System.out.println("Subtotal: " + currencyFormat.format(invoiceSubtotal));
 System.out.println("Discount: " + currencyFormat.format(discount));
 System.out.println("SubTotal after discount: " +
 currencyFormat.format(subtotalBeforeTax));
 System.out.println("Sales Tax: " + currencyFormat.format(salesTax));
 System.out.println("Total: " + currencyFormat.format(invoiceTotal));
 }
}

Listing 7-3 performs several invoice-related calculations that result in an incorrect final total. After
performing these calculations, it obtains a currency-based formatter for formatting double precision
floating-point values into string-based monetary amounts with a currency symbol (such as the dollar
sign [$]). The formatter is obtained by calling the java.text.NumberFormat class’s NumberFormat
getCurrencyInstance() method. A value is then formatted into a currency string by passing this
value as an argument to NumberFormat’s String format(double value) method.

When you run InvoiceCalc, you will discover the following output:

Subtotal: $285.36
Discount: $28.54
SubTotal after discount: $256.82
Sales Tax: $12.84
Total: $269.67

This output reveals the correct subtotal, discount, subtotal after discount, and sales tax. In contrast,
it incorrectly reveals 269.67 instead of 269.66 as the final total. The customer will probably not
appreciate paying an extra penny, even though 269.67 is the correct value according to the
floating-point calculations:

Subtotal: 285.36
Discount: 28.536
SubTotal after discount: 256.824
Sales Tax: 12.8412
Total: 269.6652

257CHAPTER 7: Exploring the Basic APIs Part 1

The problem arises from not rounding the result of each calculation to the nearest cent before
performing the next calculation. As a result, the 0.024 in 256.824 and 0.0012 in 12.84 contribute to
the final value, causing NumberFormat’s format() method to round this value to 269.67.

Caution Never use float or double to represent monetary values.

Java provides a solution to both problems in the form of a java.math.BigDecimal class. This
immutable class (a BigDecimal instance cannot be modified) represents a signed decimal number
(such as 23.653) of arbitrary precision (number of digits) with an associated scale (an integer that
specifies the number of digits after the decimal point).

BigDecimal declares three convenience constants: ONE, TEN, and ZERO. Each constant is the
BigDecimal equivalent of 1, 10, and 0 with a zero scale.

Caution BigDecimal declares several ROUND_-prefixed constants. These constants are largely obsolete
and should be avoided, along with the public BigDecimal divide(BigDecimal divisor,
int scale, int roundingMode) and public BigDecimal setScale(int newScale, int
roundingMode) methods, which are still present so that dependent legacy code continues to compile.

BigDecimal also declares a variety of useful constructors and methods. A few of these constructors
and methods are described in Table 7-2.

Table 7-2. BigDecimal Constructors and Methods

Method Description

BigDecimal(int val) Initialize the BigDecimal instance to val’s digits. Set the scale to 0.

BigDecimal(String val) Initialize the BigDecimal instance to the decimal equivalent of val.
Set the scale to the number of digits after the decimal point or 0
when no decimal point is specified. This constructor throws
java.lang.NullPointerException when val is null and
java.lang.NumberFormatException when val’s string representation
is invalid (contains letters, for example).

BigDecimal abs() Return a new BigDecimal instance that contains the absolute value
of the current instance’s value. The resulting scale is the same as the
current instance’s scale.

BigDecimal add(BigDecimal augend) Return a new BigDecimal instance that contains the sum of the
current value and the argument value. The resulting scale is the
maximum of the current and argument scales. This method throws
NullPointerException when augend is null.

(continued)

258 CHAPTER 7: Exploring the Basic APIs Part 1

Method Description

BigDecimal divide(BigDecimal
divisor)

Return a new BigDecimal instance that contains the quotient of
the current value divided by the argument value. The resulting
scale is the difference of the current and argument scales. It might
be adjusted when the result requires more digits. This method
throws NullPointerException when divisor is null or
java.lang.ArithmeticException when divisor represents 0 or the
result cannot be represented exactly.

BigDecimal max(BigDecimal val) Return either this or val, whichever BigDecimal instance contains the
larger value. This method throws NullPointerException when val is null.

BigDecimal min(BigDecimal val) Return either this or val, whichever BigDecimal instance contains the
smaller value. This method throws NullPointerException when val is null.

BigDecimal multiply(BigDecimal
multiplicand)

Return a new BigDecimal instance that contains the product of
the current value and the argument value. The resulting scale is
the sum of the current and argument scales. This method throws
NullPointerException when multiplicand is null.

BigDecimal negate() Return a new BigDecimal instance that contains the negative of the
current value. The resulting scale is the same as the current scale.

int precision() Return the precision of the current BigDecimal instance.

BigDecimal remainder(BigDecimal
divisor)

Return a new BigDecimal instance that contains the remainder of the
current value divided by the argument value. The resulting scale is
the difference of the current scale and the argument scale. It might
be adjusted when the result requires more digits. This method throws
NullPointerException when divisor is null or ArithmeticException
when divisor represents 0.

int scale() Return the scale of the current BigDecimal instance.

BigDecimal setScale(int newScale,
RoundingMode roundingMode)

Return a new BigDecimal instance with the specified scale and
rounding mode. If the new scale is greater than the old scale, additional
zeros are added to the unscaled value. In this case no rounding is
necessary. If the new scale is smaller than the old scale, trailing digits
are removed. If these trailing digits are not zero, the remaining unscaled
value has to be rounded. For this rounding operation, the specified
rounding mode is used. This method throws NullPointerException
when roundingMode is null and ArithmeticException when
roundingMode is set to RoundingMode.ROUND_UNNECESSARY, but rounding
is necessary based on the current scale.

BigDecimal subtract(BigDecimal
subtrahend)

Return a new BigDecimal instance that contains the current
value minus the argument value. The resulting scale is the
maximum of the current and argument scales. This method throws
NullPointerException when subtrahend is null.

String toString() Return a string representation of this BigDecimal instance. Scientific
notation is used when necessary.

Table 7-2. (continued)

259CHAPTER 7: Exploring the Basic APIs Part 1

Table 7-2 refers to java.math.RoundingMode, which is an enum containing various rounding mode
constants. These constants are described in Table 7-3.

Table 7-3. RoundingMode Constants

Constant Description

CEILING Round toward positive infinity.

DOWN Round toward zero.

FLOOR Round toward negative infinity.

HALF_DOWN Round toward the “nearest neighbor” unless both neighbors are equidistant, in which
case round down.

HALF_EVEN Round toward the “nearest neighbor” unless both neighbors are equidistant, in which
case round toward the even neighbor.

HALF_UP Round toward “nearest neighbor” unless both neighbors are equidistant, in which case
round up. (This is the rounding mode commonly taught at school.)

UNNECESSARY Rounding isn’t necessary because the requested operation produces the exact result.

UP Positive values are rounded toward positive infinity and negative values are rounded
toward negative infinity.

The best way to get comfortable with BigDecimal is to try it out. Listing 7-4 uses this class to
correctly perform the invoice calculations that were presented in Listing 7-3.

Listing 7-4. BigDecimal-Based Invoice Calculations Not Leading to Confusing Results

import java.math.BigDecimal;
import java.math.RoundingMode;

public class InvoiceCalc
{
 public static void main(String[] args)
 {
 BigDecimal invoiceSubtotal = new BigDecimal("285.36");
 BigDecimal discountPercent = new BigDecimal("0.10");
 BigDecimal discount = invoiceSubtotal.multiply(discountPercent);
 discount = discount.setScale(2, RoundingMode.HALF_UP);
 BigDecimal subtotalBeforeTax = invoiceSubtotal.subtract(discount);
 subtotalBeforeTax = subtotalBeforeTax.setScale(2, RoundingMode.HALF_UP);
 BigDecimal salesTaxPercent = new BigDecimal("0.05");
 BigDecimal salesTax = subtotalBeforeTax.multiply(salesTaxPercent);
 salesTax = salesTax.setScale(2, RoundingMode.HALF_UP);
 BigDecimal invoiceTotal = subtotalBeforeTax.add(salesTax);
 invoiceTotal = invoiceTotal.setScale(2, RoundingMode.HALF_UP);
 System.out.println("Subtotal: " + invoiceSubtotal);
 System.out.println("Discount: " + discount);
 System.out.println("SubTotal after discount: " + subtotalBeforeTax);

260 CHAPTER 7: Exploring the Basic APIs Part 1

 System.out.println("Sales Tax: " + salesTax);
 System.out.println("Total: " + invoiceTotal);
 }
}

Listing 7-4’s main() method first creates BigDecimal objects invoiceSubtotal and discountPercent
that are initialized to 285.36 and 0.10, respectively. It multiplies invoiceSubtotal by discountPercent
and assigns the BigDecimal result to discount.

At this point, discount contains 28.5360. Apart from the trailing zero, this value is the same as that
generated by invoiceSubtotal * DISCOUNT_PERCENT in Listing 7–3. The value that should be stored
in discount is 28.54. To correct this problem before performing another calculation, main() calls
discount’s setScale() method with these arguments:

 2: Two digits after the decimal point

 RoundingMode.HALF_UP: The conventional approach to rounding

After setting the scale and proper rounding mode, main() subtracts discount from invoiceSubtotal
and assigns the resulting BigDecimal instance to subtotalBeforeTax. main() calls setScale() on
subtotalBeforeTax to properly round its value before moving on to the next calculation.

main() next creates a BigDecimal object named salesTaxPercent that is initialized to 0.05. It then
multiplies subtotalBeforeTax by salesTaxPercent, assigning the result to salesTax, and calls
setScale() on this BigDecimal object to properly round its value.

Moving on, main() adds salesTax to subtotalBeforeTax, saving the result in invoiceTotal, and
rounds the result via setScale(). The values in these objects are sent to the standard output device
via System.out.println(), which calls their toString() methods to return string representations of
the BigDecimal values.

When you run this new version of InvoiceCalc, you will discover the following output:

Subtotal: 285.36
Discount: 28.54
SubTotal after discount: 256.82
Sales Tax: 12.84
Total: 269.66

Caution BigDecimal declares a BigDecimal(double val) constructor that you should avoid using
if at all possible. This constructor initializes the BigDecimal instance to the value stored in val, making it
possible for this instance to reflect an invalid representation when the double cannot be stored exactly. For
example, BigDecimal(0.1) results in 0.1000000000000000055511151231257827021181583404541
015625 being stored in the instance. In contrast, BigDecimal("0.1") stores 0.1 exactly.

BigInteger
BigDecimal stores a signed decimal number as an unscaled value with a 32-bit integer scale. The
unscaled value is stored in an instance of the java.math.BigInteger class.

261CHAPTER 7: Exploring the Basic APIs Part 1

BigInteger is an immutable class that represents a signed integer of arbitrary precision. It stores its
value in two’s complement format (all bits are flipped—1s to 0s and 0s to 1s—and 1 is added to the
result to be compatible with the two’s complement format used by Java’s byte integer, short integer,
integer, and long integer types).

Note Check out Wikipedia’s “Two’s complement” entry
(http://en.wikipedia.org/wiki/Two's_complement) to learn more about two’s complement.

BigInteger declares three convenience constants: ONE, TEN, and ZERO. Each constant is the
BigInteger equivalent of 1, 10, and 0.

BigInteger also declares a variety of useful constructors and methods. A few of these constructors
and methods are described in Table 7-4.

Table 7-4. BigInteger Constructors and Methods

Method Description

BigInteger(byte[] val) Initialize the BigInteger instance to the integer that is stored in the
val array, with val[0] storing the integer’s most significant (leftmost) 8
bits. This constructor throws NullPointerException when val is null
and NumberFormatException when val.length equals 0.

BigInteger(String val) Initialize the BigInteger instance to the integer equivalent of val.
This constructor throws NullPointerException when val is null and
NumberFormatException when val’s string representation is invalid
(contains letters, for example).

BigInteger abs() Return a new BigInteger instance that contains the absolute value of
the current instance’s value.

BigInteger add(BigInteger augend) Return a new BigInteger instance that contains the sum of
the current value and the argument value. This method throws
NullPointerException when augend is null.

BigInteger divide(BigInteger
divisor)

Return a new BigInteger instance that contains the quotient of the
current value divided by the argument value. This method throws
NullPointerException when divisor is null and ArithmeticException
when divisor represents 0 or the result cannot be represented exactly.

BigInteger max(BigInteger val) Return either this or val, whichever BigInteger instance contains the
larger value. This method throws NullPointerException when val is
null.

BigInteger min(BigInteger val) Return either this or val, whichever BigInteger instance contains the
smaller value. This method throws NullPointerException when val is
null.

(continued)

262 CHAPTER 7: Exploring the Basic APIs Part 1

Note BigInteger also declares several bit-oriented methods, such as BigInteger and(BigInteger
val), BigInteger flipBit(int n), and BigInteger shiftLeft(int n). These methods are useful
for when you need to perform low-level bit manipulation.

Method Description

BigInteger multiply(BigInteger
multiplicand)

Return a new BigInteger instance that contains the product of
the current value and the argument value. This method throws
NullPointerException when multiplicand is null.

BigInteger negate() Return a new BigInteger instance that contains the negative of the
current value.

BigInteger remainder(BigInteger
divisor)

Return a new BigInteger instance that contains the remainder of
the current value divided by the argument value. This method throws
NullPointerException when divisor is null and ArithmeticException
when divisor represents 0.

BigInteger subtract(BigInteger
subtrahend)

Return a new BigInteger instance that contains the current value
minus the argument value. This method throws NullPointerException
when subtrahend is null.

String toString() Return a string representation of this BigInteger instance.

Table 7-4. (continued)

The best way to get comfortable with BigInteger is to try it out. Listing 7-5 uses this class in a
factorial() method comparison context.

Listing 7-5. Comparing factorial() Methods

import java.math.BigInteger;

public class FactComp
{
 public static void main(String[] args)
 {
 System.out.println(factorial(12));
 System.out.println();
 System.out.println(factorial(20L));
 System.out.println();
 System.out.println(factorial(170.0));
 System.out.println();
 System.out.println(factorial(new BigInteger("170")));
 System.out.println();
 System.out.println(factorial(25.0));
 System.out.println();
 System.out.println(factorial(new BigInteger("25")));
 }

263CHAPTER 7: Exploring the Basic APIs Part 1

 static int factorial(int n)
 {
 if (n == 0)
 return 1;
 else
 return n * factorial(n - 1);
 }

 static long factorial(long n)
 {
 if (n == 0)
 return 1;
 else
 return n * factorial(n - 1);
 }

 static double factorial(double n)
 {
 if (n == 1.0)
 return 1.0;
 else
 return n * factorial(n - 1);
 }

 static BigInteger factorial(BigInteger n)
 {
 if (n.equals(BigInteger.ZERO))
 return BigInteger.ONE;
 else
 return n.multiply(factorial(n.subtract(BigInteger.ONE)));
 }
}

Listing 7-5 compares four versions of the recursive factorial() method. This comparison reveals
the largest argument that can be passed to each of the first three methods before the returned
factorial value becomes meaningless because of limits on the range of values that can be accurately
represented by the numeric type.

The first version is based on int and has a useful argument range of 0 through 12. Passing any
argument greater than 12 results in a factorial that cannot be represented accurately as an int.

You can increase the useful range of factorial(), but not by much, by changing the parameter and
return types to long. After making these changes, you will discover that the upper limit of the useful
range is 20.

To further increase the useful range, you might create a version of factorial() whose parameter
and return types are double. This is possible because whole numbers can be represented exactly as
doubles. However, the largest useful argument that can be passed is 170.0. Anything higher than this
value results in factorial() returning +infinity.

It’s possible that you might need to calculate a higher factorial value, perhaps in the context of
calculating a statistics problem involving combinations or permutations. The only way to accurately
calculate this value is to use a version of factorial() based on BigInteger.

264 CHAPTER 7: Exploring the Basic APIs Part 1

When you run the previous application, it generates the following output:

479001600

2432902008176640000

7.257415615307994E306

725741561530799896739672821112926311471699168129645137654357779890056184340170615785235074924261745
951149099123783852077666602256544275302532890077320751090240043028005829560396661259965825710439855
829425756896631343961226257109494680671120556888045719334021266145280000000000000000000000000000000
0000000000

1.5511210043330986E25

15511210043330985984000000

The first three values represent the highest factorials that can be returned by the int-based, long-
based, and double-based factorial() methods. The fourth value represents the BigInteger
equivalent of the highest double factorial.

Notice that the double method fails to accurately represent 170! (! is the math symbol for factorial).
Its precision is simply too small. Although the method attempts to round the smallest digit, rounding
doesn’t always work—the number ends in 7994 instead of 7998. Rounding is only accurate up to
argument 25.0, as the last two output lines reveal.

Exploring String Management
Many computer languages implement the concept of a string, a sequence of characters treated as a
single unit (and not as individual characters). For example, the C language implements a string as an
array of characters terminated by the null character ('\0'). In contrast, Java implements a string via
the java.lang.String class.

String objects are immutable: you cannot modify a String object’s string. The various String
methods that appear to modify the String object actually return a new String object with modified
string content instead. Because returning new String objects is often wasteful, Java provides the
java.lang.StringBuffer and equivalent java.lang.StringBuilder classes as a workaround.

In this section I introduce you to String and StringBuffer/StringBuilder.

String
String represents a string as a sequence of characters. In contrast to C strings, this sequence is
not terminated by a null character. Instead, its length is stored separately. Unlike other reference
types, the Java language treats the String class specially by providing syntactic sugar that
simplifies working with strings. For example, Java recognizes String favLanguage = "Java"; as
the assignment of string literal "Java" to String variable favLanguage. Without this sugar, you would
have to specify String favLanguage = new String("Java");. The Java language also overloads the
+ and += operators to perform string concatenation.

265CHAPTER 7: Exploring the Basic APIs Part 1

Table 7-5 describes some of String’s constructors and methods for initializing String objects and
working with strings.

Table 7-5. String Constructors and Methods

Method Description

String(char[] data) Initialize this String object to the characters in the data array. Modifying
data after initializing this String object has no effect on the object.

String(String s) Initialize this String object to s’s string.

char charAt(int index) Return the character located at the zero-based index in
this String object’s string. This method throws java.lang.
StringIndexOutOfBoundsException when index is less than 0 or greater
than or equal to the length of the string.

String concat(String s) Return a new String object containing this String object’s string
followed by the s argument’s string.

boolean endsWith(String suffix) Return true when this String object’s string ends with the characters in
the suffix argument, when suffix is empty (contains no characters),
or when suffix contains the same character sequence as this String
object’s string. This method performs a case-sensitive comparison
(a is not equal to A, for example) and throws NullPointerException when
suffix is null.

boolean equals(Object object) Return true when object is of type String and this argument’s string
contains the same characters (and in the same order) as this String
object’s string.

boolean equalsIgnoreCase(String s) Return true when s and this String object contain the same characters
(ignoring case). This method returns false when the character sequences
differ or when null is passed to s.

int indexOf(int c) Return the zero-based index of the first occurrence (from the start of the
string to the end of the string) of the character represented by c in this
String object’s string. Return −1 when this character is not present.

int indexOf(String s) Return the zero-based index of the first occurrence (from the start of the
string to the end of the string) of s’s character sequence in this String
object’s string. Return −1 when s is not present. This method throws
NullPointerException when s is null.

String intern() Search an internal table of String objects for an object whose string is
equal to this String object’s string. This String object’s string is added
to the table when not present. Return the object contained in the table
whose string is equal to this String object’s string. The same String
object is always returned for strings that are equal.

int lastIndexOf(int c) Return the zero-based index of the last occurrence (from the start of the
string to the end of the string) of the character represented by c in this
String object’s string. Return −1 when this character is not present.

(continued)

266 CHAPTER 7: Exploring the Basic APIs Part 1

Method Description

int lastIndexOf(String s) Return the zero-based index of the last occurrence (from the start of the
string to the end of the string) of s’s character sequence in this String
object’s string. Return -1 when s is not present. This method throws
NullPointerException when s is null.

int length() Return the number of characters in this String object’s string.

String replace(char oldChar,
char newChar)

Return a new String object whose string matches this String object’s
string except that all occurrences of oldChar have been replaced by
newChar.

String[] split(String expr) Split this String object’s string into an array of String objects using the
regular expression (a string whose pattern [template] is used to search
a string for substrings that match the pattern) specified by expr as the
basis for the split. This method throws NullPointerException when
expr is null and java.util.regex.PatternSyntaxException when expr’s
syntax is invalid.

boolean startsWith(String
prefix)

Return true when this String object’s string starts with the characters
in the prefix argument, when prefix is empty (contains no characters),
or when prefix contains the same character sequence as this String
object’s string. This method performs a case-sensitive comparison
(a is not equal to A, for example) and throws NullPointerException
when prefix is null.

String substring(int start) Return a new String object whose string contains this String object’s
characters beginning with the character located at start. This method
throws StringIndexOutOfBoundsException when start is negative or
greater than the length of this String object’s string.

char[] toCharArray() Return a character array that contains the characters in this String
object’s string.

String toLowerCase() Return a new String object whose string contains this String object’s
characters where uppercase letters have been converted to lowercase.
This String object is returned when it contains no uppercase letters to
convert.

String toUpperCase() Return a new String object whose string contains this String object’s
characters where lowercase letters have been converted to uppercase.
This String object is returned when it contains no lowercase letters to
convert.

String trim() Return a new String object that contains this String object’s string with
whitespace characters (characters whose Unicode values are 32 or less)
removed from the start and end of the string or this String object when
there is no leading/trailing whitespace.

Table 7-5. (continued)

267CHAPTER 7: Exploring the Basic APIs Part 1

Note String literals are stored in a classfile data structure known as the constant pool. When a class is
loaded, a String object is created for each literal and is stored in an internal table of String objects.

Table 7-5 reveals a couple of interesting items about String. First, this class’s String(String s)
constructor doesn’t initialize a String object to a string literal. Instead, it behaves similarly to the
C++ copy constructor by initializing the String object to the contents of another String object. This
behavior suggests that a string literal is more than it appears to be.

In reality, a string literal is a String object. You can prove this to yourself by executing
System.out.println("abc".length()); and System.out.println("abc" instanceof String);.
The first method call outputs 3, which is the length of the "abc" String object’s string, and the
second method call outputs true ("abc" is a String object).

The second interesting item is the intern() method, which interns (stores a unique copy of) a String
object in an internal table of String objects. intern() makes it possible to compare strings via their
references and == or !=. These operators are the fastest way to compare strings, which is especially
valuable when sorting a huge number of strings.

By default, String objects denoted by literal strings ("abc") and string-valued constant expressions
("a" + "bc") are interned in this table, which is why System.out.println("abc" == "a" + "bc");
outputs true. However, String objects created via String constructors are not interned, which is
why System.out.println("abc" == new String("abc")); outputs false. In contrast, System.out.
println("abc" == new String("abc").intern()); outputs true.

Caution Be careful with this string comparison technique (which only compares references) because
you can easily introduce a bug when one of the strings being compared has not been interned. When in
doubt, use the equals() or equalsIgnoreCase() method. For example, each of "abc".equals(new
String("abc")) and "abc".equalsIgnoreCase(new String("ABC")) returns true.

Table 7-5 also reveals the charAt() and length() methods, which are useful for iterating over a
string’s characters. For example, String s = "abc"; for (int i = 0; i < s.length(); i++)
System.out.println(s.charAt(i)); returns each of s’s a, b, and c characters and outputs each
character on a separate line.

Finally, Table 7-5 presents split(), a method that I employed in Chapter 6’s StubFinder application
to split a string’s comma-separated list of values into an array of String objects. This method uses
a regular expression that identifies a sequence of characters around which the string is split. (I will
discuss regular expressions in Chapter 13.)

Note StringIndexOutOfBoundsException and ArrayIndexOutOfBoundsException are sibling
classes that share a common java.lang.IndexOutOfBoundsException superclass.

268 CHAPTER 7: Exploring the Basic APIs Part 1

StringBuffer and StringBuilder
String objects are immutable: you cannot modify a String object’s string. The String methods
that appear to modify the String object (such as replace()) actually return a new String object
with modified string content instead. Because returning new String objects is often wasteful, Java
provides the java.lang.StringBuffer and java.lang.StringBuilder classes as a workaround.

StringBuffer and StringBuilder are identical apart from the fact that StringBuilder offers better
performance than StringBuffer but cannot be used in the context of multiple threads without
explicit thread synchronization (discussed in Chapter 8).

Tip Use StringBuffer in a multithreaded context (for safety) and StringBuilder in a single-threaded
context (for performance).

StringBuffer and StringBuilder provide an internal character array for building a string efficiently.
After creating a StringBuffer/StringBuilder object, you call various methods to append, delete,
and insert the character representations of various values to, from, and into the array. You then call
toString() to convert the array’s content to a String object and return this object.

Table 7-6 describes some of StringBuffer’s constructors and methods for initializing StringBuffer
objects and working with string buffers. StringBuilder’s constructors and methods are identical and
won’t be discussed.

Table 7-6. StringBuffer Constructors and Methods

Method Description

StringBuffer() Initialize this StringBuffer object to an empty array with an initial
capacity of 16 characters.

StringBuffer(int capacity) Initialize this StringBuffer object to an empty array with an initial
capacity of capacity characters. This constructor throws
java.lang.NegativeArraySizeException when capacity is negative.

StringBuffer(String s) Initialize this StringBuffer object to an array containing s’s characters.
This object’s initial capacity is 16 plus the length of s. This constructor
throws NullPointerException when s is null.

StringBuffer append(boolean b) Append “true” to this StringBuffer object’s array when b is true and
“false” to the array when b is false, and return this StringBuffer
object.

StringBuffer append(char ch) Append ch’s character to this StringBuffer object’s array, and return
this StringBuffer object.

StringBuffer append(char[] chars) Append the characters in the chars array to this StringBuffer object’s
array, and return this StringBuffer object. This method throws
NullPointerException when chars is null.

(continued)

269CHAPTER 7: Exploring the Basic APIs Part 1

Method Description

StringBuffer append(double d) Append the string representation of d’s double precision floating-point
value to this StringBuffer object’s array, and return this StringBuffer
object.

StringBuffer append(float f) Append the string representation of f’s floating-point value to this
StringBuffer object’s array, and return this StringBuffer object.

StringBuffer append(int i) Append the string representation of i’s integer value to this
StringBuffer object’s array, and return this StringBuffer object.

StringBuffer append(long l) Append the string representation of l’s long integer value to this
StringBuffer object’s array, and return this StringBuffer object.

StringBuffer append(Object obj) Call obj’s toString() method and append the returned string’s
characters to this StringBuffer object’s array. Append “null” to the
array when null is passed to obj. Return this StringBuffer object.

StringBuffer append(String s) Append s’s string to this StringBuffer object’s array. Append “null” to
the array when null is passed to s. Return this StringBuffer object.

int capacity() Return the current capacity of this StringBuffer object’s array.

char charAt(int index) Return the character located at index in this StringBuffer object’s array.
This method throws StringIndexOutOfBoundsException when index is
negative or greater than or equal to this StringBuffer object’s length.

void ensureCapacity(int min) Ensure that this StringBuffer object’s capacity is at least that specified
by min. If the current capacity is less than min, a new internal array is
created with greater capacity. The new capacity is set to the larger of
min and the current capacity multiplied by 2, with 2 added to the result.
No action is taken when min is negative or zero.

int length() Return the number of characters stored in this StringBuffer object’s array.

StringBuffer reverse() Return this StringBuffer object with its array contents reversed.

void setCharAt(int index, char ch) Replace the character at index with ch. This method throws
StringIndexOutOfBoundsException when index is negative or greater
than or equal to the length of this StringBuffer object’s array.

void setLength(int length) Set the length of this StringBuffer object’s array to length. If the length
argument is less than the current length, the array’s contents are
truncated. If the length argument is greater than or equal to the current
length, sufficient null characters ('\u0000') are appended to the array. This
method throws StringIndexOutOfBoundsException when length is negative.

String substring(int start) Return a new String object that contains all characters in this StringBuffer
object’s array starting with the character located at start. This method
throws StringIndexOutOfBoundsException when start is less than 0 or
greater than or equal to the length of this StringBuffer object’s array.

String toString() Return a new String object whose string equals the contents of this
StringBuffer object’s array.

Table 7-6. (continued)

270 CHAPTER 7: Exploring the Basic APIs Part 1

A StringBuffer or StringBuilder object’s internal array is associated with the concepts of capacity
and length. Capacity refers to the maximum number of characters that can be stored in the array
before the array grows to accommodate additional characters. Length refers to the number of
characters that are already stored in the array.

Consider a scenario where you’ve written code to format an integer value into a string. As part of the
formatter, you need to prepend a specific number of leading spaces to the integer. You decide to use
the following initialization code and loop to build a spacesPrefix string with 3 leading spaces:

int numLeadingSpaces = 3; // default value
String spacesPrefix = "";
for (int j = 0; j < numLeadingSpaces; j++)
 spacesPrefix += "0";

This loop is inefficient because each of the iterations creates a StringBuilder object and a String
object. The compiler transforms this code fragment into the following fragment:

int numLeadingSpaces = 3; // default value
String spacesPrefix = "";
for (int j = 0; j < numLeadingSpaces; j++)
 spacesPrefix = new StringBuffer().append(spacesPrefix).append("0").toString();

A more efficient way to code the previous loop involves creating a StringBuffer/StringBuilder
object prior to entering the loop, calling the appropriate append() method in the loop, and calling
toString() after the loop. The following code fragment demonstrates this more efficient scenario:

int numLeadingSpaces = 3; // default value
StringBuffer sb = new StringBuffer();
for (int j = 0; j < numLeadingSpaces; j++)
 sb.append('0');
String spacesPrefix = sb.toString();

Caution Avoid using the string concatenation operator in a lengthy loop because it results in the creation of
many unnecessary StringBuilder and String objects.

Obtaining Package Information
The java.lang.Package class provides access to information about a package (see Chapter 5 for an
introduction to packages). This information includes version details about the implementation and
specification of a Java package, the name of the package, and an indication of whether or not the
package has been sealed (all classes that are part of the package are archived in the same JAR file).

Table 7-7 describes some of Package’s methods.

271CHAPTER 7: Exploring the Basic APIs Part 1

I have created a PackageInfo application that demonstrates most of Table 7-7’s Package methods.
Listing 7-6 presents this application’s source code.

Table 7-7. Package Methods

Method Description

String getImplementationTitle() Return the title of this package’s implementation, which might be null.
The format of the title is unspecified.

String getImplementationVendor() Return the name of the vendor or organization that provides this
package’s implementation. This name might be null. The format of the
name is unspecified.

String getImplementationVersion() Return the version number of this package’s implementation, which
might be null. This version string must be a sequence of positive
decimal integers separated by periods and might have leading zeros.

String getName() Return the name of this package in standard dot notation, for
example, java.lang.

static Package getPackage(String
packageName)

Return the Package object that is associated with the package
identified as packageName or null when the package identified
as packageName cannot be found. This method throws
NullPointerException when packageName is null.

static Package[] getPackages() Return an array of all Package objects that are accessible to this
method’s caller.

String getSpecificationTitle() Return the title of this package’s specification, which might be null.
The format of the title is unspecified.

String getSpecificationVendor() Return the name of the vendor or organization that provides the
specification that is implemented by this package. This name might be
null. The format of the name is unspecified.

String getSpecificationVersion() Return the version number of the specification of this package’s
implementation, which might be null. This version string must be a
sequence of positive decimal integers separated by periods and might
have leading zeros.

boolean isCompatibleWith(String
desired)

Check this package to determine if it is compatible with the specified
version string by comparing this package’s specification version with
the desired version. Return true when this package’s specification
version number is greater than or equal to the desired version
number (this package is compatible); otherwise, return false. This
method throws NullPointerException when desired is null and
NumberFormatException when this package’s version number or the
desired version number is not in dotted form.

boolean isSealed() Return true when this package has been sealed; otherwise, return
false.

272 CHAPTER 7: Exploring the Basic APIs Part 1

Listing 7-6. Obtaining Information About a Package

public class PackageInfo
{
 public static void main(String[] args)
 {
 if (args.length == 0)
 {
 System.err.println("usage: java PackageInfo packageName [version]");
 return;
 }
 Package pkg = Package.getPackage(args[0]);
 if (pkg == null)
 {
 System.err.println(args[0] + " not found");
 return;
 }
 System.out.println("Name: " + pkg.getName());
 System.out.println("Implementation title: " +
 pkg.getImplementationTitle());
 System.out.println("Implementation vendor: " +
 pkg.getImplementationVendor());
 System.out.println("Implementation version: " +
 pkg.getImplementationVersion());
 System.out.println("Specification title: " +
 pkg.getSpecificationTitle());
 System.out.println("Specification vendor: " +
 pkg.getSpecificationVendor());
 System.out.println("Specification version: " +
 pkg.getSpecificationVersion());
 System.out.println("Sealed: " + pkg.isSealed());
 if (args.length > 1)
 System.out.println("Compatible with " + args[1] + ": " +
 pkg.isCompatibleWith(args[1]));
 }
}

After compiling Listing 7-6 (javac PackageInfo.java), specify at least a package name on the
command line. For example, java PackageInfo java.lang returns the following output under Java 7:

Name: java.lang
Implementation title: Java Runtime Environment
Implementation vendor: Oracle Corporation
Implementation version: 1.7.0_06
Specification title: Java Platform API Specification
Specification vendor: Oracle Corporation
Specification version: 1.7
Sealed: false

PackageInfo also lets you determine if the package’s specification is compatible with a specific
version number. A package is compatible with its predecessors.

273CHAPTER 7: Exploring the Basic APIs Part 1

For example, java PackageInfo java.lang 1.6 outputs Compatible with 1.6: true, whereas java
PackageInfo java.lang 1.8 outputs Compatible with 1.8: false.

You can also use PackageInfo with your own packages, which you learned to create in Chapter 5.
For example, that chapter presented a logging package.

Copy PackageInfo.class into the directory containing the logging package directory (which contains
the compiled classfiles), and execute java PackageInfo logging.

PackageInfo responds by displaying the following output:

logging not found

This error message is presented because getPackage() requires at least one classfile to be loaded
from the package before it returns a Package object describing that package.

The only way to eliminate the previous error message is to load a class from the package.
Accomplish this task by merging the following code fragment into Listing 7–6.

if (args.length == 3)
try
{
 Class.forName(args[2]);
}
catch (ClassNotFoundException cnfe)
{
 System.err.println("cannot load " + args[2]);
 return;
}

This code fragment, which must precede Package pkg = Package.getPackage(args[0]);, loads the
classfile named by the revised PackageInfo application’s third command-line argument.

Run the new PackageInfo application via java PackageInfo logging 1.5 logging.File and you will
observe the following output, provided that File.class exists (you need to compile this package
before specifying this command line)—this command line identifies logging’s File class as the
class to load:

Name: logging
Implementation title: null
Implementation vendor: null
Implementation version: null
Specification title: null
Specification vendor: null
Specification version: null
Sealed: false
Exception in thread "main" java.lang.NumberFormatException: Empty version string
 at java.lang.Package.isCompatibleWith(Unknown Source)
 at PackageInfo.main(PackageInfo.java:41)

It’s not surprising to see all of these null values because no package information has been added to
the logging package. Also, NumberFormatException is thrown from isCompatibleWith() because the
logging package doesn’t contain a specification version number in dotted form (it is null).

274 CHAPTER 7: Exploring the Basic APIs Part 1

Note Make sure to press the Return/Enter key at the end of the final line (Sealed: true). Otherwise, you
will probably observe Sealed: false in the output because this entry will not be stored in the logging
package by the JDK’s jar tool—jar is a bit quirky.

Perhaps the simplest way to place package information into the logging package is to create a
logging.jar file in a similar manner to the example shown in Chapter 5. But first, you must create
a small text file that contains the package information. You can choose any name for the file.
Listing 7-7 reveals my choice of manifest.mf.

Listing 7-7. manifest.mf Containing the Package Information

Implementation-Title: Logging Implementation
Implementation-Vendor: Jeff Friesen
Implementation-Version: 1.0a
Specification-Title: Logging Specification
Specification-Vendor: Jeff "JavaJeff" Friesen
Specification-Version: 1.0
Sealed: true

Execute the following command line to create a JAR file that includes logging and its files and
whose manifest, a special file named MANIFEST.MF that stores information about the contents of a
JAR file, contains the contents of Listing 7-7:

jar cfm logging.jar manifest.mf logging

Alternatively, you can specify one of the following slightly longer command lines, which are
equivalent to the former command line:

jar cfm logging.jar manifest.mf logging*.class
jar cfm logging.jar manifest.mf logging/*.class

Either command line creates a JAR file named logging.jar (via the c [create] and f [file] options).
It also merges the contents of manifest.mf (via the m [manifest] option) into MANIFEST.MF, which is
stored in the package’s/JAR file’s META-INF directory.

Note To learn more about a JAR file’s manifest, read the “JAR Manifest” section of the JDK documentation’s
“JAR File Specification” page (http://docs.oracle.com/javase/7/docs/technotes/guides/jar/
jar.html#JAR_Manifest).

275CHAPTER 7: Exploring the Basic APIs Part 1

Assuming that the jar tool presents no error messages, execute the following Windows-oriented
command line (or a command line suitable for your platform) to run PackageInfo and extract the
package information from the logging package:

java -cp logging.jar;. PackageInfo logging 1.0 logging.File

The -cp command-line option lets you specify the classpath, which consists of logging.jar and the
current directory (represented by the dot (.) character). Fail to specify the dot and java outputs an
error message complaining that it cannot locate PackageInfo.class.

This time, you should see the following output:

Name: logging
Implementation title: Logging Implementation
Implementation vendor: Jeff Friesen (IV)
Implementation version: 1.0a
Specification title: Logging Specification
Specification vendor: Jeff Friesen (SV)
Specification version: 1.0
Sealed: true
Compatible with 1.0: true

EXERCISES

The following exercises are designed to test your understanding of Chapter 7’s content:

1. What constants does Math declare?

2. Why is Math.abs(Integer.MIN_VALUE) equal to Integer.MIN_VALUE?

3. What does Math’s random() method accomplish? Why is expression (int) Math.random() *
limit incorrect?

4. Identify the five special values that can arise during floating-point calculations.

5. How do Math and StrictMath differ?

6. What is the purpose of strictfp?

7. What is BigDecimal and why might you use this class?

8. Which RoundingMode constant describes the form of rounding commonly taught at school?

9. What is BigInteger?

10. True or false: A string literal is a String object.

11. What is the purpose of String’s intern() method?

12. How do String and StringBuffer differ?

13. How do StringBuffer and StringBuilder differ?

14. What is the purpose of Package’s isSealed() method?

276 CHAPTER 7: Exploring the Basic APIs Part 1

15. True or false: getPackage() requires at least one classfile to be loaded from the package before it
returns a Package object describing that package.

16. A prime number is a positive integer greater than 1 that is evenly divisible only by 1 and itself. Create
a PrimeNumberTest application that determines if its solitary integer argument is prime or not
prime and outputs a suitable message. For example, java PrimeNumberTest 289 should output
the message 289 is not prime. A simple way to check for primality is to loop from 2 through the
square root of the integer argument and use the remainder operator in the loop to determine if the
argument is divided evenly by the loop index. For example, because 6 % 2 yields a remainder of 0
(2 divides evenly into 6), integer 6 is not a prime number.

17. Rewrite the following inefficient loop to use StringBuffer. The resulting loop should minimize
object creation:

String[] imageNames = new String[NUM_IMAGES];
for (int i = 0; i < imageNames.length; i++)
 imageNames[i] = new String("image" + i + ".png");

18. Create a DigitsToWords application that accepts a single integer-based command-line argument.
This application converts this argument to an int value (via Integer.parseInt(args[0])) and
then passes the result to a String convertDigitsToWords(int integer) class method that
returns a string containing a textual representation of that number. For example, 1 converts to one,
16 converts to sixteen, 69 converts to sixty-nine, 123 converts to one hundred and
twenty-three, and 2938 converts to two thousand nine hundred and thirty-eight.
Throw java.lang.IllegalArgumentException when the value passed to integer is less than
0 or greater than 9999. Use the StringBuffer class to serve as a repository for the generated text.
Usage example: java DigitsToWords 2938.

Summary
The standard class library offers many basic APIs via its java.lang and java.math packages. These
APIs include the Math, StrictMath, BigDecimal, BigInteger, String, StringBuffer, StringBuilder,
and Package classes and the RoundingMode enum.

Math supplements the basic math operations (+, -, *, /, and %) with advanced operations (such as
trigonometry). The companion StrictMath class ensures that all of these operations yield the same
values on all platforms.

Money must never be represented by floating-point and double precision floating-point variables
because not all monetary values can be represented exactly. In contrast, the BigDecimal class lets
you accurately represent and manipulate these values.

BigDecimal relies on the BigInteger class for representing its unscaled value. A BigInteger instance
describes an integer value that can be of arbitrary length (subject to the limits of the virtual machine’s
memory).

277CHAPTER 7: Exploring the Basic APIs Part 1

String represents a string as a sequence of characters. Because String instances are immutable,
Java provides StringBuffer and StringBuilder for building strings more efficiently. The former class
is used in multithreaded contexts; the latter (and more performant) class is for single-threaded use.

The Package class provides access to package information. This information includes version
information about the implementation and specification of a Java package, the package’s name, and
an indication of whether the package is sealed or not.

In Chapter 8 I continue to explore the basic APIs by focusing on the primitive type wrapper classes,
threads, and system capabilities.

279

Chapter 8
Exploring the Basic APIs Part 2

The standard class library’s java.lang package provides many basic APIs, which are designed
to support language features. You encountered APIs for mathematics, string management, and
packages in the previous chapter. In this chapter I introduce you to those basic library APIs that
pertain to the primitive type wrapper classes, threads, and system capabilities.

Exploring the Primitive Type Wrapper Classes
The java.lang package includes Boolean, Byte, Character, Double, Float, Integer, Long, and Short.
These classes are known as primitive type wrapper classes because their instances wrap themselves
around values of primitive types.

Note The primitive type wrapper classes are also known as value classes.

Java provides these eight primitive type wrapper classes for two reasons:

The Collections Framework (discussed in Chapter 9) provides lists, sets, and
maps that can only store objects; they cannot store primitive-type values. You
store a primitive-type value in a primitive type wrapper class instance and store
the instance in the collection.

These classes provide a good place to associate useful constants (such as
MAX_VALUE and MIN_VALUE) and class methods (such as Integer’s parseInt()
methods and Character’s isDigit(), isLetter(), and toUpperCase() methods)
with the primitive types.

In this section I introduce you to each of these primitive type wrapper classes and a java.lang class
named Number.

280 CHAPTER 8: Exploring the Basic APIs Part 2

Boolean
Boolean is the smallest of the primitive type wrapper classes. This class declares three constants,
including TRUE and FALSE, which denote precreated Boolean objects. It also declares a pair of
constructors for initializing a Boolean object:

 Boolean(boolean value) initializes the Boolean object to value.

 Boolean(String s) converts s’s text to a true or false value and stores this value
in the Boolean object.

The second constructor compares s’s value with true. Because the comparison is case insensitive,
any uppercase/lowercase combination of these four letters (such as true, TRUE, or tRue) results in
true being stored in the object. Otherwise, the constructor stores false in the object.

Note Boolean’s constructors are complemented by boolean booleanValue(), which returns the
wrapped Boolean value.

Boolean also declares or overrides the following methods:

 int compareTo(Boolean b) compares the current Boolean object with b to
determine their relative order. The method returns 0 when the current object
contains the same Boolean value as b, a positive value when the current
object contains true and b contains false, and a negative value when the
current object contains false and b contains true.

 boolean equals(Object o) compares the current Boolean object with o and
returns true when o is not null, o is of type Boolean, and both objects contain the
same Boolean value.

 static boolean getBoolean(String name) returns true when a system property
(discussed later in this chapter) identified by name exists and is equal to true.

 int hashCode() returns a suitable hash code that allows Boolean objects to be
used with hash-based collections (discussed in Chapter 9).

 static boolean parseBoolean(String s) parses s, returning true when s
equals "true", "TRUE", "True", or any other uppercase/lowercase combination.
Otherwise, this method returns false. (Parsing breaks a sequence of characters
into meaningful components, known as tokens.)

 String toString() returns "true" when the current Boolean instance contains
true; otherwise, this method returns "false".

 static String toString(boolean b) returns "true" when b contains true;
otherwise, this method returns "false".

 static Boolean valueOf(boolean b) returns TRUE when b contains true or FALSE
when b contains false.

 static Boolean valueOf(String s) returns TRUE when s equals "true", "TRUE", "True",
or any other uppercase/lowercase combination. Otherwise, this method returns FALSE.

281CHAPTER 8: Exploring the Basic APIs Part 2

Caution Newcomers to the Boolean class often think that getBoolean() returns a Boolean
object’s true/false value. However, getBoolean() returns the value of a Boolean-based system
property—I discuss system properties later in this chapter. If you need to return a Boolean object’s
true/false value, use the booleanValue() method instead.

It’s often better to use TRUE and FALSE than to create Boolean objects. For example, suppose you
need a method that returns a Boolean object containing true when the method’s double argument
is negative, or false when this argument is zero or positive. You might declare your method like the
following isNegative() method:

Boolean isNegative(double d)
{
 return new Boolean(d < 0);
}

Although this method is concise, it unnecessarily creates a Boolean object. When the method is
called frequently, many Boolean objects are created that consume heap space. When heap space
runs low, the garbage collector runs and slows down the application, which impacts performance.

The following example reveals a better way to code isNegative():

Boolean isNegative(double d)
{
 return (d < 0) ? Boolean.TRUE : Boolean.FALSE;
}

This method avoids creating Boolean objects by returning either the precreated TRUE or FALSE object.

Tip You should strive to create as few objects as possible. Not only will your applications have smaller
memory footprints, they’ll perform better because the garbage collector will not run as often.

Character
Character is the largest of the primitive type wrapper classes, containing many constants, a
constructor, many methods, and a pair of nested classes (Subset and UnicodeBlock).

Note Character’s complexity derives from Java’s support for Unicode (http://en.wikipedia.
org/wiki/Unicode). For brevity, I ignore much of Character’s Unicode-related complexity, which is
beyond the scope of this chapter.

Character declares a single Character(char value) constructor, which you use to initialize a
Character object to value. This constructor is complemented by char charValue(), which returns
the wrapped character value.

282 CHAPTER 8: Exploring the Basic APIs Part 2

When you start writing applications, you might codify expressions such as ch >= '0' && ch <= '9'
(test ch to see if it contains a digit) and ch >= 'A' && ch <= 'Z' (test ch to see if it contains an
uppercase letter). You should avoid doing so for three reasons:

It’s too easy to introduce a bug into the expression. For example, ch > '0' &&
ch <= '9' introduces a subtle bug that doesn’t include '0' in the comparison.

The expressions are not very descriptive of what they are testing.

The expressions are biased toward Latin digits (0–9) and letters (A–Z and a–z).
They don’t take into account digits and letters that are valid in other languages.
For example, '\u0beb' is a character literal representing one of the digits in the
Tamil language.

Character declares several comparison and conversion class methods that address these concerns.
These methods include the following:

 static boolean isDigit(char ch) returns true when ch contains a digit
(typically 0 through 9 but also digits in other alphabets).

 static boolean isLetter(char ch) returns true when ch contains a letter
(typically A–Z or a–z but also letters in other alphabets).

 static boolean isLetterOrDigit(char ch) returns true when ch contains
a letter or digit (typically A–Z, a–z, or 0–9 but also letters or digits in other
alphabets).

 static boolean isLowerCase(char ch) returns true when ch contains a
lowercase letter.

 static boolean isUpperCase(char ch) returns true when ch contains an
uppercase letter.

 static boolean isWhitespace(char ch) returns true when ch contains a whitespace
character (typically a space, a horizontal tab, a carriage return, or a line feed).

 static char toLowerCase(char ch) returns the lowercase equivalent of ch’s
uppercase letter; otherwise, this method returns ch’s value.

 static char toUpperCase(char ch) returns the uppercase equivalent of ch’s
lowercase letter; otherwise, this method returns ch’s value.

For example, isDigit(ch) is preferable to ch >= '0' && ch <= '9' because it avoids a source of
bugs, is more readable, and returns true for non-Latin digits (e.g., '\u0beb') as well as Latin digits.

Float and Double
Float and Double store floating-point and double precision floating-point values in Float and Double
objects, respectively. These classes declare the following constants:

 MAX_VALUE identifies the maximum value that can be represented as a float or double.

 MIN_VALUE identifies the minimum value that can be represented as a float or
double.

283CHAPTER 8: Exploring the Basic APIs Part 2

 NaN represents 0.0F/0.0F as a float and 0.0/0.0 as a double.

 NEGATIVE_INFINITY represents -infinity as a float or double.

 POSITIVE_INFINITY represents +infinity as a float or double.

Float and Double also declare the following constructors for initializing their objects:

 Float(float value) initializes the Float object to value.

 Float(double value) initializes the Float object to the float equivalent of value.

 Float(String s) converts s’s text to a floating-point value and stores this value
in the Float object.

 Double(double value) initializes the Double object to value.

 Double(String s) converts s’s text to a double precision floating-point value
and stores this value in the Double object.

Float’s constructors are complemented by float floatValue(), which returns the wrapped
floating-point value. Similarly, Double’s constructors are complemented by double doubleValue(),
which returns the wrapped double precision floating-point value.

Float declares several utility methods in addition to floatValue(). These methods include the following:

 static int floatToIntBits(float value) converts value to a 32-bit integer.

 static boolean isInfinite(float f) returns true when f’s value is +infinity or
–infinity. A related boolean isInfinite() method returns true when the current
Float object’s value is +infinity or −infinity.

 static boolean isNaN(float f) returns true when f’s value is NaN. A related
boolean isNaN() method returns true when the current Float object’s value
is NaN.

 static float parseFloat(String s) parses s, returning the floating-point
equivalent of s’s textual representation of a floating-point value or throwing
java.lang.NumberFormatException when this representation is invalid (contains
letters, for example).

Double declares several utility methods as well as doubleValue(). These methods include the following:

 static long doubleToLongBits(double value) converts value to a long integer.

 static boolean isInfinite(double d) returns true when d’s value is +infinity or
−infinity. A related boolean isInfinite() method returns true when the current
Double object’s value is +infinity or −infinity.

 static boolean isNaN(double d) returns true when d’s value is NaN. A related
public boolean isNaN() method returns true when the current Double object’s
value is NaN.

 static double parseDouble(String s) parses s, returning the double precision
floating-point equivalent of s’s textual representation of a double precision
floating-point value or throwing NumberFormatException when this representation
is invalid.

284 CHAPTER 8: Exploring the Basic APIs Part 2

The floatToIntBits() and doubleToIntBits() methods are used in implementations of the equals()
and hashCode() methods that must take float and double fields into account. floatToIntBits() and
doubleToIntBits() allow equals() and hashCode() to respond properly to the following situations:

 equals() must return true when f1 and f2 contain Float.NaN (or d1 and d2
contain Double.NaN). If equals() was implemented in a manner similar to
f1.floatValue() == f2.floatValue() (or d1.doubleValue() == d2.doubleValue()),
this method would return false because NaN is not equal to anything, including
itself.

 equals() must return false when f1 contains +0.0 and f2 contains –0.0 (or vice
versa), or d1 contains +0.0 and d2 contains -0.0 (or vice versa). If equals()
was implemented in a manner similar to f1.floatValue() == f2.floatValue()
(or d1.doubleValue() == d2.doubleValue()), this method would return true
because +0.0 == −0.0 returns true.

These requirements are needed for hash-based collections (discussed in Chapter 9) to work
properly. Listing 8-1 shows how they impact Float’s and Double’s equals() methods.

Listing 8-1. Demonstrating Float’s equals() Method in a NaN Context and Double’s equals() Method in a +/-0.0 Context

public class FloatDoubleDemo
{
 public static void main(String[] args)
 {
 Float f1 = new Float(Float.NaN);
 System.out.println(f1.floatValue());
 Float f2 = new Float(Float.NaN);
 System.out.println(f2.floatValue());
 System.out.println(f1.equals(f2));
 System.out.println(Float.NaN == Float.NaN);
 System.out.println();
 Double d1 = new Double(+0.0);
 System.out.println(d1.doubleValue());
 Double d2 = new Double(-0.0);
 System.out.println(d2.doubleValue());
 System.out.println(d1.equals(d2));
 System.out.println(+0.0 == -0.0);
 }
}

Compile Listing 8-1 (javac FloatDoubleDemo.java) and run this application (java FloatDoubleDemo).
The following output proves that Float’s equals() method properly handles NaN and Double’s
equals() method properly handles +/-0.0:

NaN
NaN
true
false

285CHAPTER 8: Exploring the Basic APIs Part 2

0.0
-0.0
false
true

Tip When you want to test a float or double value for equality with +infinity or −infinity (but
not both), don’t use isInfinite(). Instead, compare the value with NEGATIVE_INFINITY or
POSITIVE_INFINITY via ==. For example, f == Float.NEGATIVE_INFINITY.

You will find parseFloat() and parseDouble() useful in many contexts. For example, Listing 8-2 uses
parseDouble() to parse command-line arguments into doubles.

Listing 8-2. Parsing Command-Line Arguments into Double Precision Floating-Point Values

public class Calc
{
 public static void main(String[] args)
 {
 if (args.length != 3)
 {
 System.err.println("usage: java Calc value1 op value2");
 System.err.println("op is one of +, -, x, or /");
 return;
 }
 try
 {
 double value1 = Double.parseDouble(args[0]);
 double value2 = Double.parseDouble(args[2]);
 if (args[1].equals("+"))
 System.out.println(value1 + value2);
 else
 if (args[1].equals("-"))
 System.out.println(value1 - value2);
 else
 if (args[1].equals("x"))
 System.out.println(value1 * value2);
 else
 if (args[1].equals("/"))
 System.out.println(value1 / value2);
 else
 System.err.println("invalid operator: " + args[1]);
 }
 catch (NumberFormatException nfe)
 {
 System.err.println("Bad number format: " + nfe.getMessage());
 }
 }
}

286 CHAPTER 8: Exploring the Basic APIs Part 2

Specify java Calc 10E+3 + 66.0 to try out the Calc application. This application responds by
outputting 10066.0. If you specified java Calc 10E+3 + A instead, you would observe Bad number
format: For input string: "A" as the output, which is in response to the second parseDouble()
method call’s throwing of a NumberFormatException object.

Although NumberFormatException describes an unchecked exception, and although unchecked
exceptions are often not handled because they represent coding mistakes, NumberFormatException
doesn’t fit this pattern in this example. The exception doesn’t arise from a coding mistake; it arises
from someone passing an illegal numeric argument to the application, which cannot be avoided
through proper coding. Perhaps NumberFormatException should have been implemented as a
checked exception.

Integer, Long, Short, and Byte
Integer, Long, Short, and Byte store 32-bit, 64-bit, 16-bit, and 8-bit integer values in Integer, Long,
Short, and Byte objects, respectively.

Each class declares MAX_VALUE and MIN_VALUE constants that identify the maximum and minimum
values that can be represented by its associated primitive type. These classes also declare the
following constructors for initializing their objects:

 Integer(int value) initializes the Integer object to value.

 Integer(String s) converts s’s text to a 32-bit integer value and stores this
value in the Integer object.

 Long(long value) initializes the Long object to value.

 Long(String s) converts s’s text to a 64-bit integer value and stores this value in
the Long object.

 Short(short value) initializes the Short object to value.

 Short(String s) converts s’s text to a 16-bit integer value and stores this value
in the Short object.

 Byte(byte value) initializes the Byte object to value.

 Byte(String s) converts s’s text to an 8-bit integer value and stores this value in
the Byte object.

Integer’s constructors are complemented by int intValue(), Long’s constructors are
complemented by long longValue(), Short’s constructors are complemented by short
shortValue(), and Byte’s constructors are complemented by byte byteValue(). These methods
return wrapped integers.

These classes declare various useful integer-oriented methods. For example, Integer declares
the following class methods for converting a 32-bit integer to a String according to a specific
representation (binary, hexadecimal, octal, and decimal):

 static String toBinaryString(int i) returns a String object containing i’s
binary representation. For example, Integer.toBinaryString(255) returns a
String object containing 11111111.

287CHAPTER 8: Exploring the Basic APIs Part 2

 static String toHexString(int i) returns a String object containing i’s
hexadecimal representation. For example, Integer.toHexString(255) returns a
String object containing ff.

 static String toOctalString(int i) returns a String object containing i’s
octal representation. For example, toOctalString(64) returns a String object
containing 100.

 static String toString(int i) returns a String object containing i’s
decimal representation. For example, toString(255) returns a String object
containing 255.

It’s often convenient to prepend zeros to a binary string so that you can align multiple binary strings in
columns. For example, you might want to create an application that displays the following aligned output:

11110001
+
00000111

11111000

Unfortunately, toBinaryString() doesn’t let you accomplish this task. For example,
Integer.toBinaryString(7) returns a String object containing 111 instead of 00000111.
Listing 8-3’s toAlignedBinaryString() method addresses this oversight.

Listing 8-3. Aligning Binary Strings

public class AlignBinaryString
{
 public static void main(String[] args)
 {
 System.out.println(toAlignedBinaryString(7, 8));
 System.out.println(toAlignedBinaryString(255, 16));
 System.out.println(toAlignedBinaryString(255, 7));
 }

 static String toAlignedBinaryString(int i, int numBits)
 {
 String result = Integer.toBinaryString(i);
 if (result.length() > numBits)
 return null; // cannot fit result into numBits columns
 int numLeadingZeros = numBits - result.length();
 StringBuilder sb = new StringBuilder();
 for (int j = 0; j < numLeadingZeros; j++)
 sb.append('0');
 return sb.toString() + result;
 }
}

The toAlignedBinaryString() method takes two arguments: the first argument specifies the 32-bit
integer that is to be converted into a binary string, and the second argument specifies the number of
bit columns in which to fit the string.

288 CHAPTER 8: Exploring the Basic APIs Part 2

After calling toBinaryString() to return i’s equivalent binary string without leading zeros,
toAlignedBinaryString() verifies that the string’s digits can fit into the number of bit columns
specified by numBits. If they don’t fit, this method returns null.

Moving on, toAlignedBinaryString() calculates the number of leading "0"s to prepend to result
and then uses a for loop to create a string of leading zeros. This method ends by returning the
leading zeros string prepended to the result string.

When you run this application, it generates the following output:

00000111
0000000011111111
null

Number
Each of Float, Double, Integer, Long, Short, and Byte provides the other classes’ xValue() methods
in addition to its own xValue() method. For example, Float provides doubleValue(), intValue(),
longValue(), shortValue(), and byteValue() as well as floatValue().

All six methods are members of Number, which is the abstract superclass of Float, Double, Integer,
Long, Short, and Byte—Number’s floatValue(), doubleValue(), intValue(), and longValue()
methods are abstract. Number is also the superclass of java.math.BigDecimal and java.math.
BigInteger (and some concurrency-related classes; see Chapter 10).

Number exists to simplify iterating over a collection of Number subclass objects. For example, you
can declare a variable of java.util.List<Number> type and initialize it to an instance of
java.util.ArrayList<Number>. You can then store a mixture of Number subclass objects in the
collection, and iterate over this collection by calling a subclass method polymorphically.

Exploring Threads
Applications execute via threads, which are independent paths of execution through an application’s
code. When multiple threads are executing, each thread’s path can differ from other thread paths.
For example, a thread might execute one of a switch statement’s cases, and another thread might
execute another of this statement’s cases.

Note Applications use threads to improve performance. Some applications can get by with only the
default main thread (the thread that executes the main() method) to carry out their tasks, but other
applications need additional threads to perform time-intensive tasks in the background so that they
remain responsive to their users.

The virtual machine gives each thread its own method-call stack to prevent threads from interfering
with each other. Separate stacks let threads keep track of their next instructions to execute, which
can differ from thread to thread. The stack also provides a thread with its own copy of method
parameters, local variables, and return value.

289CHAPTER 8: Exploring the Basic APIs Part 2

Java supports threads via its Threads API. This API consists of one interface (Runnable) and four
classes (Thread, ThreadGroup, ThreadLocal, and InheritableThreadLocal) in the java.lang package.
After exploring Runnable and Thread (and mentioning ThreadGroup during this exploration), in this
section I explore thread synchronization, ThreadLocal, and InheritableThreadLocal.

Note Java 5 introduced the java.util.concurrent package as a high-level alternative to the
low-level Threads API. (I will discuss this package in Chapter 10.) Although java.util.concurrent
is the preferred API for working with threads, you should also be somewhat familiar with Threads
because it’s helpful in simple threading scenarios. Also, you might have to analyze someone else’s
source code that depends on Threads.

Runnable and Thread
Java provides the Runnable interface to identify those objects that supply code for threads to
execute via this interface’s solitary void run() method—a thread receives no arguments and returns
no value. Classes implement Runnable to supply this code, and one of these classes is Thread.

Thread provides a consistent interface to the underlying operating system’s threading architecture.
(The operating system is typically responsible for creating and managing threads.) Thread makes
it possible to associate code with threads as well as start and manage those threads. Each Thread
instance associates with a single thread.

Thread declares several constructors for initializing Thread objects. Some of these constructors
take Runnable arguments: you can supply code to run without having to extend Thread. Other
constructors don’t take Runnable arguments: you must extend Thread and override its run() method
to supply the code to run.

For example, Thread(Runnable runnable) initializes a new Thread object to the specified runnable
whose code is to be executed. In contrast, Thread() doesn’t initialize Thread to a Runnable argument.
Instead, your Thread subclass provides a constructor that calls Thread(), and the subclass also
overrides Thread’s run() method.

In the absence of an explicit name argument, each constructor assigns a unique default name
(starting with Thread-) to the Thread object. Names make it possible to differentiate threads. In
contrast to the previous two constructors, which choose default names, Thread(String threadName)
lets you specify your own thread name.

Thread also declares methods for starting and managing threads. Table 8-1 describes many of the
more useful methods.

290 CHAPTER 8: Exploring the Basic APIs Part 2

Table 8-1. Thread Methods

Method Description

static Thread
currentThread()

Return the Thread object associated with the thread that calls this method.

String getName() Return the name associated with this Thread object.

Thread.State
getState()

Return the state of the thread associated with this Thread object. The state is
identified by the Thread.State enum as one of BLOCKED (waiting to acquire a lock,
discussed later), NEW (created but not started), RUNNABLE (executing), TERMINATED
(the thread has died), TIMED_WAITING (waiting for a specified amount of time to
elapse), or WAITING (waiting indefinitely).

void interrupt() Set the interrupt status flag in this Thread object. If the associated thread is
blocked or is waiting, clear this flag and wake up the thread by throwing an
instance of the java.lang.InterruptedException class.

static boolean
interrupted()

Return true when the thread associated with this Thread object has a pending
interrupt request. Clear the interrupt status flag.

boolean isAlive() Return true to indicate that this Thread object’s associated thread is alive and not
dead. A thread’s life span ranges from just before it is actually started within the
start() method to just after it leaves the run() method, at which point it dies.

boolean isDaemon() Return true when the thread associated with this Thread object is a daemon
thread, a thread that acts as a helper to a user thread (nondaemon thread) and
dies automatically when the application’s last nondaemon thread dies so the
application can exit.

boolean isInterrupted() Return true when the thread associated with this Thread object has a pending
interrupt request.

void join() The thread that calls this method on this Thread object waits for the thread
associated with this object to die. This method throws InterruptedException
when this Thread object’s interrupt() method is called.

void join(long millis) The thread that calls this method on this Thread object waits for the thread
associated with this object to die, or until millis milliseconds have elapsed,
whichever happens first. This method throws InterruptedException when this
Thread object’s interrupt() method is called.

void setDaemon(boolean
isDaemon)

Mark this Thread object’s associated thread as a daemon thread when isDaemon
is true. This method throws java.lang.IllegalThreadStateException when the
thread has not yet been created and started.

void setName(String
threadName)

Assign threadName’s value to this Thread object as the name of its associated
thread.

static void
sleep(long time)

Pause the thread associated with this Thread object for time milliseconds. This
method throws InterruptedException when this Thread object’s interrupt()
method is called while the thread is sleeping.

void start() Create and start this Thread object’s associated thread. This method throws
IllegalThreadStateException when the thread was previously started and is
running or has died.

291CHAPTER 8: Exploring the Basic APIs Part 2

Listing 8-4 introduces you to the Threads API via a main() method that demonstrates Runnable,
Thread(Runnable runnable), currentThread(), getName(), and start().

Listing 8-4. A Pair of Counting Threads

public class CountingThreads
{
 public static void main(String[] args)
 {
 Runnable r = new Runnable()
 {
 @Override
 public void run()
 {
 String name = Thread.currentThread().getName();
 int count = 0;
 while (true)
 System.out.println(name + ": " + count++);
 }
 };
 Thread thdA = new Thread(r);
 Thread thdB = new Thread(r);
 thdA.start();
 thdB.start();
 }
}

According to Listing 8-4, the default main thread that executes main() first instantiates an
anonymous class that implements Runnable. It then creates two Thread objects, initializing each
object to the runnable, and calls Thread’s start() method to create and start both threads. After
completing these tasks, the main thread exits main() and dies.

Each of the two started threads executes the runnable’s run() method. It calls Thread’s
currentThread() method to obtain its associated Thread instance, uses this instance to call Thread’s
getName() method to return its name, initializes count to 0, and enters an infinite loop where it
outputs name and count and increments count on each iteration.

Tip To stop an application that doesn’t end, press the Ctrl and C keys simultaneously on a Windows
platform or do the equivalent on a non-Windows platform.

I observe both threads alternating in their execution when I run this application on the 64-bit
Windows 7 platform. Partial output from one run appears here:

Thread-0: 0
Thread-0: 1
Thread-1: 0
Thread-0: 2
Thread-1: 1
Thread-0: 3

292 CHAPTER 8: Exploring the Basic APIs Part 2

Thread-1: 2
Thread-0: 4
Thread-1: 3
Thread-0: 5
Thread-1: 4
Thread-0: 6
Thread-1: 5
Thread-0: 7
Thread-1: 6
Thread-1: 7
Thread-1: 8
Thread-1: 9
Thread-1: 10
Thread-1: 11
Thread-1: 12

Note I executed java CountThreads >output.txt to capture the output to output.txt and
then presented part of this file’s content previously. Capturing output to a file may significantly affect
the output that would otherwise be observed if output wasn’t captured. Because I present captured
thread output throughout this section, bear this in mind when executing the application on your
platform. Also, note that your platform’s threading architecture may impact the observable results. I’ve
tested each example in this section on the 64-bit Windows 7 platform.

When a computer has enough processors and/or processor cores, the computer’s operating system
assigns a separate thread to each processor or core so the threads execute concurrently (at the
same time). When a computer doesn’t have enough processors and/or cores, a thread must wait its
turn to use the shared processor/core.

The operating system uses a scheduler (http://en.wikipedia.org/wiki/Scheduling_(computing)) to
determine when a waiting thread executes. The following list identifies three different schedulers:

Linux 2.6 through 2.6.22 uses the O(1) scheduler (http://en.wikipedia.org/
wiki/O(1)_scheduler).

Linux 2.6.23 uses the Completely Fair Scheduler (http://en.wikipedia.org/
wiki/Completely_Fair_Scheduler).

Windows NT-based operating systems (NT, XP, Vista, and 7) use a multilevel
feedback queue scheduler (http://en.wikipedia.org/wiki/Multilevel_
feedback_queue). This scheduler has been adjusted in Windows Vista and
Windows 7 to optimize performance.

Caution Although the previous output indicates that the first thread (Thread-0) starts executing,
never assume that the thread associated with the Thread object whose start() method is called
first is the first thread to execute. Although this might be true of some schedulers, it might not be true
of others.

293CHAPTER 8: Exploring the Basic APIs Part 2

A multilevel feedback queue and many other thread schedulers take the concept of priority (thread
relative importance) into account. They often combine preemptive scheduling (higher priority threads
preempt—interrupt and run instead of—lower priority threads) with round robin scheduling (equal
priority threads are given equal slices of time, which are known as time slices, and take turns executing).

Thread supports priority via its void setPriority(int priority) method (set the priority
of this Thread object’s thread to priority, which ranges from Thread.MIN_PRIORITY to
Thread.MAX_PRIORITY—Thread.NORMAL_PRIORITY identifies the default priority) and
int getPriority() method (return the current priority).

Caution Using the setPriority() method can impact an application’s portability across platforms
because different schedulers can handle a priority change in different ways. For example, one
platform’s scheduler might delay lower priority threads from executing until higher priority threads
finish. This delaying can lead to indefinite postponement or starvation because lower priority threads
“starve” while waiting indefinitely for their turn to execute, and this can seriously hurt the application’s
performance. Another platform’s scheduler might not indefinitely delay lower priority threads, improving
application performance.

Listing 8-5 refactors Listing 8-4’s main() method to give each thread a nondefault name and to put
each thread to sleep after outputting name and count.

Listing 8-5. A Pair of Counting Threads Revisited

public class CountingThreads
{
 public static void main(String[] args)
 {
 Runnable r = new Runnable()
 {
 @Override
 public void run()
 {
 String name = Thread.currentThread().getName();
 int count = 0;
 while (true)
 {
 System.out.println(name + ": " + count++);
 try
 {
 Thread.sleep(100);
 }
 catch (InterruptedException ie)
 {
 }
 }
 }
 };

294 CHAPTER 8: Exploring the Basic APIs Part 2

 Thread thdA = new Thread(r);
 thdA.setName("A");
 Thread thdB = new Thread(r);
 thdB.setName("B");
 thdA.start();
 thdB.start();
 }
}

Listing 8-5 reveals that threads A and B execute Thread.sleep(100); to sleep for 100 milliseconds.
This sleep results in each thread executing more frequently, as the following partial output reveals:

A: 0
B: 0
A: 1
B: 1
B: 2
A: 2
B: 3
A: 3
B: 4
A: 4
B: 5
A: 5
B: 6
A: 6
B: 7
A: 7

A thread will occasionally start another thread to perform a lengthy calculation, download a large file,
or perform some other time-consuming activity. After finishing its other tasks, the thread that started
the worker thread is ready to process the results of the worker thread and waits for the worker thread
to finish and die.

It’s possible to wait for the worker thread to die by using a while loop that repeatedly calls Thread’s
isAlive() method on the worker thread’s Thread object and sleeps for a certain length of time when this
method returns true. However, Listing 8-6 demonstrates a less verbose alternative: the join() method.

Listing 8-6. Joining the Default Main Thread with a Background Thread

public class JoinDemo
{
 public static void main(String[] args)
 {
 Runnable r = new Runnable()
 {
 @Override
 public void run()
 {
 System.out.println("Worker thread is simulating " +
 "work by sleeping for 5 seconds.");

295CHAPTER 8: Exploring the Basic APIs Part 2

 try
 {
 Thread.sleep(5000);
 }
 catch (InterruptedException ie)
 {
 }
 System.out.println("Worker thread is dying.");
 }
 };
 Thread thd = new Thread(r);
 thd.start();
 System.out.println("Default main thread is doing work.");
 try
 {
 Thread.sleep(2000);
 }
 catch (InterruptedException ie)
 {
 }
 System.out.println("Default main thread has finished its work.");
 System.out.println("Default main thread is waiting for worker thread " +
 "to die.");
 try
 {
 thd.join();
 }
 catch (InterruptedException ie)
 {
 }
 System.out.println("Main thread is dying.");
 }
}

Listing 8-6 demonstrates the default main thread starting a worker thread, performing some work,
and then waiting for the worker thread to die by calling join() via the worker thread’s thd object.
When you run this application, you will discover output similar to the following (message order might
differ somewhat):

Default main thread is doing work.
Worker thread is simulating work by sleeping for 5 seconds.
Default main thread has finished its work.
Default main thread is waiting for worker thread to die.
Worker thread is dying.
Main thread is dying.

Every Thread object belongs to some ThreadGroup object; Thread declares a ThreadGroup
getThreadGroup() method that returns this object. You should ignore thread groups because
they are not that useful. If you need to logically group Thread objects, you should use an array or
collection instead.

296 CHAPTER 8: Exploring the Basic APIs Part 2

Caution Various ThreadGroup methods are flawed. For example, int enumerate(Thread[]
threads) will not include all active threads in its enumeration when its threads array argument is too
small to store their Thread objects. Although you might think that you could use the return value from
the int activeCount() method to properly size this array, there is no guarantee that the array will be
large enough because activeCount()’s return value fluctuates with the creation and death of threads.

However, you should still know about ThreadGroup because of its contribution in handling exceptions
that are thrown while a thread is executing. Listing 8-7 sets the stage for learning about exception
handling by presenting a run() method that attempts to divide an integer by 0, which results in a
thrown java.lang.ArithmeticException instance.

Listing 8-7. Throwing an Exception from the run() Method

public class ExceptionThread
{
 public static void main(String[] args)
 {
 Runnable r = new Runnable()
 {
 @Override
 public void run()
 {
 int x = 1 / 0; // Line 10
 }
 };
 Thread thd = new Thread(r);
 thd.start();
 }
}

Run this application and you will see an exception trace that identifies the thrown ArithmeticException:

Exception in thread "Thread-0" java.lang.ArithmeticException: / by zero
 at ExceptionThread$1.run(ExceptionThread.java:10)
 at java.lang.Thread.run(Unknown Source)

When an exception is thrown out of the run() method, the thread terminates and the following
activities take place:

The virtual machine looks for an instance of Thread.UncaughtExceptionHandler
installed via Thread’s void setUncaughtExceptionHandler(Thread.
UncaughtExceptionHandler eh) method. When this handler is found, it passes
execution to the instance’s void uncaughtException(Thread t, Throwable e)
method, where t identifies the Thread object of the thread that threw the
exception, and e identifies the thrown exception or error—perhaps a
java.lang.OutOfMemoryError instance was thrown. If this method throws an
exception/error, the exception/error is ignored by the virtual machine.

297CHAPTER 8: Exploring the Basic APIs Part 2

Assuming that setUncaughtExceptionHandler() was not called to install a
handler, the virtual machine passes control to the associated ThreadGroup
object’s uncaughtException(Thread t, Throwable e) method. Assuming that
ThreadGroup was not extended and that its uncaughtException() method was
not overridden to handle the exception, uncaughtException() passes control
to the parent ThreadGroup object’s uncaughtException() method when a
parent ThreadGroup is present. Otherwise, it checks to see if a default uncaught
exception handler has been installed (via Thread’s static void
setDefaultUncaughtExceptionHandler(Thread.UncaughtExceptionHandler
handler) method). If a default uncaught exception handler has been installed, its
uncaughtException() method is called with the same two arguments. Otherwise,
uncaughtException() checks its Throwable argument to determine if it is an instance
of java.lang.ThreadDeath. If so, nothing special is done. Otherwise, as Listing 8-7’s
exception message shows, a message containing the thread’s name, as returned
from the thread’s getName() method, and a stack backtrace, using the Throwable
argument’s printStackTrace() method, is printed to the standard error stream.

Listing 8-8 demonstrates Thread’s setUncaughtExceptionHandler() and
setDefaultUncaughtExceptionHandler() methods.

Listing 8-8. Demonstrating Uncaught Exception Handlers

public class ExceptionThread
{
 public static void main(String[] args)
 {
 Runnable r = new Runnable()
 {
 @Override
 public void run()
 {
 int x = 1 / 0;
 }
 };
 Thread thd = new Thread(r);
 Thread.UncaughtExceptionHandler uceh;
 uceh = new Thread.UncaughtExceptionHandler()
 {
 @Override
 public void uncaughtException(Thread t, Throwable e)
 {
 System.out.println("Caught throwable " + e + " for thread "
 + t);
 }
 };
 thd.setUncaughtExceptionHandler(uceh);
 uceh = new Thread.UncaughtExceptionHandler()
 {
 @Override
 public void uncaughtException(Thread t, Throwable e)
 {

298 CHAPTER 8: Exploring the Basic APIs Part 2

 System.out.println("Default uncaught exception handler");
 System.out.println("Caught throwable " + e + " for thread "
 + t);
 }
 };
 thd.setDefaultUncaughtExceptionHandler(uceh);
 thd.start();
 }
}

When you run this application, you will observe the following output:

Caught throwable java.lang.ArithmeticException: / by zero for thread Thread[Thread-0,5,main]

You will not also see the default uncaught exception handler’s output because the default handler
is not called. To see that output, you must comment out thd.setUncaughtExceptionHandler(uceh);.
If you also comment out thd.setDefaultUncaughtExceptionHandler(uceh);, you will see
Listing 8-7’s output.

Caution Thread declares several deprecated methods, including stop() (stop an executing thread).
These methods have been deprecated because they are unsafe. Do not use these deprecated methods.
(I will show you how to safely stop a thread later in this chapter.) Also, you should avoid the static void
yield() method, which is intended to switch execution from the current thread to another thread, because
it can affect portability and hurt application performance. Although yield() might switch to another thread
on some platforms (which can improve performance), yield() might only return to the current thread on
other platforms (which hurts performance because the yield() call has only wasted time).

Thread Synchronization
Throughout its execution, each thread is isolated from other threads because it has been given its
own method-call stack. However, threads can still interfere with each other when they access and
manipulate shared data. This interference can corrupt the shared data, and this corruption can cause
an application to fail.

For example, consider a checking account in which a husband and wife have joint access. Suppose
that the husband and wife decide to empty this account at the same time without knowing that the
other is doing the same thing. Listing 8-9 demonstrates this scenario.

Listing 8-9. A Problematic Checking Account

public class CheckingAccount
{
 private int balance;

 public CheckingAccount(int initialBalance)
 {
 balance = initialBalance;
 }

299CHAPTER 8: Exploring the Basic APIs Part 2

 public boolean withdraw(int amount)
 {
 if (amount <= balance)
 {
 try
 {
 Thread.sleep((int) (Math.random() * 200));
 }
 catch (InterruptedException ie)
 {
 }
 balance -= amount;
 return true;
 }
 return false;
 }

 public static void main(String[] args)
 {
 final CheckingAccount ca = new CheckingAccount(100);
 Runnable r = new Runnable()
 {
 public void run()
 {
 String name = Thread.currentThread().getName();
 for (int i = 0; i < 10; i++)
 System.out.println (name + " withdraws $10: " +
 ca.withdraw(10));
 }
 };
 Thread thdHusband = new Thread(r);
 thdHusband.setName("Husband");
 Thread thdWife = new Thread(r);
 thdWife.setName("Wife");
 thdHusband.start();
 thdWife.start();
 }
}

This application lets more money be withdrawn than is available in the account. For example, the
following output reveals $110 being withdrawn when only $100 is available:

Wife withdraws $10: true
Husband withdraws $10: true
Husband withdraws $10: true
Wife withdraws $10: true
Wife withdraws $10: true
Husband withdraws $10: true
Wife withdraws $10: true
Wife withdraws $10: true
Wife withdraws $10: true
Husband withdraws $10: true

300 CHAPTER 8: Exploring the Basic APIs Part 2

Husband withdraws $10: false
Husband withdraws $10: false
Husband withdraws $10: false
Husband withdraws $10: false
Husband withdraws $10: false
Husband withdraws $10: false
Wife withdraws $10: true
Wife withdraws $10: false
Wife withdraws $10: false
Wife withdraws $10: false

The reason why more money is withdrawn than is available for withdrawal is that a race condition
exists between the husband and wife threads.

Note A race condition is a scenario in which multiple threads update the same object at the same
time or nearly at the same time. Part of the object stores values written to it by one thread, and another
part of the object stores values written to it by another thread.

The race condition exists because the actions of checking the amount for withdrawal to ensure
that it is less than what appears in the balance and deducting the amount from the balance are not
atomic (indivisible) operations. (Although atoms are divisible, atomic is commonly used to refer to
something being indivisible.)

Note The Thread.sleep() method call that sleeps for a variable amount of time (up to a maximum
of 199 milliseconds) is present so that you can observe more money being withdrawn than is available
for withdrawal. Without this method call, you might have to execute the application hundreds of times
(or more) to witness this problem because the scheduler might rarely pause a thread between the
amount <= balance expression and the balance -= amount; expression statement—the code
executes rapidly.

Consider the following scenario:

The Husband thread executes withdraw()’s amount <= balance expression,
which returns true. The scheduler pauses the Husband thread and lets the Wife
thread execute.

The Wife thread executes withdraw()’s amount <= balance expression, which
returns true.

The Wife thread performs the withdrawal. The scheduler pauses the Wife thread
and lets the Husband thread execute.

The Husband thread performs the withdrawal.

This problem can be corrected by synchronizing access to withdraw() so that only one thread
at a time can execute inside this method. You synchronize access at the method level by adding

301CHAPTER 8: Exploring the Basic APIs Part 2

reserved word synchronized to the method header prior to the method’s return type, for example,
synchronized boolean withdraw(int amount).

As I demonstrate later, you can also synchronize access to a block of statements by specifying
synchronized(object) { /* synchronized statements */ }, where object is an arbitrary object
reference. No thread can enter a synchronized method or block until execution leaves the
method/block; this is known as mutual exclusion.

Synchronization is implemented in terms of monitors and locks. A monitor is a concurrency
construct for controlling access to a critical section, a region of code that must execute atomically.
It is identified at the source code level as a synchronized method or a synchronized block.

A lock is a token that a thread must acquire before a monitor allows that thread to execute inside a
monitor’s critical section. The token is released automatically when the thread exits the monitor to
give another thread an opportunity to acquire the token and enter the monitor.

Note A thread that has acquired a lock doesn’t release this lock when it calls one of Thread’s
sleep() methods.

A thread entering a synchronized instance method acquires the lock associated with the object
on which the method is called. A thread entering a synchronized class method acquires the lock
associated with the class’s java.lang.Class object. Finally, a thread entering a synchronized block
acquires the lock associated with the block’s controlling object.

Tip Thread declares a static boolean holdsLock(Object o) method that returns true
when the calling thread holds the monitor lock on object o. You will find this method handy in assertion
statements, such as assert Thread.holdsLock(o);.

The need for synchronization is often subtle. For example, Listing 8-10’s ID utility class declares
a getNextID() method that returns a unique long-based ID, perhaps to be used when generating
unique filenames. Although you might not think so, this method can cause data corruption and
return duplicate values.

Listing 8-10. A Utility Class for Returning Unique IDs

class ID
{
 private static long nextID = 0;
 static long getNextID()
 {
 return nextID++;
 }
}

There are two lack-of-synchronization problems with getNextID(). Because 32-bit virtual machine
implementations require two steps to update a 64-bit long integer, adding 1 to nextID is not

302 CHAPTER 8: Exploring the Basic APIs Part 2

atomic: the scheduler could interrupt a thread that has only updated half of nextID, which corrupts
the contents of this variable.

Note Variables of type long and double are subject to corruption when being written to in an
unsynchronized context on 32-bit virtual machines. This problem doesn’t occur with variables of type
boolean, byte, char, float, int, or short; each type occupies 32 bits or less.

Assume that multiple threads call getNextID(). Because postincrement (++) reads and writes the
nextID field in two steps, multiple threads might retrieve the same value. For example, thread A
executes ++, reading nextID but not incrementing its value before being interrupted by the scheduler.
Thread B now executes and reads the same value.

Both problems can be corrected by synchronizing access to nextID so that only one thread can
execute this method’s code. All that is required is to add synchronized to the method header prior to
the method’s return type, for example, static synchronized int getNextID().

Synchronization is also used to communicate between threads. For example, you might design your
own mechanism for stopping a thread (because you cannot use Thread’s unsafe stop() methods for
this task). Listing 8-11 shows how you might accomplish this task.

Listing 8-11. Attempting to Stop a Thread

public class ThreadStopping
{
 public static void main(String[] args)
 {
 class StoppableThread extends Thread
 {
 private boolean stopped = false;

 @Override
 public void run()
 {
 while(!stopped)
 System.out.println("running");
 }

 void stopThread()
 {
 stopped = true;
 }
 }
 StoppableThread thd = new StoppableThread();
 thd.start();
 try
 {
 Thread.sleep(1000); // sleep for 1 second
 }

303CHAPTER 8: Exploring the Basic APIs Part 2

 catch (InterruptedException ie)
 {
 }
 thd.stopThread();
 }
}

Listing 8-11 introduces a main() method with a local class named StoppableThread that subclasses
Thread. StoppableThread declares a stopped field initialized to false, a stopThread() method that
sets this field to true, and a run() method whose infinite loop checks stopped on each loop iteration
to see if its value has changed to true.

After instantiating StoppableThread, the default main thread starts the thread associated with this
Thread object. It then sleeps for one second and calls StoppableThread’s stop() method before
dying. When you run this application on a single-processor/single-core machine, you will probably
observe the application stopping. You might not see this stoppage when the application runs on a
multiprocessor machine or a uniprocessor machine with multiple cores. For performance reasons,
each processor or core probably has its own cache (localized high-speed memory) with its own
copy of stopped. When one thread modifies its copy of this field, the other thread’s copy of stopped
isn’t changed.

Listing 8-12 refactors Listing 8-11 to guarantee that the application will run correctly on all kinds
of machines.

Listing 8-12. Guaranteed Stoppage on a Multiprocessor/Multicore Machine

public class ThreadStopping
{
 public static void main(String[] args)
 {
 class StoppableThread extends Thread
 {
 private boolean stopped = false;

 @Override
 public void run()
 {
 while(!isStopped())
 System.out.println("running");
 }

 synchronized void stopThread()
 {
 stopped = true;
 }

 private synchronized boolean isStopped()
 {
 return stopped;
 }
 }

304 CHAPTER 8: Exploring the Basic APIs Part 2

 StoppableThread thd = new StoppableThread();
 thd.start();
 try
 {
 Thread.sleep(1000); // sleep for 1 second
 }
 catch (InterruptedException ie)
 {
 }
 thd.stopThread();
 }
}

Listing 8-12’s stopThread() and isStopped() methods are synchronized to support thread
communication (between the default main thread that calls stopThread() and the started thread that
executes inside run()). When a thread enters one of these methods, it’s guaranteed to access a
single shared copy of the stopped field (not a cached copy).

Synchronization is necessary to support mutual exclusion or mutual exclusion combined with thread
communication. However, there exists an alternative to synchronization when the only purpose is
to communicate between threads. This alternative is reserved word volatile, which Listing 8-13
demonstrates.

Listing 8-13. The volatile Alternative to Synchronization for Thread Communication

public class ThreadStopping
{
 public static void main(String[] args)
 {
 class StoppableThread extends Thread
 {
 private volatile boolean stopped = false;

 @Override
 public void run()
 {
 while(!stopped)
 System.out.println("running");
 }

 void stopThread()
 {
 stopped = true;
 }
 }
 StoppableThread thd = new StoppableThread();
 thd.start();
 try
 {
 Thread.sleep(1000); // sleep for 1 second
 }

305CHAPTER 8: Exploring the Basic APIs Part 2

 catch (InterruptedException ie)
 {
 }
 thd.stopThread();
 }
}

Listing 8-13 declares stopped to be volatile; threads that access this field will always access
a single shared copy (not cached copies on multiprocessor/multicore machines). In addition
to generating code that is less verbose, volatile might offer improved performance over
synchronization.

When a field is declared volatile, it cannot also be declared final. If you’re depending on the
semantics (meaning) of volatility, you still get those from a final field. For more information, check
out Brian Goetz’s “Java Theory and Practice: Fixing the Java Memory Model, Part 2” article
(www.ibm.com/developerworks/library/j-jtp03304/).

Caution Use volatile only in a thread communication context. Also, you can only use this reserved
word in the context of field declarations. Although you can declare double and long fields volatile,
you should avoid doing so on 32-bit virtual machines because it takes two operations to access a
double or long variable’s value, and mutual exclusion via synchronization is required to access their
values safely.

java.lang.Object’s wait(), notify(), and notifyAll() methods support a form of thread
communication where a thread voluntarily waits for some condition (a prerequisite for continued
execution) to arise, at which time another thread notifies the waiting thread that it can continue.
wait() causes its calling thread to wait on an object’s monitor, and notify() and notifyAll() wake
up one or all threads waiting on the monitor.

Caution Because the wait(), notify(), and notifyAll() methods depend on a lock, they
cannot be called from outside of a synchronized method or synchronized block. If you fail to heed this
warning, you will encounter a thrown instance of the java.lang.IllegalMonitorStateException
class. Also, a thread that has acquired a lock releases this lock when it calls one of Object’s wait()
methods.

A classic example of thread communication involving conditions is the relationship between a
producer thread and a consumer thread. The producer thread produces data items to be consumed
by the consumer thread. Each produced data item is stored in a shared variable.

Imagine that the threads are not communicating and are running at different speeds. The producer
might produce a new data item and record it in the shared variable before the consumer retrieves
the previous data item for processing. Also, the consumer might retrieve the contents of the shared
variable before a new data item is produced.

306 CHAPTER 8: Exploring the Basic APIs Part 2

To overcome those problems, the producer thread must wait until it is notified that the previously
produced data item has been consumed, and the consumer thread must wait until it is notified that
a new data item has been produced. Listing 8-14 shows you how to accomplish this task via wait()
and notify().

Listing 8-14. The Producer-Consumer Relationship

public class PC
{
 public static void main(String[] args)
 {
 Shared s = new Shared();
 new Producer(s).start();
 new Consumer(s).start();
 }
}

class Shared
{
 private char c = '\u0000';
 private boolean writeable = true;

 synchronized void setSharedChar(char c)
 {
 while (!writeable)
 try
 {
 wait();
 }
 catch (InterruptedException e) {}
 this.c = c;
 writeable = false;
 notify();
 }

 synchronized char getSharedChar()
 {
 while (writeable)
 try
 {
 wait();
 }
 catch (InterruptedException e) {}
 writeable = true;
 notify();
 return c;
 }
}

307CHAPTER 8: Exploring the Basic APIs Part 2

class Producer extends Thread
{
 private Shared s;

 Producer(Shared s)
 {
 this.s = s;
 }

 @Override
 public void run()
 {
 for (char ch = 'A'; ch <= 'Z'; ch++)
 {
 synchronized(s)
 {
 s.setSharedChar(ch);
 System.out.println(ch + " produced by producer.");
 }
 }
 }
}
class Consumer extends Thread
{
 private Shared s;

 Consumer(Shared s)
 {
 this.s = s;
 }

 @Override
 public void run()
 {
 char ch;
 do
 {
 synchronized(s)
 {
 ch = s.getSharedChar();
 System.out.println(ch + " consumed by consumer.");
 }
 }
 while (ch != 'Z');
 }
}

This application creates a Shared object and two threads that get a copy of the object’s reference.
The producer calls the object’s setSharedChar() method to save each of 26 uppercase letters; the
consumer calls the object’s getSharedChar() method to acquire each letter.

308 CHAPTER 8: Exploring the Basic APIs Part 2

The writeable instance field tracks two conditions: the producer waiting on the consumer to
consume a data item and the consumer waiting on the producer to produce a new data item. It helps
coordinate execution of the producer and consumer. The following scenario, where the consumer
executes first, illustrates this coordination:

1. The consumer executes s.getSharedChar() to retrieve a letter.

2. Inside of that synchronized method, the consumer calls wait() because
writeable contains true. The consumer now waits until it receives notification
from the producer.

3. The producer eventually executes s.setSharedChar(ch);.

4. When the producer enters that synchronized method (which is possible because
the consumer released the lock inside of the wait() method prior to waiting),
the producer discovers writeable’s value to be true and doesn’t call wait().

5. The producer saves the character, sets writeable to false (which will cause
the producer to wait on the next setSharedChar() call when the consumer
has not consumed the character by that time), and calls notify() to awaken
the consumer (assuming the consumer is waiting).

6. The producer exits setSharedChar(char c).

7. The consumer wakes up (and reacquires the lock), sets writeable to true
(which will cause the consumer to wait on the next getSharedChar() call
when the producer has not produced a character by that time), notifies the
producer to awaken that thread (assuming the producer is waiting), and
returns the shared character.

Although the synchronization works correctly, you might observe output (on some platforms) that
shows multiple producing messages before a consuming message. For example, you might see
A produced by producer., followed by B produced by producer., followed by A consumed by
consumer. at the beginning of the application’s output.

This strange output order is caused by the call to setSharedChar() followed by its companion
System.out.println() method call not being atomic and by the call to getSharedChar() followed by
its companion System.out.println() method call not being atomic. The output order is corrected by
wrapping each of these method call pairs in a synchronized block that synchronizes on the Shared
object referenced by s.

When you run this application, its output should always appear in the same alternating order as
shown next (only the first few lines are shown for brevity):

A produced by producer.
A consumed by consumer.
B produced by producer.
B consumed by consumer.
C produced by producer.
C consumed by consumer.
D produced by producer.
D consumed by consumer.

309CHAPTER 8: Exploring the Basic APIs Part 2

Caution Never call wait() outside of a loop. The loop tests the condition (!writeable or writeable
in the previous example) before and after the wait() call. Testing the condition before calling wait()
ensures liveness. If this test was not present, and if the condition held and notify() had been called prior
to wait() being called, it is unlikely that the waiting thread would ever wake up. Retesting the condition
after calling wait() ensures safety. If retesting didn’t occur, and if the condition didn’t hold after the thread
had awakened from the wait() call (perhaps another thread called notify() accidentally when the
condition didn’t hold), the thread would proceed to destroy the lock’s protected invariants.

Too much synchronization can be problematic. If you are not careful, you might encounter a situation
where locks are acquired by multiple threads, neither thread holds its own lock but holds the lock
needed by some other thread, and neither thread can enter and later exit its critical section to
release its held lock because some other thread holds the lock to that critical section. Listing 8-15’s
atypical example demonstrates this scenario, which is known as deadlock.

Listing 8-15. A Pathological Case of Deadlock

public class DeadlockDemo
{
 private Object lock1 = new Object();
 private Object lock2 = new Object();

 public void instanceMethod1()
 {
 synchronized(lock1)
 {
 synchronized(lock2)
 {
 System.out.println("first thread in instanceMethod1");
 // critical section guarded first by
 // lock1 and then by lock2
 }
 }
 }

 public void instanceMethod2()
 {
 synchronized(lock2)
 {
 synchronized(lock1)
 {
 System.out.println("second thread in instanceMethod2");
 // critical section guarded first by
 // lock2 and then by lock1
 }
 }
 }

310 CHAPTER 8: Exploring the Basic APIs Part 2

 public static void main(String[] args)
 {
 final DeadlockDemo dld = new DeadlockDemo();
 Runnable r1 = new Runnable()
 {
 @Override
 public void run()
 {
 while(true)
 {
 dld.instanceMethod1();
 try
 {
 Thread.sleep(50);
 }
 catch (InterruptedException ie)
 {
 }
 }
 }
 };
 Thread thdA = new Thread(r1);
 Runnable r2 = new Runnable()
 {
 @Override
 public void run()
 {
 while(true)
 {
 dld.instanceMethod2();
 try
 {
 Thread.sleep(50);
 }
 catch (InterruptedException ie)
 {
 }
 }
 }
 };
 Thread thdB = new Thread(r2);
 thdA.start();
 thdB.start();
 }
}

311CHAPTER 8: Exploring the Basic APIs Part 2

Listing 8-15’s thread A and thread B call instanceMethod1() and instanceMethod2(), respectively,
at different times. Consider the following execution sequence:

1. Thread A calls instanceMethod1(), obtains the lock assigned to the
lock1-referenced object, and enters its outer critical section (but has not yet
acquired the lock assigned to the lock2-referenced object).

2. Thread B calls instanceMethod2(), obtains the lock assigned to the
lock2-referenced object, and enters its outer critical section (but has not yet
acquired the lock assigned to the lock1-referenced object).

3. Thread A attempts to acquire the lock associated with lock2. The virtual
machine forces the thread to wait outside of the inner critical section
because thread B holds that lock.

4. Thread B attempts to acquire the lock associated with lock1. The virtual
machine forces the thread to wait outside of the inner critical section
because thread A holds that lock.

5. Neither thread can proceed because the other thread holds the needed lock.
You have a deadlock situation and the program (at least in the context of the
two threads) freezes up.

Although the previous example clearly identifies a deadlock state, it’s often not that easy to detect
deadlock. For example, your code might contain the following circular relationship among various
classes (in several source files):

Class A’s synchronized method calls class B’s synchronized method.

Class B’s synchronized method calls class C’s synchronized method.

Class C’s synchronized method calls class A’s synchronized method.

If thread A calls class A’s synchronized method and thread B calls class C’s synchronized method,
thread B will block when it attempts to call class A’s synchronized method and thread A is still inside
of that method. Thread A will continue to execute until it calls class C’s synchronized method and
then block. Deadlock results.

Note Neither the Java language nor the virtual machine provides a way to prevent deadlock, and so
the burden falls on you. The simplest way to prevent deadlock from happening is to avoid having either
a synchronized method or a synchronized block call another synchronized method/block. Although this
advice prevents deadlock from happening, it is impractical because one of your synchronized methods/
blocks might need to call a synchronized method in a Java API, and the advice is overkill because
the synchronized method/block being called might not call any other synchronized method/block, so
deadlock would not occur.

312 CHAPTER 8: Exploring the Basic APIs Part 2

You will sometimes want to associate per-thread data (such as a user ID) with a thread. Although you
can accomplish this task with a local variable, you can only do so while the local variable exists. You
could use an instance field to keep this data around longer, but then you would have to deal with
synchronization. Thankfully, Java supplies ThreadLocal as a simple (and very handy) alternative.

Each instance of the ThreadLocal class describes a thread-local variable, which is a variable that
provides a separate storage slot to each thread that accesses the variable. You can think of a
thread-local variable as a multislot variable in which each thread can store a different value in the
same variable. Each thread sees only its value and is unaware of other threads having their own
values in this variable.

ThreadLocal is generically declared as ThreadLocal<T>, where T identifies the type of value that is
stored in the variable. This class declares the following constructor and methods:

 ThreadLocal() creates a new thread-local variable.

 T get() returns the value in the calling thread’s storage slot. If an entry doesn’t
exist when the thread calls this method, get() calls initialValue().

 T initialValue() creates the calling thread’s storage slot and stores an initial
(default) value in this slot. The initial value defaults to null. You must subclass
ThreadLocal and override this protected method to provide a more suitable
initial value.

 void remove() removes the calling thread’s storage slot. If this method is
followed by get() with no intervening set(), get() calls initialValue().

 void set(T value) sets the value of the calling thread’s storage slot to value.

Listing 8-16 shows how to use ThreadLocal to associate different user IDs with two threads.

Listing 8-16. Different User IDs for Different Threads

public class ThreadLocalDemo
{
 private static volatile ThreadLocal<String> userID =
 new ThreadLocal<String>();

 public static void main(String[] args)
 {
 Runnable r = new Runnable()
 {
 @Override
 public void run()
 {
 String name = Thread.currentThread().getName();
 if (name.equals("A"))
 userID.set("foxtrot");
 else
 userID.set("charlie");
 System.out.println(name + " " + userID.get());
 }
 };

313CHAPTER 8: Exploring the Basic APIs Part 2

 Thread thdA = new Thread(r);
 thdA.setName("A");
 Thread thdB = new Thread(r);
 thdB.setName("B");
 thdA.start();
 thdB.start();
 }
}

After instantiating ThreadLocal and assigning the reference to a volatile class field named
userID (the field is volatile because it is accessed by different threads, which might execute on
a multiprocessor/multicore machine), the default main thread creates two more threads that store
different String objects in userID and output their objects.

When you run this application, you will observe the following output (possibly not in this order):

A foxtrot
B charlie

Values stored in thread-local variables are not related. When a new thread is created, it gets a new
storage slot containing initialValue()’s value. Perhaps you would prefer to pass a value from
a parent thread, a thread that creates another thread, to a child thread, the created thread. You
accomplish this task with InheritableThreadLocal.

InheritableThreadLocal is a subclass of ThreadLocal. As well as declaring an
InheritableThreadLocal() constructor, this class declares the following protected method:

 T childValue(T parentValue) calculates the child’s initial value as a function of
the parent’s value at the time the child thread is created. This method is called
from the parent thread before the child thread is started. The method returns the
argument passed to parentValue and should be overridden when another value
is desired.

Listing 8-17 shows how to use InheritableThreadLocal to pass a parent thread’s Integer object to
a child thread.

Listing 8-17. Passing an Object from Parent Thread to Child Thread

public class InheritableThreadLocalDemo
{
 private static volatile InheritableThreadLocal<Integer> intVal =
 new InheritableThreadLocal<Integer>();

 public static void main(String[] args)
 {
 Runnable rP = new Runnable()
 {
 @Override
 public void run()
 {
 intVal.set(new Integer(10));
 Runnable rC = new Runnable()
 {

314 CHAPTER 8: Exploring the Basic APIs Part 2

 @Override
 public void run()
 {
 Thread thd;
 thd = Thread.currentThread();
 String name = thd.getName();
 System.out.println(name + " " +
 intVal.get());
 }
 };
 Thread thdChild = new Thread(rC);
 thdChild.setName("Child");
 thdChild.start();
 }
 };
 new Thread(rP).start();
 }
}

After instantiating InheritableThreadLocal and assigning it to a volatile class field named intVal,
the default main thread creates a parent thread, which stores an Integer object containing 10 in
intVal. The parent thread creates a child thread, which accesses intVal and retrieves its parent
thread’s Integer object.

When you run this application, you will observe the following output:

Child 10

Exploring System Capabilities
The java.lang package includes four system-oriented classes: System, Runtime, Process, and
ProcessBuilder. These classes let you obtain information about the system on which the application
is running (such as environment variable values) and perform various system tasks (such as execute
another application). For brevity, in this section I introduce you to the first three classes only.

Note ProcessBuilder is a convenient alternative to Runtime for creating application processes
and managing their attributes. To learn more about this class, check out “Getting Started with Java’s
ProcessBuilder: A Simple Utility Class to Interact with Linux from Java Program”
(http://singztechmusings.wordpress.com/2011/06/21/getting-started-with-javas-
processbuilder-a-sample-utility-class-to-interact-with-linux-from-java-program/).

System
System is a utility class that declares in, out, and err class fields, which refer to the current standard
input, standard output, and standard error streams, respectively. The first field is of type java.
io.InputStream, and the last two fields are of type java.io.PrintStream. (I will formally introduce
these classes in Chapter 11.)

315CHAPTER 8: Exploring the Basic APIs Part 2

System also declares class methods that provide access to the current time (in milliseconds), system
property values, environment variable values, and other kinds of system information. Furthermore,
it declares class methods that support the system tasks of copying one array to another array,
requesting garbage collection, and so on.

Table 8-2 describes some of System’s methods.

Table 8-2. System Methods

Method Description

void arraycopy(Object src,
int srcPos, Object dest,
int destPos, int length)

Copy the number of elements specified by length from the
src array starting at zero-based offset srcPos into the dest array
starting at zero-based offset destPos. This method throws
java.lang.NullPointerException when src or dest is null,
java.lang.IndexOutOfBoundsException when copying
causes access to data outside array bounds, and java.lang.
ArrayStoreException when an element in the src array could not
be stored into the dest array because of a type mismatch.

long currentTimeMillis() Return the current system time in milliseconds since January 1,
1970 00:00:00 UTC (Coordinated Universal Time—see
http://en.wikipedia.org/wiki/Coordinated_Universal_Time).

void gc() Inform the virtual machine that now would be a good time to run
the garbage collector. This is only a hint; there is no guarantee that
the garbage collector will run.

String getEnv(String name) Return the value of the environment variable identified by name.

String getProperty(String name) Return the value of the system property (platform-specific attribute,
such as a version number) identified by name or return null when
such a property doesn’t exist. Examples of system properties that
are useful in an Android context include file.separator,
java.class.path, java.home, java.io.tmpdir, java.library.path,
line.separator, os.arch, os.name, path.separator, and user.dir.

void runFinalization() Inform the virtual machine that now would be a good time to
perform any outstanding object finalizations. This is only a hint;
there is no guarantee that outstanding object finalizations will be
performed.

void setErr(PrintStream err) Set the standard error device to point to err.

void setIn(InputStream in) Set the standard input device to point to in.

void setOut(PrintStream out) Set the standard output device to point to out.

316 CHAPTER 8: Exploring the Basic APIs Part 2

Note System declares SecurityManager getSecurityManager() and void
setSecurityManager(SecurityManager sm) methods that are not supported by Android.
On an Android device, the former method always returns null, and the latter method always throws
an instance of the java.lang.SecurityException class. Regarding the latter method, its
documentation states that “security managers do not provide a secure environment for executing
untrusted code and are unsupported on Android. Untrusted code cannot be safely isolated within a
single virtual machine on Android.”

Listing 8-18 demonstrates the arraycopy(), currentTimeMillis(), and getProperty() methods.

Listing 8-18. Experimenting with System Methods

public class SystemDemo
{
 public static void main(String[] args)
 {
 int[] grades = { 86, 92, 78, 65, 52, 43, 72, 98, 81 };
 int[] gradesBackup = new int[grades.length];
 System.arraycopy(grades, 0, gradesBackup, 0, grades.length);
 for (int i = 0; i < gradesBackup.length; i++)
 System.out.println(gradesBackup[i]);
 System.out.println("Current time: " + System.currentTimeMillis());
 String[] propNames =
 {
 "file.separator",
 "java.class.path",
 "java.home",
 "java.io.tmpdir",
 "java.library.path",
 "line.separator",
 "os.arch",
 "os.name",
 "path.separator",
 "user.dir"
 };
 for (int i = 0; i < propNames.length; i++)
 System.out.println(propNames[i] + ": " +
 System.getProperty(propNames[i]));
 }
}

Listing 8-18’s main() method begins by demonstrating arraycopy(). It uses this method to copy the
contents of a grades array to a gradesBackup array.

317CHAPTER 8: Exploring the Basic APIs Part 2

Tip The arraycopy() method is the fastest portable way to copy one array to another. Also, when
you write a class whose methods return a reference to an internal array, you should use arraycopy()
to create a copy of the array and then return the copy’s reference. That way, you prevent clients from
directly manipulating (and possibly screwing up) the internal array.

main() next calls currentTimeMillis() to return the current time as a milliseconds value. Because
this value is not human readable, you might want to use the java.util.Date class (discussed in
Chapter 10). The Date() constructor calls currentTimeMillis() and its toString() method converts
this value to a readable date and time.

main() concludes by demonstrating getProperty() in a for loop. This loop iterates over all of
Table 8-2’s property names, outputting each name and value.

Compile Listing 8-18: javac SystemDemo.java. Then execute the following command line:

java SystemDemo

When I run this application on my platform, it generates the following output:

86
92
78
65
52
43
72
98
81
Current time: 1353115138889
file.separator: \
java.class.path: .;C:\Program Files (x86)\QuickTime\QTSystem\QTJava.zip
java.home: C:\Program Files\Java\jre7
java.io.tmpdir: C:\Users\Owner\AppData\Local\Temp\
java.library.path: C:\Windows\system32;C:\Windows\Sun\Java\bin;C:\Windows\system32;C:\Windows;
c:\Program Files (x86)\AMD APP\bin\x86_64;c:\Program Files (x86)\AMD APP\bin\x86;C:\Program
Files\Common Files\Microsoft Shared\Windows Live;C:\Program Files (x86)\Common Files\Microsoft
Shared\Windows Live;C:\Windows\system32;C:\Windows;C:\Windows\System32\Wbem;C:\Windows\System32\
WindowsPowerShell\v1.0\;C:\Program Files (x86)\ATI Technologies\ATI.ACE\Core-Static;
C:\Program Files (x86)\Windows Live\Shared;C:\Program Files\java\jdk1.7.0_06\bin;
C:\Program Files (x86)\Borland\BCC55\bin;C:\android;C:\android\tools;C:\android\platform-tools;
C:\Program Files (x86)\apache-ant-1.8.2\bin;C:\Program Files (x86)\QuickTime\QTSystem\;.
line.separator:

os.arch: amd64
os.name: Windows 7
path.separator: ;
user.dir: C:\prj\dev\ljfad2\ch08\code\SystemDemo

318 CHAPTER 8: Exploring the Basic APIs Part 2

Note line.separator stores the actual line separator character/characters, not its/their
representation (such as \r\n), which is why a blank line appears after line.separator:.

When you invoke System.in.read(), the input is originating from the source identified by the
InputStream instance assigned to in. Similarly, when you invoke System.out.print() or
System.err.println(), the output is being sent to the destination identified by the PrintStream
instance assigned to out or err, respectively.

Tip On an Android device, you can view content sent to standard output and standard error by first
executing adb logcat at the command line. adb is one of the tools included in the Android SDK.

Java initializes in to refer to the keyboard or a file when the standard input device is redirected
to the file. Similarly, Java initializes out/err to refer to the screen or a file when the standard
output/error device is redirected to the file. You can specify the input source, output destination,
and error destination by calling setIn(), setOut(), and setErr()—see Listing 8-19.

Listing 8-19. Programmatically Specifying the Standard Input Device Source and Standard Output/Error Device Destinations

import java.io.FileInputStream;
import java.io.IOException;
import java.io.PrintStream;

public class RedirectIO
{
 public static void main(String[] args) throws IOException
 {
 if (args.length != 3)
 {
 System.err.println("usage: java RedirectIO stdinfile stdoutfile stderrfile");
 return;
 }

 System.setIn(new FileInputStream(args[0]));
 System.setOut(new PrintStream(args[1]));
 System.setErr(new PrintStream(args[2]));

 int ch;
 while ((ch = System.in.read()) != -1)
 System.out.print((char) ch);

 System.err.println("Redirected error output");
 }
}

319CHAPTER 8: Exploring the Basic APIs Part 2

Listing 8-19 presents a RedirectIO application that lets you specify (via command-line arguments)
the name of a file from which System.in.read() obtains its content as well as the names of files to
which System.out.print() and System.err.println() send their content. It then proceeds to copy
standard input to standard output and then demonstrates outputting content to standard error.

Note FileInputStream provides access to the input sequence of bytes that is stored in the file
identified, in this example, by args[0]. Similarly, the PrintStream provides access to the files
identified by args[1] and args[2], which will store the output and error sequences of bytes.

Compile Listing 8-19: javac RedirectIO.java. Then execute the following command line:

java RedirectIO RedirectIO.java out.txt err.txt

This command line produces no visual output on the screen. Instead, it copies the contents of
RedirectIO.java to out.txt. It also stores Redirected error output in err.txt.

Runtime and Process
Runtime provides Java applications with access to the environment in which they are running. An
instance of this class is obtained by invoking its Runtime getRuntime() class method.

Note There is only one instance of the Runtime class.

Runtime declares several methods that are also declared in System. For example, Runtime declares
a void gc() method. Behind the scenes, System defers to its Runtime counterpart by first obtaining the
Runtime instance and then invoking this method via that instance. For example, System’s static void
gc() method executes Runtime.getRuntime().gc();.

Runtime also declares methods with no System counterparts. The following list describes a few of
these methods:

 int availableProcessors() returns the number of processors that are available
to the virtual machine. The minimum value returned by this method is 1.

 long freeMemory() returns the amount of free memory (measured in bytes) that
the virtual machine makes available to the application.

 long maxMemory() returns the maximum amount of memory (measured in bytes)
that the virtual machine may use (or Long.MAX_VALUE when there is no limit).

 long totalMemory() returns the total amount of memory (measured in bytes)
that is available to the virtual machine. This amount may vary over time
depending on the environment that is hosting the virtual machine.

Listing 8-20 demonstrates these methods.

320 CHAPTER 8: Exploring the Basic APIs Part 2

Listing 8-20. Experimenting with Runtime Methods

public class RuntimeDemo
{
 public static void main(String[] args)
 {
 Runtime rt = Runtime.getRuntime();
 System.out.println("Available processors: " + rt.availableProcessors());
 System.out.println("Free memory: "+ rt.freeMemory());
 System.out.println("Maximum memory: " + rt.maxMemory());
 System.out.println("Total memory: " + rt.totalMemory());
 }
}

Compile Listing 8-20: javac RuntimeDemo.java. Then execute the following command line:

java RuntimeDemo

When I run this application on my platform, I observe the following results:

Available processors: 2
Free memory: 123997936
Maximum memory: 1849229312
Total memory: 124649472

Some of Runtime’s methods are dedicated to executing other applications. For example, Process
exec(String program) executes the program named program in a separate native process. The new
process inherits the environment of the method’s caller, and a Process object is returned to allow
communication with the new process. IOException is thrown when an I/O error occurs.

Tip ProcessBuilder is a convenient alternative for configuring process attributes and running a
process. For example, Process p = new ProcessBuilder("myCommand", "myArg").start();.

Table 8-3 describes Process methods.

Table 8-3. Process Methods

Method Description

void destroy() Terminate the calling process and close any associated streams.

int exitValue() Return the exit value of the native process represented by this Process object (the
new process). IllegalThreadStateException is thrown when the native process has
not yet terminated.

InputStream
getErrorStream()

Return an input stream that is connected to the standard error stream of the native
process represented by this Process object. The stream obtains data piped from the
error output of the process represented by this Process object.

(continued)

321CHAPTER 8: Exploring the Basic APIs Part 2

Listing 8-21 demonstrates exec(String program) and three of Process’s methods.

Listing 8-21. Executing Another Application and Displaying Its Standard Output/Error Content

import java.io.InputStream;
import java.io.IOException;

public class Exec
{
 public static void main(String[] args)
 {
 if (args.length != 1)
 {
 System.err.println("usage: java Exec program");
 return;
 }
 try
 {
 Process p = Runtime.getRuntime().exec(args[0]);
 // Obtaining process standard output.
 InputStream is = p.getInputStream();
 int _byte;
 while ((_byte = is.read()) != -1)
 System.out.print((char) _byte);
 // Obtaining process standard error.
 is = p.getErrorStream();
 while ((_byte = is.read()) != -1)
 System.out.print((char) _byte);
 System.out.println("Exit status: " + p.waitFor());
 }
 catch (InterruptedException ie)
 {
 assert false; // should never happen
 }

Method Description

InputStream
getInputStream()

Return an input stream that is connected to the standard output stream of the native
process represented by this Process object. The stream obtains data piped from the
standard output of the process represented by this Process object.

OutputStream
getOutputStream()

Return an output stream that is connected to the standard input stream of the native
process represented by this Process object. Output to the stream is piped into the
standard input of the process represented by this Process object.

int waitFor() Cause the calling thread to wait for the native process associated with this Process
object to terminate. The process’s exit value is returned. By convention, 0 indicates
normal termination. This method throws InterruptedException when the current
thread is interrupted by another thread while it is waiting.

Table 8-3. (continued)

322 CHAPTER 8: Exploring the Basic APIs Part 2

 catch (IOException ioe)
 {
 System.err.println("I/O error: " + ioe.getMessage());
 }
 }
}

After verifying that exactly one command-line argument has been specified, Listing 8-21’s main()
method attempts to run the application identified by this argument. IOException is thrown when the
application cannot be located or when some other I/O error occurs.

Assuming that everything is fine, getInputStream() is called to obtain a reference to an input stream
that is used to input the bytes that the newly invoked application writes to its standard output
stream, if any. These bytes are subsequently output.

Next, main() calls getErrorStream() to obtain a reference to an input stream that is used to input the
bytes that the newly invoked application writes to its standard error stream, if any. These bytes are
subsequently output.

Note To guard against confusion, remember that Process’s getInputStream() method is used to
read bytes that the new process writes to its output stream, whereas Process’s getErrorStream()
method is used to read bytes that the new process writes to its error stream.

Finally, main() calls waitFor() to block until the new process exits. If the new process is a
GUI-based application, this method will not return until you explicitly terminate the new process.
For simple command-line-based applications, Exec should terminate immediately.

Compile Listing 8-21: javac Exec.java. Then execute a command line that identifies an application,
such as the java application launcher:

java Exec java

You should observe java’s usage information followed by the following line:

Exit status: 1

 Caution Because some native platforms provide limited buffer size for standard input and output
streams, failure to promptly write the new process’s input stream or read its output stream may cause
the new process to block or even deadlock.

323CHAPTER 8: Exploring the Basic APIs Part 2

EXERCISES

The following exercises are designed to test your understanding of Chapter 8’s content:

1. What is a primitive type wrapper class?

2. Identify Java’s primitive type wrapper classes.

3. Why does Java provide primitive type wrapper classes?

4. True or false: Byte is the smallest of the primitive type wrapper classes.

5. Why should you use Character class methods instead of expressions such as ch >= '0' &&
ch <= '9' to determine whether or not a character is a digit, a letter, and so on?

6. How do you determine whether or not double variable d contains +infinity or -infinity?

7. Identify the class that is the superclass of Byte, Character, and the other primitive type wrapper
classes.

8. Define thread.

9. What is the purpose of the Runnable interface?

10. What is the purpose of the Thread class?

11. True or false: A Thread object associates with multiple threads.

12. Define race condition.

13. What is thread synchronization?

14. How is synchronization implemented?

15. How does synchronization work?

16. True or false: Variables of type long or double are not atomic on 32-bit virtual machines.

17. What is the purpose of reserved word volatile?

18. True or false: Object’s wait() methods can be called from outside of a synchronized method
or block.

19. Define deadlock.

20. What is the purpose of the ThreadLocal class?

21. How does InheritableThreadLocal differ from ThreadLocal?

22. Identify the four java.lang package system classes discussed earlier in this chapter.

23. What system method do you invoke to copy an array to another array?

24. What does the exec(String program) method accomplish?

25. What does Process’s getInputStream() method accomplish?

26. Create a MultiPrint application that takes two arguments: text and an integer value that
represents a count. This application should print count copies of the text, one copy per line.

324 CHAPTER 8: Exploring the Basic APIs Part 2

27. Modify Listing 8-4’s CountingThreads application by marking the two started threads as daemon
threads. What happens when you run the resulting application?

28. Modify Listing 8-4’s CountingThreads application by adding logic to stop both counting
threads when the user presses the Return/Enter key. The default main thread of the new
StopCountingThreads application should call System.in.read() before terminating and
assign true to a variable named stopped after this method call returns. At each loop iteration start,
each counting thread should test this variable to see if it contains true and only continue the loop
when the variable contains false.

29. Create an EVDump application that dumps all environment variables (not system properties) to the
standard output.

Summary
The java.lang package includes Boolean, Byte, Character, Double, Float, Integer, Long, and
Short. These classes are known as primitive type wrapper classes because their instances wrap
themselves around values of primitive types.

Java provides these eight primitive type wrapper classes so that primitive-type values can be stored
in collections, such as lists, sets, and maps. Furthermore, these classes provide a good place to
associate useful constants and class methods with the primitive types.

Applications execute via threads, which are independent paths of execution through an application’s
code. The virtual machine gives each thread its own method-call stack to prevent threads from
interfering with each other.

Java supports threads via its Threads API. This API consists of one interface (Runnable) and four
classes (Thread, ThreadGroup, ThreadLocal, and InheritableThreadLocal) in the java.lang package.
ThreadGroup is not as useful as these other types.

Throughout its execution, each thread is isolated from other threads because it has been given its
own method-call stack. However, threads can still interfere with each other when they access and
manipulate shared data. This interference can corrupt the shared data, causing an application to fail.

Corruption can be avoided by using thread synchronization so that only one thread at a time can
execute inside a critical section, a region of code that must execute atomically. It is identified at the
source code level as a synchronized method or a synchronized block.

You synchronize access at the method level by adding reserved word synchronized to the method
header prior to the method’s return type. You can also synchronize access to a block of statements
by specifying synchronized(object) { /* synchronized statements */ }.

Synchronization is implemented in terms of monitors and locks. A monitor is a concurrency
construct for controlling access to a critical section. A lock is a token that a thread must acquire
before a monitor allows that thread to execute inside a monitor’s critical section.

Synchronization is necessary to support mutual exclusion or mutual exclusion combined with thread
communication. However, there exists an alternative to synchronization when the only purpose is to
communicate between threads. This alternative is reserved word volatile.

325CHAPTER 8: Exploring the Basic APIs Part 2

Object’s wait(), notify(), and notifyAll() methods support a form of thread communication
where a thread voluntarily waits for some condition (a prerequisite for continued execution) to arise,
at which time another thread notifies the waiting thread that it can continue. wait() causes its calling
thread to wait on an object’s monitor, and notify() and notifyAll() wake up one or all threads
waiting on the monitor.

Too much synchronization can be problematic. If you are not careful, you might encounter a situation
where locks are acquired by multiple threads, neither thread holds its own lock but holds the lock
needed by some other thread, and neither thread can enter and later exit its critical section to
release its held lock because some other thread holds the lock to that critical section. This scenario
is known as deadlock.

You will sometimes want to associate per-thread data with a thread. Although you can accomplish
this task with a local variable, you can only do so while the local variable exists. You could use an
instance field to keep this data around longer, but then you would have to deal with synchronization.
Java supplies the ThreadLocal class as a simple (and very handy) alternative.

Each ThreadLocal instance describes a thread-local variable, which is a variable that provides a
separate storage slot to each thread that accesses the variable. Think of a thread-local variable as a
multislot variable in which each thread can store a different value in the same variable. Each thread
sees only its value and is unaware of other threads having their own values in this variable.

Values stored in thread-local variables are not related. When a new thread is created, it gets a new
storage slot containing initialValue()’s value. However, you can pass a value from a parent thread,
a thread that creates another thread, to a child thread, the created thread, by working with the
InheritableThreadLocal class.

The java.lang package includes four system-oriented classes: System, Runtime, Process, and
ProcessBuilder. These classes let you obtain information about the system on which the application
is running and perform various system tasks.

System is a utility class that declares in, out, and err class fields, which refer to the current standard
input, standard output, and standard error streams, respectively. The first field is of type InputStream
and the last two fields are of type PrintStream.

System also declares class methods that provide access to the current time (in milliseconds), system
property values, environment variable values, and other kinds of system information. Furthermore, it
declares class methods that support system tasks such as copying one array to another array.

Runtime provides Java applications with access to the environment in which they are running. An
instance of this class is obtained by invoking its Runtime getRuntime() class method. You can then
call various environment-access methods, including methods that are also declared in System.

Some of Runtime’s methods execute other applications. For example, Process exec(String
program) executes program in a separate native process. The new process inherits the environment
of the method’s caller; a Process object is returned to allow communication with the new process.

This chapter completes my tour of Java’s basic APIs. In Chapter 9 I begin to explore Java’s utility
APIs by focusing on the Collections Framework and classic collections APIs.

327

Chapter 9
Exploring the Collections
Framework

Applications often must manage collections of objects. Although you can use arrays for this
purpose, they are not always a good choice. For example, arrays have fixed sizes, making it tricky to
determine an optimal size when you need to store a variable number of objects. Also, arrays can be
indexed by integers only, making them unsuitable for mapping arbitrary objects to other objects.

The standard class library provides the Collections Framework and legacy utility APIs to manage
collections on behalf of applications. In Chapter 9 I first present this framework and then introduce
you to these legacy APIs (in case you encounter them in legacy code). As you will discover, some of
the legacy APIs are still useful.

Note Java’ s Concurrency Utilities API suite (discussed in Chapter 10) extends the Collections Framework.

Exploring Collections Framework Fundamentals
The Collections Framework is a group of types (mainly located in the java.util package) that offers
a standard architecture for representing and manipulating collections, which are groups of objects
stored in instances of classes designed for this purpose. This framework’s architecture is divided
into three sections:

 Core interfaces: The framework provides core interfaces for manipulating
collections independently of their implementations.

 Implementation classes: The framework provides classes that provide different
core interface implementations to address performance and other requirements.

 Utility classes: The framework provides utility classes with methods for sorting
arrays, obtaining synchronized collections, and more.

328 CHAPTER 9: Exploring the Collections Framework

The core interfaces include java.lang.Iterable, Collection, List, Set, SortedSet, NavigableSet,
Queue, Deque, Map, SortedMap, and NavigableMap. Collection extends Iterable; List, Set, and Queue
each extend Collection; SortedSet extends Set; NavigableSet extends SortedSet; Deque extends
Queue; SortedMap extends Map; and NavigableMap extends SortedMap.

Figure 9-1 illustrates the core interfaces hierarchy (arrows point to parent interfaces).

Iterable

Collection

List Set Queue

Deque

SortedMap

SortedSet

NavigableSet

Map

NavigableMap

Figure 9-1. The Collections Framework is based on a hierarchy of core interfaces

The framework’s implementation classes include ArrayList, LinkedList, TreeSet, HashSet,
LinkedHashSet, EnumSet, PriorityQueue, ArrayDeque, TreeMap, HashMap, LinkedHashMap,
IdentityHashMap, WeakHashMap, and EnumMap. The name of each concrete class ends in a core
interface name, identifying the core interface on which it is based.

Note Additional implementation classes are part of the concurrency utilities.

The framework’s implementation classes also include the abstract AbstractCollection,
AbstractList, AbstractSequentialList, AbstractSet, AbstractQueue, and AbstractMap classes.
These classes offer skeletal implementations of the core interfaces to facilitate the creation of
concrete implementation classes.

Finally, the framework provides two utility classes: Arrays and Collections.

Comparable Versus Comparator
A collection implementation stores its elements in some order (arrangement). This order may be
unsorted, or it may be sorted according to some criterion (such as alphabetical, numerical, or
chronological).

A sorted collection implementation defaults to storing its elements according to their natural
ordering. For example, the natural ordering of java.lang.String objects is lexicographic or
dictionary (also known as alphabetical) order.

329CHAPTER 9: Exploring the Collections Framework

A collection cannot rely on equals() to dictate natural ordering because this method can only
determine if two elements are equivalent. Instead, element classes must implement the
java.lang.Comparable<T> interface and its int compareTo(T o) method.

Note Before Java 5 and its introduction of generics, compareTo()’s argument was of type
java.lang.Object and had to be cast to the appropriate type before the comparison could be made.
The cast operator would throw a java.lang.ClassCastException instance when the argument’s
type was not compatible with the cast.

You might occasionally need to store in a collection objects that are sorted in some order that differs
from their natural ordering. In this case, you would supply a comparator to provide that ordering.

Note According to Comparable’s Oracle-based Java documentation, this interface is considered to
be part of the Collections Framework even though it is a member of the java.lang package.

A sorted collection uses compareTo() to determine the natural ordering of this method’s element
argument o in a collection. compareTo() compares argument o with the current element (which is the
element on which compareTo() was called) and does the following:

It returns a negative value when the current element should precede o.

It returns a zero value when the current element and o are the same.

It returns a positive value when the current element should succeed o.

When you need to implement Comparable’s compareTo() method, there are some rules that you
must follow. These rules, listed next, are similar to those shown in Chapter 4 for implementing the
equals() method:

 compareTo() must be reflexive: For any nonnull reference value x, x.compareTo(x)
must return 0.

 compareTo() must be symmetric: For any nonnull reference values x and y,
x.compareTo(y) == -y.compareTo(x) must hold.

 compareTo() must be transitive: For any nonnull reference values x, y, and z, if
x.compareTo(y) > 0 is true, and if y.compareTo(z) > 0 is true, then x.compareTo(z)
> 0 must also be true.

Also, compareTo() should throw java.lang.NullPointerException when the null reference is
passed to this method. However, you don’t need to check for null because this method throws
NullPointerException when it attempts to access a null reference’s nonexistent members.

330 CHAPTER 9: Exploring the Collections Framework

A comparator is an object whose class implements the Comparator interface. This interface, whose
generic type is Comparator<T>, provides the following pair of methods:

 int compare(T o1, T o2) compares both arguments for order. This method
returns 0 when o1 equals o2, a negative value when o1 is less than o2, and a
positive value when o1 is greater than o2.

 boolean equals(Object o) returns true when o “equals” this Comparator in that
o is also a Comparator and imposes the same ordering. Otherwise, this method
returns false.

Note Comparator declares equals() because this interface places an extra condition on this method’s
contract. Additionally, this method can return true only if the specified object is also a comparator and it
imposes the same ordering as this comparator. You don’t have to override equals(), but doing so may
improve performance by allowing programs to determine that two distinct comparators impose the
same order.

Chapter 6 provided an example that illustrated implementing Comparable, and you will discover
another example later in this chapter. Also, in this chapter I will present examples of implementing
Comparator.

Iterable and Collection
Most of the core interfaces are rooted in Iterable and its Collection subinterface. Their generic
types are Iterable<T> and Collection<E>.

Iterable describes any object that can return its contained objects in some sequence. This interface
declares an Iterator<T> iterator() method that returns an Iterator instance for iterating over all
of the contained objects.

Collection represents a collection of objects that are known as elements. This interface provides
methods that are common to the Collection subinterfaces on which many collections are based.
Table 9-1 describes these methods.

331CHAPTER 9: Exploring the Collections Framework

Table 9-1. Collection Methods

Method Description

boolean add(E e) Add element e to this collection. Return true if this collection was modified
as a result; otherwise, return false. (Attempting to add e to a collection
that doesn’t permit duplicates and already contains a same-valued
element results in e not being added.) This method throws
java.lang.UnsupportedOperationException when add() is not supported,
ClassCastException when e’s class is not appropriate for this collection,
java.lang.IllegalArgumentException when some property of e prevents it
from being added to this collection, NullPointerException when e contains
the null reference and this collection doesn’t support null elements, and
java.lang.IllegalStateException when the element cannot be added at
this time because of insertion restrictions.

IllegalStateException signals that a method has been invoked at an illegal
or inappropriate time. In other words, the Java/Android environment or
application is not in an appropriate state for the requested operation. It is
often thrown when you try to add an element to a bounded queue (a queue
with a maximum length) and the queue is full.

boolean addAll
(Collection<?
extends E> c)

Add all elements of collection c to this collection. Return true if this collection
was modified as a result; otherwise, return false. This method throws
UnsupportedOperationException when this collection doesn’t support
addAll(), ClassCastException when the class of one of c’s elements is
inappropriate for this collection, IllegalArgumentException when some
property of an element prevents it from being added to this collection,
NullPointerException when c contains the null reference or when one of
its elements is null and this collection doesn’t support null elements, and
IllegalStateException when not all the elements can be added at this time
because of insertion restrictions.

void clear() Remove all elements from this collection. This method throws
UnsupportedOperationException when this collection doesn’t support
clear().

boolean
contains(Object o)

Return true when this collection contains o; otherwise, return false. This
method throws ClassCastException when the class of o is inappropriate for
this collection and NullPointerException when o contains the null reference
and this collection doesn’t support null elements.

boolean containsAll
(Collection<?> c)

Return true when this collection contains all of the elements that are
contained in the collection specified by c; otherwise, return false. This
method throws ClassCastException when the class of one of c’s elements is
inappropriate for this collection and NullPointerException when c contains
the null reference or when one of its elements is null and this collection
doesn’t support null elements.

boolean
equals(Object o)

Compare o with this collection and return true when o equals this collection;
otherwise, return false.

(continued)

332 CHAPTER 9: Exploring the Collections Framework

Method Description

int hashCode() Return this collection’s hash code. Equal collections have equal hash codes.

boolean isEmpty() Return true when this collection contains no elements; otherwise,
return false.

Iterator<E> iterator() Return an Iterator instance for iterating over all of the elements contained
in this collection. There are no guarantees concerning the order in which the
elements are returned (unless this collection is an instance of some class
that provides a guarantee). This Iterable method is redeclared in Collection
for convenience.

boolean remove(Object o) Remove the element identified as o from this collection. Return true when
the element is removed; otherwise, return false. This method throws
UnsupportedOperationException when this collection doesn’t support
remove(), ClassCastException when the class of o is inappropriate for this
collection, and NullPointerException when o contains the null reference and
this collection doesn’t support null elements.

boolean removeAll
(Collection<?> c)

Remove all of the elements from this collection that are also contained in
collection c. Return true when this collection is modified by this operation;
otherwise, return false. This method throws UnsupportedOperationException
when this collection doesn’t support removeAll(), ClassCastException
when the class of one of c’s elements is inappropriate for this collection, and
NullPointerException when c contains the null reference or when one of its
elements is null and this collection doesn’t support null elements.

boolean retainAll
(Collection<?> c)

Retain all of the elements in this collection that are also contained in
collection c. Return true when this collection is modified by this operation;
otherwise, return false. This method throws UnsupportedOperationException
when this collection doesn’t support retainAll(), ClassCastException
when the class of one of c’s elements is inappropriate for this collection, and
NullPointerException when c contains the null reference or when one of its
elements is null and this collection doesn’t support null elements.

int size() Return the number of elements contained in this collection or java.lang.
Integer.MAX_VALUE when there are more than Integer.MAX_VALUE elements
contained in the collection.

Object[] toArray() Return an array containing all of the elements stored in this collection. If this
collection makes any guarantees as to what order its elements are returned in
by its iterator, this method returns the elements in the same order.

The returned array is “safe” in that no references to it are maintained by
this collection. (In other words, this method allocates a new array even
when this collection is backed by an array.) The caller can safely modify the
returned array.

Table 9-1. (continued)

(continued)

333CHAPTER 9: Exploring the Collections Framework

Method Description

<T> T[] toArray(T[] a) Return an array containing all of the elements in this collection; the runtime
type of the returned array is that of the specified array. If the collection fits
in the specified array, it’s returned in the array. Otherwise, a new array is
allocated with the runtime type of the specified array and the size of this
collection. This method throws NullPointerException when null is passed
to a and java.lang.ArrayStoreException when a’s runtime type is not a
supertype of the runtime type of every element in this collection.

Table 9-1. (continued)

Table 9-1 reveals three exceptional things about various Collection methods. First, some methods
can throw instances of the UnsupportedOperationException class. For example, add() throws
UnsupportedOperationException when you attempt to add an object to an immutable (unmodifiable)
collection (discussed later in this chapter).

Second, some of Collection’s methods can throw instances of the ClassCastException class. For
example, remove() throws ClassCastException when you attempt to remove an entry (also known as
mapping) from a tree-based map whose keys are Strings but specify a non-String key instead.

Finally, Collection’s add() and addAll() methods throw IllegalArgumentException instances when
some property (attribute) of the element to be added prevents it from being added to this collection.
For example, a third-party collection class’s add() and addAll() methods might throw this exception
when they detect negative Integer values.

Note Perhaps you’re wondering why remove() is declared to accept any Object argument instead
of accepting only objects whose types are those of the collection. In other words, why is remove()
not declared as boolean remove(E e)? Also, why are containsAll(), removeAll(), and
retainAll() not declared with an argument of type Collection<? extends E> to ensure that
the collection argument only contains elements of the same type as the collection on which these
methods are called? The answer to these questions is the need to maintain backward compatibility.
The Collections Framework was introduced before Java 5 and its introduction of generics. To let legacy
code written before version 5 continue to compile, these four methods were declared with weaker type
constraints.

Iterator and the Enhanced For Loop Statement
By extending Iterable, Collection inherits that interface’s iterator() method, which makes it
possible to iterate over a collection. iterator() returns an instance of a class that implements

334 CHAPTER 9: Exploring the Collections Framework

the Iterator interface, whose generic type is expressed as Iterator<E> and which declares the
following three methods:

 boolean hasNext() returns true when this Iterator instance has more elements
to return; otherwise, this method returns false.

 E next() returns the next element from the collection associated with this
Iterator instance, or throws NoSuchElementException when there are no more
elements to return.

 void remove() removes the last element returned by next() from the collection
associated with this Iterator instance. This method can be called only once
per next() call. The behavior of an Iterator instance is unspecified when the
underlying collection is modified while iteration is in progress in any way other
than by calling remove(). This method throws UnsupportedOperationException
when it is not supported by this Iterator, and IllegalStateException when
remove() has been called without a previous call to next() or when multiple
remove() calls occur with no intervening next() calls.

The following example shows you how to iterate over a collection after calling iterator() to return
an Iterator instance:

Collection<String> col = . . . // This code doesn't compile because of the . . .
// Add elements to col.
Iterator iter = col.iterator();
while (iter.hasNext())
 System.out.println(iter.next());

The while loop repeatedly calls the iterator’s hasNext() method to determine whether or not iteration
should continue and (if it should continue) the next() method to return the next element from the
associated collection.

Because this idiom is commonly used, Java 5 introduced syntactic sugar to the for loop statement
to simplify iteration in terms of the idiom. This sugar makes this statement appear like the foreach
statement found in languages such as Perl and is revealed in the following simplified equivalent of
the previous example:

Collection<String> col = . . . // This code doesn't compile because of the . . .
// Add elements to col.
for (String s: col)
 System.out.println(s);

This sugar hides col.iterator(), a method call that returns an Iterator instance for iterating over
col’s elements. It also hides calls to Iterator’s hasNext() and next() methods on this instance. You
interpret this sugar to read as follows: “for each String object in col, assign this object to s at the
start of the loop iteration.”

335CHAPTER 9: Exploring the Collections Framework

Note The enhanced for loop statement is also useful in an arrays context in which it hides the array
index variable. Consider the following example:

String[] verbs = { "run", "walk", "jump" };
for (String verb: verbs)
 System.out.println (verb);

 This example, which reads as “for each String object in the verbs array, assign that object to verb
at the start of the loop iteration,” is equivalent to the following example:

String[] verbs = { "run", "walk", "jump" };
for (int i = 0; i < verbs.length; i++)
 System.out.println (verbs[i]);

The enhanced for loop statement is limited in that you cannot use this statement where access to
the iterator is required to remove an element from a collection. Also, it’s not usable where you must
replace elements in a collection/array during a traversal; and it cannot be used where you must
iterate over multiple collections or arrays in parallel.

Autoboxing and Unboxing
Developers who believe that Java should support only reference types have complained about
Java’s support for primitive types. One area where the dichotomy of Java’s type system is clearly
seen is the Collections Framework: you can store objects but not primitive-type-based values in
collections.

Although you cannot directly store a primitive-type-based value in a collection, you can indirectly
store this value by first wrapping it in an object created from a primitive type wrapper class such
as Integer and then storing this primitive type wrapper class instance in the collection—see the
following example:

Collection<Integer> col = . . .; // This code doesn't compile because of the . . .
int x = 27;
col.add(new Integer(x)); // Indirectly store int value 27 via an Integer object.

The reverse situation is also tedious. When you want to retrieve the int from col, you must invoke
Integer’s intValue() method (which, if you recall, is inherited from Integer’s java.lang.Number
superclass). Continuing on from this example, you would specify int y = col.iterator().next().
intValue(); to assign the stored 32-bit integer to y.

To alleviate this tedium, Java 5 introduced autoboxing and unboxing, which are a pair of
complementary syntactic sugar-based language features that make primitive-type values appear
more like objects. (This “sleight of hand” isn’t complete because you cannot specify expressions
such as 27.doubleValue().)

336 CHAPTER 9: Exploring the Collections Framework

Autoboxing automatically boxes (wraps) a primitive-type value in an object of the appropriate
primitive type wrapper class whenever a primitive-type value is specified but a reference is required.
For example, you could change the example’s third line to col.add(x); and have the compiler box x
into an Integer object.

Unboxing automatically unboxes (unwraps) a primitive-type value from its wrapper object whenever
a reference is specified but a primitive-type value is required. For example, you could specify
int y = col.iterator().next(); and have the compiler unbox the returned Integer object to int
value 27 prior to the assignment.

Although autoboxing and unboxing were introduced to simplify working with primitive type values in
a collections context, these language features can be used in other contexts; and this arbitrary use
can lead to a problem that is difficult to understand without knowledge of what is happening behind
the scenes. Consider the following example:

Integer i1 = 127;
Integer i2 = 127;
System.out.println(i1 == i2); // Output: true
System.out.println(i1 < i2); // Output: false
System.out.println(i1 > i2); // Output: false
System.out.println(i1 + i2); // Output: 254
i1 = 30000;
i2 = 30000;
System.out.println(i1 == i2); // Output: false
System.out.println(i1 < i2); // Output: false
System.out.println(i1 > i2); // Output: false
i2 = 30001;
System.out.println(i1 < i2); // Output: true
System.out.println(i1 + i2); // Output: 60001

With one exception, this example’s output is as expected. The exception is the i1 == i2 comparison
where each of i1 and i2 contains 30000. Instead of returning true, as is the case where each of i1
and i2 contains 127, i1 == i2 returns false. What is causing this problem?

Examine the generated code and you will discover that Integer i1 = 127; is converted to Integer
i1 = Integer.valueOf(127); and Integer i2 = 127; is converted to Integer i2 = Integer.
valueOf(127);. According to valueOf()’s Java documentation, this method takes advantage of
caching to improve performance.

Note valueOf() is also used when adding a primitive-type value to a collection. For example,
col.add(27) is converted to col.add(Integer.valueOf(27)).

Integer maintains an internal cache of unique Integer objects over a small range of values. The low
bound of this range is -128, and the high bound defaults to 127. However, you can change the high
bound by assigning a different value to system property java.lang.Integer.IntegerCache.high
(via the java.lang.System class’s String setProperty(String name, String value) method—I
demonstrated this method’s String getProperty(String name) counterpart in Chapter 8).

337CHAPTER 9: Exploring the Collections Framework

Note Each of java.lang.Byte, java.lang.Long, and java.lang.Short also maintains an
internal cache of unique Byte, Long, and Short objects, respectively.

Because of the cache, each Integer.valueOf(127) call returns the same Integer object reference,
which is why i1 == i2 (which compares references) evaluates to true. Because 30000 lies outside
of the default range, each Integer.valueOf(30000) call returns a reference to a new Integer object,
which is why i1 == i2 evaluates to false.

In contrast to == and !=, which don’t unbox the boxed values prior to the comparison, operators
such as <, >, and + unbox these values before performing their operations. As a result, i1 < i2
is converted to i1.intValue() < i2.intValue() and i1 + i2 is converted to i1.intValue() +
i2.intValue().

Caution Don’t assume that autoboxing and unboxing are used in the context of the == and !=
operators.

Exploring Lists
A list is an ordered collection, which is also known as a sequence. Elements can be stored in and
accessed from specific locations via integer indexes. Some of these elements may be duplicates or
null (when the list’s implementation allows null elements). Lists are described by the List interface,
whose generic type is List<E>.

List extends Collection and redeclares its inherited methods, partly for convenience. It also
redeclares iterator(), add(), remove(), equals(), and hashCode() to place extra conditions on their
contracts. For example, List’s contract for add() specifies that it appends an element to the end of
the list rather than adding the element to the collection.

List also declares Table 9-2’s list-specific methods.

Table 9-2. List-Specific Methods

Method Description

void add(int index, E e) Insert element e into this list at position index. Shift the element currently
at this position (if any) and any subsequent elements to the right. This
method throws UnsupportedOperationException when this list doesn’t
support add(), ClassCastException when e’s class is inappropriate for
this list, IllegalArgumentException when some property of e prevents it
from being added to this list, NullPointerException when e contains the
null reference and this list doesn’t support null elements, and java.lang.
IndexOutOfBoundsException when index is less than 0 or index is greater
than size().

(continued)

338 CHAPTER 9: Exploring the Collections Framework

Method Description

boolean addAll
(int index,
Collection<?
extends E> c)

Insert all of c’s elements into this list starting at position index and in the
order that they are returned by c’s iterator. Shift the element currently at this
position (if any) and any subsequent elements to the right. This method throws
UnsupportedOperationException when this list doesn’t support addAll(),
ClassCastException when the class of one of c’s elements is inappropriate
for this list, IllegalArgumentException when some property of an element
prevents it from being added to this list, NullPointerException when c
contains the null reference or when one of its elements is null and this list
doesn’t support null elements, and IndexOutOfBoundsException when index is
less than 0 or index is greater than size().

E get(int index) Return the element stored in this list at position index. This method throws
IndexOutOfBoundsException when index is less than 0 or index is greater than
or equal to size().

int indexOf
(Object o)

Return the index of the first occurrence of element o in this list or -1 when
this list doesn’t contain the element. This method throws ClassCastException
when o’s class is inappropriate for this list and NullPointerException when o
contains the null reference and this list doesn’t support null elements.

int lastIndexOf
(Object o)

Return the index of the last occurrence of element o in this list or -1 when
this list doesn’t contain the element. This method throws ClassCastException
when o’s class is inappropriate for this list and NullPointerException when o
contains the null reference and this list doesn’t support null elements.

ListIterator<E>
listIterator()

Return a list iterator over the elements in this list. The elements are returned in
the same order as they appear in the list.

ListIterator<E>
listIterator(int index)

Return a list iterator over the elements in this list starting with the element
located at index. The elements are returned in the same order as they appear
in the list. This method throws IndexOutOfBoundsException when index is less
than 0 or index is greater than size().

E remove(int index) Remove the element at position index from this list, shift any subsequent
elements to the left, and return this element. This method throws
UnsupportedOperationException when this list doesn’t support remove() and
IndexOutOfBoundsException when index is less than 0 or index is greater than
or equal to size().

E set(int index, E e) Replace the element at position index in this list with element e and
return the element previously stored at this position. This method
throws UnsupportedOperationException when this list doesn’t support
set(), ClassCastException when e’s class is inappropriate for this list,
IllegalArgumentException when some property of e prevents it from being
added to this list, NullPointerException when e contains the null reference
and this list doesn’t support null elements, and IndexOutOfBoundsException
when index is less than 0 or index is greater than or equal to size().

Table 9-2. (continued)

(continued)

339CHAPTER 9: Exploring the Collections Framework

Method Description

List<E> subList(int
fromIndex, int toIndex)

Return a view (discussed later) of the portion of this list between fromIndex
(inclusive) and toIndex (exclusive). (If fromIndex and toIndex are equal, the
returned list is empty.) The returned list is backed by this list, so nonstructural
changes in the returned list are reflected in this list and vice versa. The
returned list supports all of the optional list methods (those methods that can
throw UnsupportedOperationException) supported by this list. This method
throws IndexOutOfBoundsException when fromIndex is less than 0, toIndex is
greater than size(), or fromIndex is greater than toIndex.

Table 9-2. (continued)

Table 9-2 refers to the ListIterator interface, which is more flexible than its Iterator superinterface
in that ListIterator provides methods for iterating over a list in either direction, modifying the list
during iteration, and obtaining the iterator’s current position in the list.

Note The Iterator and ListIterator instances that are returned by the iterator() and
listIterator() methods in the ArrayList and LinkedList List implementation classes
are fail-fast: when a list is structurally modified (by calling the implementation’s add() method to
add a new element, for example) after the iterator is created, in any way except through the iterator’s
own add() and remove() methods, the iterator throws ConcurrentModificationException.
Therefore, in the face of concurrent modification, the iterator fails quickly and cleanly rather than
risking arbitrary, nondeterministic behavior at an undetermined time in the future.

ListIterator declares the following methods:

 void add(E e) inserts e into the list being iterated over. This element is inserted
immediately before the next element that would be returned by next(), if any,
and after the next element that would be returned by previous(), if any. This
method throws UnsupportedOperationException when this list iterator doesn’t
support add(), ClassCastException when e’s class is inappropriate for the list,
and IllegalArgumentException when some property of e prevents it from being
added to the list.

 boolean hasNext() returns true when this list iterator has more elements when
traversing the list in the forward direction.

 boolean hasPrevious() returns true when this list iterator has more elements
when traversing the list in the reverse direction.

 E next() returns the next element in the list and advances the cursor position.
This method throws NoSuchElementException when there is no next element.

 int nextIndex() returns the index of the element that would be returned by a
subsequent call to next() or the size of the list when at the end of the list.

340 CHAPTER 9: Exploring the Collections Framework

 E previous() returns the previous element in the list and moves the cursor
position backward. This method throws NoSuchElementException when there is
no previous element.

 int previousIndex() returns the index of the element that would be returned by
a subsequent call to previous() or -1 when at the beginning of the list.

 void remove() removes from the list the last element that was returned by
next() or previous(). This call can be made only once per call to next()
or previous(). Furthermore, it can be made only when add() has not
been called after the last call to next() or previous(). This method throws
UnsupportedOperationException when this list iterator doesn’t support remove()
and IllegalStateException when neither next() nor previous() has been
called or remove() or add() has already been called after the last call to next()
or previous().

 void set(E e) replaces the last element returned by next() or previous()
with element e. This call can be made only when neither remove() nor add()
has been called after the last call to next() or previous(). This method
throws UnsupportedOperationException when this list iterator doesn’t
support set(), ClassCastException when e’s class is inappropriate for the
list, IllegalArgumentException when some property of e prevents it from
being added to the list, and IllegalStateException when neither next() nor
previous() has been called or remove() or add() has already been called after
the last call to next() or previous().

A ListIterator instance doesn’t have the concept of a current element. Instead, it has the concept
of a cursor for navigating through a list. The nextIndex() and previousIndex() methods return
the cursor position, which always lies between the element that would be returned by a call to
previous() and the element that would be returned by a call to next(). A list iterator for a list of
length n has n+1 possible cursor positions as illustrated by each caret (^) in the following:

 Element(0) Element(1) Element(2) . . . Element(n-1)
cursor positions: ^ ^ ^ ^ ^

Note You can mix calls to next() and previous() as long as you are careful. Keep in mind that the
first call to previous() returns the same element as the last call to next(). Furthermore, the first
call to next() following a sequence of calls to previous() returns the same element as the last call
to previous().

Table 9-2’s description of the subList() method refers to the concept of a view, which is a list that is
backed by another list. Changes that are made to the view are reflected in this backing list. The view
can cover the entire list or, as subList()’s name implies, only part of the list.

341CHAPTER 9: Exploring the Collections Framework

The subList() method is useful for performing range-view operations over a list in a compact
manner. For example, list.subList(fromIndex, toIndex).clear(); removes a range of elements
from list where the first element is at fromIndex and the last element is at toIndex - 1.

Caution A view’s meaning becomes undefined when changes are made to the backing list. Therefore,
you should only use subList() temporarily whenever you need to perform a sequence of range
operations on the backing list.

ArrayList
The ArrayList class provides a list implementation that is based on an internal array. As a result,
access to the list’s elements is fast. However, because elements must be moved to open a space for
insertion or to close a space after deletion, insertions and deletions of elements is slow.

ArrayList supplies three constructors:

 ArrayList() creates an empty array list with an initial capacity (storage space) of
10 elements. Once this capacity is reached, a larger array is allocated, elements
from the current array are copied into the larger array, and the larger array
becomes the new current array. This process repeats as additional elements are
added to the array list.

 ArrayList(Collection<? extends E> c) creates an array list containing
c’s elements in the order in which they are returned by c’s iterator.
NullPointerException is thrown when c contains the null reference.

 ArrayList(int initialCapacity) creates an empty array list with an initial
capacity of initialCapacity elements. IllegalArgumentException is thrown
when initialCapacity is negative.

Listing 9-1 demonstrates an array list.

Listing 9-1. A Demonstration of an Array-Based List

import java.util.ArrayList;
import java.util.List;

public class ArrayListDemo
{
 public static void main(String[] args)
 {
 List<String> ls = new ArrayList<String>();
 String[] weekDays = {"Sun", "Mon", "Tue", "Wed", "Thu", "Fri", "Sat"};
 for (String weekDay: weekDays)
 ls.add(weekDay);
 dump("ls:", ls);
 ls.set(ls.indexOf("Wed"), "Wednesday");
 dump("ls:", ls);

342 CHAPTER 9: Exploring the Collections Framework

 ls.remove(ls.lastIndexOf("Fri"));
 dump("ls:", ls);
 }

 static void dump(String title, List<String> ls)
 {
 System.out.print(title + " ");
 for (String s: ls)
 System.out.print(s + " ");
 System.out.println();
 }
}

ArrayListDemo creates an array list and an array of short weekday names. It then populates this list
with these names, dumps the list to standard output, changes one of the list entries, dumps the list
again, removes a list entry, and dumps the list one last time. The dump() method’s enhanced for loop
statement uses iterator(), hasNext(), and next() behind the scenes.

When you run this application, it generates the following output:

ls: Sun Mon Tue Wed Thu Fri Sat
ls: Sun Mon Tue Wednesday Thu Fri Sat
ls: Sun Mon Tue Wednesday Thu Sat

LinkedList
The LinkedList class provides a list implementation that is based on linked nodes. Because links
must be traversed, access to the list’s elements is slow. However, because only node references
need to be changed, insertions and deletions of elements are fast.

WHAT IS A NODE?

A node is a fixed sequence of value and link memory locations. Unlike an array, where each slot stores a single value of
the same primitive type or reference supertype, a node can store multiple values of different types. It can also store links
(references to other nodes).

Consider the following simple Node class:

class Node
{
 String name; // value field
 Node next; // link field
}

Node describes simple nodes where each node consists of a single name value field and a single next link field. Notice
that next is of the same type as the class in which it is declared. This arrangement lets a node instance store a reference
to another node instance (which is the next node) in this field. The resulting nodes are linked together.

343CHAPTER 9: Exploring the Collections Framework

The following code fragment creates two Node objects and links the second Node object to the first Node object. This
fragment also demonstrates how to traverse this linked list by following each Node object’s next field. Node traversal
stops when the traversal code discovers that next contains the null reference, which signifies the end of the list:

Node first = new Node();
first.name = "First node"; // You would normally provide getter and setter methods.
Node last = new Node();
last.name = "Last node";
last.next = null;
first.next = last;
Node temp = first;
while (temp != null)
{
 System.out.println(temp.name);
 temp = temp.next;
}

The code first builds a linked list of two Nodes and then assigns first to local variable temp to traverse the list without
losing the reference to the first node that is stored in first. While temp is not null, the loop outputs the name field. It
also navigates to the next Node object in the list via the temp = temp.next; statement.

If you convert this code into an application and run the application, you will discover the following output:

First node
Last node

LinkedList supplies two constructors:

 LinkedList() creates an empty linked list.

 LinkedList(Collection<? extends E> c) creates a linked list containing
c’s elements in the order in which they are returned by c’s iterator.
NullPointerException is thrown when c contains the null reference.

Listing 9-2 demonstrates a linked list.

Listing 9-2. A Demonstration of a List of Linked Nodes

import java.util.LinkedList;
import java.util.List;
import java.util.ListIterator;

public class LinkedListDemo
{
 public static void main(String[] args)
 {
 List<String> ls = new LinkedList<String>();
 String[] weekDays = {"Sun", "Mon", "Tue", "Wed", "Thu", "Fri", "Sat"};
 for (String weekDay: weekDays)
 ls.add(weekDay);
 dump("ls:", ls);

344 CHAPTER 9: Exploring the Collections Framework

 ls.add(1, "Sunday");
 ls.add(3, "Monday");
 ls.add(5, "Tuesday");
 ls.add(7, "Wednesday");
 ls.add(9, "Thursday");
 ls.add(11, "Friday");
 ls.add(13, "Saturday");
 dump("ls:", ls);
 ListIterator<String> li = ls.listIterator(ls.size());
 while (li.hasPrevious())
 System.out.print(li.previous() + " ");
 System.out.println();
 }

 static void dump(String title, List<String> ls)
 {
 System.out.print(title + " ");
 for (String s: ls)
 System.out.print(s + " ");
 System.out.println();
 }
}

LinkedListDemo creates a linked list and an array of short weekday names. It then populates this
list with these names, dumps the list to standard output, inserts longer weekday names after their
shorter name counterparts, dumps the list again, and outputs the list in reverse order by using a list
iterator with its cursor initialized past the list’s end and repeatedly calling its previous() method.

When you run this application, it generates the following output:

ls: Sun Mon Tue Wed Thu Fri Sat
ls: Sun Sunday Mon Monday Tue Tuesday Wed Wednesday Thu Thursday Fri Friday Sat Saturday
Saturday Sat Friday Fri Thursday Thu Wednesday Wed Tuesday Tue Monday Mon Sunday Sun

Exploring Sets
A set is a collection that contains no duplicate elements. In other words, a set contains no pair of
elements e1 and e2 such that e1.equals(e2) returns true. Furthermore, a set can contain at most
one null element. Sets are described by the Set interface whose generic type is Set<E>.

Set extends Collection and redeclares its inherited methods, for convenience and also to add
stipulations to the contracts for add(), equals(), and hashCode() to address how they behave in a
set context. Also, Set’s documentation states that all constructors of implementation classes must
create sets that contain no duplicate elements.

Set doesn’t introduce new methods.

TreeSet
The TreeSet class provides a set implementation that is based on a tree data structure. As a result,
elements are stored in sorted order. However, accessing these elements is somewhat slower than
with the other Set implementations (which are not sorted) because links must be traversed.

345CHAPTER 9: Exploring the Collections Framework

Note Check out Wikipedia’s “Tree (data structure)” entry (http://en.wikipedia.org/wiki/
Tree_(data_structure)) to learn about trees.

TreeSet supplies four constructors:

 TreeSet() creates a new, empty tree set that is sorted according to the natural
ordering of its elements. All elements inserted into the set must implement the
Comparable interface.

 TreeSet(Collection<? extends E> c) creates a new tree set containing c’s
elements sorted according to the natural ordering of its elements. All elements
inserted into the new set must implement the Comparable interface. This
constructor throws ClassCastException when c’s elements don’t implement
Comparable or are not mutually comparable and NullPointerException when c
contains the null reference.

 TreeSet(Comparator<? super E> comparator) creates a new, empty tree set
that is sorted according to the specified comparator. Passing null to comparator
implies that natural ordering will be used.

 TreeSet(SortedSet<E> ss) creates a new tree set containing the same elements
and using the same ordering as ss. (I discuss sorted sets later in this chapter.) This
constructor throws NullPointerException when ss contains the null reference.

Listing 9-3 demonstrates a tree set.

Listing 9-3. A Demonstration of a Tree Set with String Elements Sorted According to Their Natural Ordering

import java.util.Set;
import java.util.TreeSet;

public class TreeSetDemo
{
 public static void main(String[] args)
 {
 Set<String> ss = new TreeSet<String>();
 String[] fruits = {"apples", "pears", "grapes", "bananas", "kiwis"};
 for (String fruit: fruits)
 ss.add(fruit);
 dump("ss:", ss);
 }

 static void dump(String title, Set<String> ss)
 {
 System.out.print(title + " ");
 for (String s: ss)
 System.out.print(s + " ");
 System.out.println();
 }
}

346 CHAPTER 9: Exploring the Collections Framework

TreeSetDemo creates a tree set and an array of fruit names. It then populates this set with these
names and dumps the set to standard output. Because String implements Comparable, it’s legal
for this application to insert the contents of the fruits array into a tree set that was created via the
TreeSet() constructor.

When you run this application, it generates the following output:

ss: apples bananas grapes kiwis pears

HashSet
The HashSet class provides a set implementation that is backed by a hashtable data structure
(implemented as a HashMap instance, discussed later, which provides a quick way to determine
if an element has already been stored in this structure). Although this class provides no ordering
guarantees for its elements, HashSet is much faster than TreeSet. Furthermore, HashSet permits the
null reference to be stored in its instances.

Note Check out Wikipedia’s “Hash table” entry (http://en.wikipedia.org/wiki/Hash_table)
to learn about hashtables.

HashSet supplies four constructors:

 HashSet() creates a new, empty hashset where the backing HashMap instance
has an initial capacity of 16 and a load factor of 0.75. You will learn what these
items mean when I discuss HashMap later in this chapter.

 HashSet(Collection<? extends E> c) creates a new hashset containing c’s
elements. The backing HashMap has an initial capacity sufficient to
contain c’s elements and a load factor of 0.75. This constructor throws
NullPointerException when c contains the null reference.

 HashSet(int initialCapacity) creates a new, empty hashset where the
backing HashMap instance has the capacity specified by initialCapacity and
a load factor of 0.75. This constructor throws IllegalArgumentException when
initialCapacity’s value is less than 0.

 HashSet(int initialCapacity, float loadFactor) creates a new, empty
hashset where the backing HashMap instance has the capacity specified by
initialCapacity and the load factor specified by loadFactor. This constructor
throws IllegalArgumentException when initialCapacity is less than 0 or when
loadFactor is less than or equal to 0.

Listing 9-4 demonstrates a hashset.

347CHAPTER 9: Exploring the Collections Framework

Listing 9-4. A Demonstration of a Hashset with String Elements Unordered

import java.util.HashSet;
import java.util.Set;

public class HashSetDemo
{
 public static void main(String[] args)
 {
 Set<String> ss = new HashSet<String>();
 String[] fruits = {"apples", "pears", "grapes", "bananas", "kiwis",
 "pears", null};
 for (String fruit: fruits)
 ss.add(fruit);
 dump("ss:", ss);
 }

 static void dump(String title, Set<String> ss)
 {
 System.out.print(title + " ");
 for (String s: ss)
 System.out.print(s + " ");
 System.out.println();
 }
}

HashSetDemo creates a hashset and an array of fruit names. It then populates this set with these
names and dumps the set to standard output. Unlike with TreeSet, HashSet permits null to be
added (NullPointerException isn’t thrown), which is why Listing 9-4 includes null in HashSetDemo’s
fruits array.

When you run this application, it generates unordered output such as the following:

ss: null grapes bananas kiwis pears apples

Suppose you want to add instances of your classes to a hashset. As with String, your classes
must override equals() and hashCode(); otherwise, duplicate class instances can be stored in the
hashset. For example, Listing 9-5 presents the source code to an application whose Planet class
overrides equals() but fails to also override hashCode().

Listing 9-5. A Custom Planet Class Not Overriding hashCode()

import java.util.HashSet;
import java.util.Set;

public class CustomClassAndHashSet
{
 public static void main(String[] args)
 {
 Set<Planet> sp = new HashSet<Planet>();
 sp.add(new Planet("Mercury"));
 sp.add(new Planet("Venus"));

348 CHAPTER 9: Exploring the Collections Framework

 sp.add(new Planet("Earth"));
 sp.add(new Planet("Mars"));
 sp.add(new Planet("Jupiter"));
 sp.add(new Planet("Saturn"));
 sp.add(new Planet("Uranus"));
 sp.add(new Planet("Neptune"));
 sp.add(new Planet("Fomalhaut b"));
 Planet p1 = new Planet("51 Pegasi b");
 sp.add(p1);
 Planet p2 = new Planet("51 Pegasi b");
 sp.add(p2);
 System.out.println(p1.equals(p2));
 System.out.println(sp);
 }
}

class Planet
{
 private String name;

 Planet(String name)
 {
 this.name = name;
 }

 @Override
 public boolean equals(Object o)
 {
 if (!(o instanceof Planet))
 return false;
 Planet p = (Planet) o;
 return p.name.equals(name);
 }

 String getName()
 {
 return name;
 }

 @Override
 public String toString()
 {
 return name;
 }
}

Listing 9-5’s Planet class declares a single name field of type String. Although it might seem
pointless to declare Planet with a single String field because I could refactor this listing to remove
Planet and work with String, I might want to introduce additional fields to Planet (perhaps to store a
planet’s mass and other characteristics) in the future.

349CHAPTER 9: Exploring the Collections Framework

When you run this application, it generates unordered output such as the following:

true
[Neptune, Mars, Mercury, Fomalhaut b, Venus, 51 Pegasi b, 51 Pegasi b, Jupiter, Saturn, Earth,
Uranus]

This output reveals two 51 Pegasi b elements in the hashset. Although these elements are equal
from the perspective of the overriding equals() method (the first output line, true, proves this point),
overriding equals() isn’t enough to avoid duplicate elements being stored in a hashset: you must
also override hashCode().

The easiest way to override hashCode() in Listing 9-5’s Planet class is to have the overriding method
call the name field’s hashCode() method and return its value. (This technique only works with a class
whose single reference field’s class provides a valid hashCode() method.) Listing 9-6 presents this
overriding hashCode() method.

Listing 9-6. A Custom Planet Class Overriding hashCode()

import java.util.HashSet;
import java.util.Set;

public class CustomClassAndHashSet
{
 public static void main(String[] args)
 {
 Set<Planet> sp = new HashSet<Planet>();
 sp.add(new Planet("Mercury"));
 sp.add(new Planet("Venus"));
 sp.add(new Planet("Earth"));
 sp.add(new Planet("Mars"));
 sp.add(new Planet("Jupiter"));
 sp.add(new Planet("Saturn"));
 sp.add(new Planet("Uranus"));
 sp.add(new Planet("Neptune"));
 sp.add(new Planet("Fomalhaut b"));
 Planet p1 = new Planet("51 Pegasi b");
 sp.add(p1);
 Planet p2 = new Planet("51 Pegasi b");
 sp.add(p2);
 System.out.println(p1.equals(p2));
 System.out.println(sp);
 }
}

class Planet
{
 private String name;

 Planet(String name)
 {
 this.name = name;
 }

350 CHAPTER 9: Exploring the Collections Framework

 @Override
 public boolean equals(Object o)
 {
 if (!(o instanceof Planet))
 return false;
 Planet p = (Planet) o;
 return p.name.equals(name);
 }

 String getName()
 {
 return name;
 }

 @Override
 public int hashCode()
 {
 return name.hashCode();
 }

 @Override
 public String toString()
 {
 return name;
 }
}

Compile Listing 9-6 (javac CustomClassAndHashSet.java) and run the application (java
CustomClassAndHashSet). You will observe output (similar to that shown following) that reveals no
duplicate elements:

true
[Saturn, Earth, Uranus, Fomalhaut b, 51 Pegasi b, Venus, Jupiter, Mercury, Mars, Neptune]

Note LinkedHashSet is a subclass of HashSet that uses a linked list to store its elements. As
a result, LinkedHashSet’s iterator returns elements in the order in which they were inserted. For
example, if Listing 9-4 had specified Set<String> ss = new LinkedHashSet<String>();, the
application’s output would have been ss: apples pears grapes bananas kiwis null. Also,
LinkedHashSet offers slower performance than HashSet and faster performance than TreeSet.

EnumSet
In Chapter 6 I introduced you to traditional enumerated types and their enum replacement. (An
enum is an enumerated type that is expressed via reserved word enum.) The following example
demonstrates the traditional enumerated type:

static final int SUNDAY = 1;
static final int MONDAY = 2;

351CHAPTER 9: Exploring the Collections Framework

static final int TUESDAY = 4;
static final int WEDNESDAY = 8;
static final int THURSDAY = 16;
static final int FRIDAY = 32;
static final int SATURDAY = 64;

Although the enum has many advantages over the traditional enumerated type, the traditional
enumerated type is less awkward to use when combining constants into a set, for example,
static final int DAYS_OFF = SUNDAY | MONDAY;.

DAYS_OFF is an example of an integer-based, fixed-length bitset, which is a set of bits where each bit
indicates that its associated member belongs to the set when the bit is set to 1 and is absent from
the set when the bit is set to 0.

Note An int-based bitset cannot contain more than 32 members because int has a size of 32 bits.
Similarly, a long-based bitset cannot contain more than 64 members because long has a size of
64 bits.

This bitset is formed by bitwise inclusive ORing the traditional enumerated type’s integer constants
together via the bitwise inclusive OR operator (|): you could also use +. Each constant must be a
unique power of two (starting with one) because otherwise it’s impossible to distinguish between the
members of this bitset.

To determine if a constant belongs to the bitset, create an expression that involves the bitwise AND
operator (&). For example, ((DAYS_OFF & MONDAY) == MONDAY) bitwise ANDs DAYS_OFF (3) with MONDAY
(2), which results in 2. This value is compared via == with MONDAY (2), and the result of the expression
is true: MONDAY is a member of the DAYS_OFF bitset.

You can accomplish the same task with an enum by instantiating an appropriate Set implementation
class and calling the add() method multiple times to store the constants in the set. Listing 9-7
illustrates this more awkward alternative.

Listing 9-7. Creating the Set Equivalent of DAYS_OFF

import java.util.Set;
import java.util.TreeSet;

enum Weekday
{
 SUNDAY, MONDAY, TUESDAY, WEDNESDAY, THURSDAY, FRIDAY, SATURDAY
}

public class DaysOff
{
 public static void main(String[] args)
 {
 Set<Weekday> daysOff = new TreeSet<Weekday>();
 daysOff.add(Weekday.SUNDAY);

352 CHAPTER 9: Exploring the Collections Framework

 daysOff.add(Weekday.MONDAY);
 System.out.println(daysOff);
 }
}

When you run this application, it generates the following output:

[SUNDAY, MONDAY]

Note The constants’ ordinals and not their names are stored in the tree set, which is why the names
appear unordered (S before M) even though the constants are stored in sorted order of their ordinals.

As well as being more awkward to use (and verbose) than the bitset, the Set alternative requires
more memory to store each constant and isn’t as fast. Because of these problems, EnumSet was
introduced.

The EnumSet class provides a Set implementation that is based on a bitset. Its elements are
constants that must come from the same enum, which is specified when the enum set is
created. Null elements are not permitted; any attempt to store a null element results in a thrown
NullPointerException.

Listing 9-8 demonstrates EnumSet.

Listing 9-8. Creating the EnumSet Equivalent of DAYS_OFF

import java.util.EnumSet;
import java.util.Iterator;
import java.util.Set;

enum Weekday
{
 SUNDAY, MONDAY, TUESDAY, WEDNESDAY, THURSDAY, FRIDAY, SATURDAY
}

public class EnumSetDemo
{
 public static void main(String[] args)
 {
 Set<Weekday> daysOff = EnumSet.of(Weekday.SUNDAY, Weekday.MONDAY);
 Iterator<Weekday> iter = daysOff.iterator();
 while (iter.hasNext())
 System.out.println(iter.next());
 }
}

EnumSetDemo takes advantage of the fact that EnumSet, whose generic type is EnumSet<E extends
Enum<E>>, provides various class methods for conveniently constructing enum sets. For example,
<E extends Enum<E>> EnumSet<E> of(E e1, E e2) returns an EnumSet instance consisting of
elements e1 and e2. In this example, those elements are Weekday.SUNDAY and Weekday.MONDAY.

353CHAPTER 9: Exploring the Collections Framework

When you run this application, it generates the following output:

SUNDAY
MONDAY

Note As well as providing several overloaded of() methods, EnumSet provides other methods for
conveniently creating enum sets. For example, allOf() returns an EnumSet instance that contains
all of an enum’s constants, where this method’s solitary argument is a class literal (an expression
consisting of a class’s name followed by a dot followed by reserved word class) that identifies
the enum:

Set<Weekday> allWeekDays = EnumSet.allOf(Weekday.class);

Similarly, range() returns an EnumSet instance containing a range of an enum’s elements (with the
range’s limits as specified by this method’s two arguments):

for (WeekDay wd: EnumSet.range(WeekDay.MONDAY, WeekDay.FRIDAY))
 System.out.println(wd);

Exploring Sorted Sets
TreeSet is an example of a sorted set, which is a set that maintains its elements in ascending order,
sorted according to their natural ordering or according to a comparator that is supplied when the
sorted set is created. Sorted sets are described by the SortedSet interface.

SortedSet, whose generic type is SortedSet<E>, extends Set. With two exceptions, the methods it
inherits from Set behave identically on sorted sets as on other sets:

The Iterator instance returned from iterator() traverses the sorted set in
ascending element order.

The array returned by toArray() contains the sorted set’s elements in order.

Note Although not guaranteed, the toString() methods of SortedSet implementations in the
Collections Framework (e.g., TreeSet) return a string containing all of the sorted set’s elements
in order.

SortedSet’s documentation requires that an implementation provide the four standard constructors
that I presented in my discussion of TreeSet. Furthermore, implementations of this interface must
implement the methods that are described in Table 9-3.

354 CHAPTER 9: Exploring the Collections Framework

The set-based range views returned from headSet(), subSet(), and tailSet() are analogous to the
list-based range view returned from List’s subList() method except that a set-based range view
remains valid even when the backing sorted set is modified. As a result, a set-based range view can
be used for a lengthy period of time.

Table 9-3. SortedSet-Specific Methods

Method Description

Comparator<?
super E> comparator()

Return the comparator used to order the elements in this set or null when this
set uses the natural ordering of its elements.

E first() Return the first (lowest) element currently in this set, or throw a
NoSuchElementException instance when this set is empty.

SortedSet<E>
headSet(E toElement)

Return a view of that portion of this set whose elements are strictly less
than toElement. The returned set is backed by this set, so changes in the
returned set are reflected in this set and vice versa. The returned set supports
all optional set operations that this set supports. This method throws
ClassCastException when toElement is not compatible with this set’s comparator
(or, when the set has no comparator, when toElement doesn’t implement
Comparable), NullPointerException when toElement is null and this set doesn’t
permit null elements, and IllegalArgumentException when this set has a
restricted range and toElement lies outside of this range’s bounds.

E last() Return the last (highest) element currently in this set or throw a
NoSuchElementException instance when this set is empty.

SortedSet<E>
subSet(E fromElement,
E toElement)

Return a view of the portion of this set whose elements range from
fromElement, inclusive, to toElement, exclusive. (When fromElement and
toElement are equal, the returned set is empty.) The returned set is backed by
this set, so changes in the returned set are reflected in this set and vice versa.
The returned set supports all optional set operations that this set supports.
This method throws ClassCastException when fromElement and toElement
cannot be compared to one another using this set’s comparator (or, when the
set has no comparator, using natural ordering), NullPointerException when
fromElement or toElement is null and this set doesn’t permit null elements,
and IllegalArgumentException when fromElement is greater than toElement or
when this set has a restricted range and fromElement or toElement lies outside
of this range’s bounds.

SortedSet<E> tailSet
(E fromElement)

Return a view of that portion of this set whose elements are greater than or
equal to fromElement. The returned set is backed by this set, so changes
in the returned set are reflected in this set and vice versa. The returned set
supports all optional set operations that this set supports. This method throws
ClassCastException when fromElement is not compatible with this set’s
comparator (or, when the set has no comparator, when fromElement doesn’t
implement Comparable), NullPointerException when fromElement is null and
this set doesn’t permit null elements, and IllegalArgumentException when this
set has a restricted range and fromElement lies outside of the range’s bounds.

355CHAPTER 9: Exploring the Collections Framework

Each range view returned by headSet(), subSet(), or tailSet() is half open because it doesn’t
include its high endpoint (headSet() and subSet()) or its low endpoint (tailSet()). For the first
two methods, the high endpoint is specified by argument toElement; for the last method, the low
endpoint is specified by argument fromElement.

Note Unlike a list-based range view whose endpoints are elements in the backing list, the endpoints
of a set-based range view are absolute points in element space, allowing a set-based range view to
serve as a window onto a portion of the set’s element space. Any changes made to the set-based range
view are written back to the backing sorted set and vice versa.

Note You could also regard the returned range view as being half closed because it includes only one
of its endpoints.

Listing 9-9 demonstrates a sorted set based on a tree set.

Listing 9-9. A Sorted Set of Fruit and Vegetable Names

import java.util.SortedSet;
import java.util.TreeSet;

public class SortedSetDemo
{
 public static void main(String[] args)
 {
 SortedSet<String> sss = new TreeSet<String>();
 String[] fruitAndVeg =
 {
 "apple", "potato", "turnip", "banana", "corn", "carrot", "cherry",
 "pear", "mango", "strawberry", "cucumber", "grape", "banana",
 "kiwi", "radish", "blueberry", "tomato", "onion", "raspberry",
 "lemon", "pepper", "squash", "melon", "zucchini", "peach", "plum",
 "turnip", "onion", "nectarine"
 };
 System.out.println("Array size = " + fruitAndVeg.length);
 for (String fruitVeg: fruitAndVeg)
 sss.add(fruitVeg);
 dump("sss:", sss);
 System.out.println("Sorted set size = " + sss.size());
 System.out.println("First element = " + sss.first());
 System.out.println("Last element = " + sss.last());
 System.out.println("Comparator = " + sss.comparator());
 dump("hs:", sss.headSet("n"));
 dump("ts:", sss.tailSet("n"));
 System.out.println("Count of p-named fruits & vegetables = " +
 sss.subSet("p", "q").size());

356 CHAPTER 9: Exploring the Collections Framework

 System.out.println("Incorrect count of c-named fruits & vegetables = " +
 sss.subSet("carrot", "cucumber").size());
 System.out.println("Correct count of c-named fruits & vegetables = " +
 sss.subSet("carrot", "cucumber\0").size());
 }

 static void dump(String title, SortedSet<String> sss)
 {
 System.out.print(title + " ");
 for (String s: sss)
 System.out.print(s + " ");
 System.out.println();
 }
}

SortedSetDemo creates a sorted set and an array of fruit and vegetable names and then proceeds to
populate the set from this array. After dumping out the set’s contents, it outputs information about
the set, including head and tail views of portions of the set.

When you run this application, it generates the following output:

Array size = 29
sss: apple banana blueberry carrot cherry corn cucumber grape kiwi lemon mango melon nectarine onion
peach pear pepper plum potato radish raspberry squash strawberry tomato turnip zucchini
Sorted set size = 26
First element = apple
Last element = zucchini
Comparator = null
hs: apple banana blueberry carrot cherry corn cucumber grape kiwi lemon mango melon
ts: nectarine onion peach pear pepper plum potato radish raspberry squash strawberry tomato turnip
zucchini
Count of p-named fruits & vegetables = 5
Incorrect count of c-named fruits & vegetables = 3
Correct count of c-named fruits & vegetables = 4

This output reveals that the sorted set’s size is less than the array’s size because a set cannot
contain duplicate elements: the duplicate banana, turnip, and onion elements are not stored in the
sorted set.

The comparator() method returns null because the sorted set was not created with a comparator.
Instead, the sorted set relies on the natural ordering of String elements to store them in sorted order.

The headSet() and tailSet() methods are called with argument "n" to return, respectively, a set of
elements whose names begin with a letter that is strictly less than n and a letter that is greater than
or equal to n.

Finally, the output shows you that you must be careful when passing an upper limit to subSet(). As
you can see, ss.subSet("carrot", "cucumber") doesn’t include cucumber in the returned range view
because cucumber is subSet()’s high endpoint.

To include cucumber in the range view, you need to form a closed range or closed interval (both
endpoints are included). With String objects, you accomplish this task by appending \0 to the string.
For example, ss.subSet("carrot", "cucumber\0") includes cucumber because it is less than cucumber\0.

357CHAPTER 9: Exploring the Collections Framework

This same technique can be applied wherever you need to form an open range or open interval
(neither endpoint is included). For example, ss.subSet("carrot\0", "cucumber") doesn’t include
carrot because it is less than carrot\0. Furthermore, it doesn’t include high endpoint cucumber.

Note When you want to create closed and open ranges for elements created from your own classes,
you need to provide some form of predecessor() and successor() methods that return an
element’s predecessor and successor.

You need to be careful when designing classes that work with sorted sets. For example, the class
must implement Comparable when you plan to store the class’s instances in a sorted set where these
elements are sorted according to their natural ordering. Consider Listing 9-10.

Listing 9-10. A Custom Employee Class Not Implementing Comparable

import java.util.SortedSet;
import java.util.TreeSet;

public class CustomClassAndSortedSet
{
 public static void main(String[] args)
 {
 SortedSet<Employee> sse = new TreeSet<Employee>();
 sse.add(new Employee("Sally Doe"));
 sse.add(new Employee("Bob Doe")); // ClassCastException thrown here
 sse.add(new Employee("John Doe"));
 System.out.println(sse);
 }
}

class Employee
{
 private String name;

 Employee(String name)
 {
 this.name = name;
 }

 @Override
 public String toString()
 {
 return name;
 }
}

358 CHAPTER 9: Exploring the Collections Framework

When you run this application, it generates the following output:

Exception in thread "main" java.lang.ClassCastException: Employee cannot be cast to
java.lang.Comparable
 at java.util.TreeMap.compare(Unknown Source)
 at java.util.TreeMap.put(Unknown Source)
 at java.util.TreeSet.add(Unknown Source)
 at CustomClassAndSortedSet.main(CustomClassAndSortedSet.java:9)

The ClassCastException instance is thrown during the second add() method call because the
sorted set implementation, an instance of TreeSet, is unable to call the second Employee element’s
compareTo() method, because Employee doesn’t implement Comparable.

The solution to this problem is to have the class implement Comparable, which is exactly what is
revealed in Listing 9-11.

Listing 9-11. Making Employee Elements Comparable

import java.util.SortedSet;
import java.util.TreeSet;

public class CustomClassAndSortedSet
{
 public static void main(String[] args)
 {
 SortedSet<Employee> sse = new TreeSet<Employee>();
 sse.add(new Employee("Sally Doe"));
 sse.add(new Employee("Bob Doe"));
 Employee e1 = new Employee("John Doe");
 Employee e2 = new Employee("John Doe");
 sse.add(e1);
 sse.add(e2);
 System.out.println(sse);
 System.out.println(e1.equals(e2));
 }
}

class Employee implements Comparable<Employee>
{
 private String name;

 Employee(String name)
 {
 this.name = name;
 }

 @Override
 public int compareTo(Employee e)
 {
 return name.compareTo(e.name);
 }

359CHAPTER 9: Exploring the Collections Framework

 @Override
 public String toString()
 {
 return name;
 }
}

Listing 9-11’s main() method differs from Listing 9-10 in that it also creates two Employee objects
initialized to "John Doe", adds these objects to the sorted set, and compares these objects for
equality via equals(). Furthermore, Listing 9-11 declares Employee to implement Comparable,
introducing a compareTo() method into Employee.

When you run this application, it generates the following output:

[Bob Doe, John Doe, Sally Doe]
false

This output shows that only one "John Doe" Employee object is stored in the sorted set. After all,
a set cannot contain duplicate elements. However, the false value (resulting from the equals()
comparison) also shows that the sorted set’s natural ordering is inconsistent with equals(), which
violates SortedSet’s contract:

The ordering maintained by a sorted set (whether or not an explicit comparator is provided) must
be consistent with equals() if the sorted set is to correctly implement the Set interface. This is so
because the Set interface is defined in terms of the equals() operation, but a sorted set performs all
element comparisons using its compareTo() (or compare()) method, so two elements that are deemed
equal by this method are, from the standpoint of the sorted set, equal.

Because the application works correctly, why should SortedSet’s contract matter? Although the
contract doesn’t appear to matter with respect to the TreeSet implementation of SortedSet, perhaps
it will matter in the context of a third-party class that implements this interface.

Listing 9-12 shows you how to correct this problem and make Employee instances work with any
implementation of a sorted set.

Listing 9-12. A Contract-Compliant Employee Class

import java.util.SortedSet;
import java.util.TreeSet;

public class CustomClassAndSortedSet
{
 public static void main(String[] args)
 {
 SortedSet<Employee> sse = new TreeSet<Employee>();
 sse.add(new Employee("Sally Doe"));
 sse.add(new Employee("Bob Doe"));
 Employee e1 = new Employee("John Doe");
 Employee e2 = new Employee("John Doe");
 sse.add(e1);
 sse.add(e2);

360 CHAPTER 9: Exploring the Collections Framework

 System.out.println(sse);
 System.out.println(e1.equals(e2));
 }
}

class Employee implements Comparable<Employee>
{
 private String name;

 Employee(String name)
 {
 this.name = name;
 }

 @Override
 public int compareTo(Employee e)
 {
 return name.compareTo(e.name);
 }

 @Override
 public boolean equals(Object o)
 {
 if (!(o instanceof Employee))
 return false;
 Employee e = (Employee) o;
 return e.name.equals(name);
 }

 @Override
 public String toString()
 {
 return name;
 }
}

Listing 9-12 corrects the SortedSet contract violation by overriding equals(). Run the resulting
application and you will observe [Bob Doe, John Doe, Sally Doe] as the first line of output and true
as the second line: the sorted set’s natural ordering is now consistent with equals().

Note Although it’s important to override hashCode() whenever you override equals(), I didn’t
override hashCode() (although I overrode equals()) in Listing 9-12’s Employee class to emphasize
that tree-based sorted sets ignore hashCode().

361CHAPTER 9: Exploring the Collections Framework

Exploring Navigable Sets
TreeSet is an example of a navigable set, which is a sorted set that can be iterated over in
descending order as well as ascending order and which can report closest matches for given
search targets. Navigable sets are described by the NavigableSet interface, whose generic type is
NavigableSet<E>, which extends SortedSet and which is described in Table 9-4.

Table 9-4. NavigableSet-Specific Methods

Method Description

E ceiling(E e) Return the least element in this set greater than or equal to e, or null when there
is no such element. This method throws ClassCastException when e cannot be
compared with the elements currently in the set and NullPointerException when
e is null and this set doesn’t permit null elements.

Iterator<E>
descendingIterator()

Return an iterator over the elements in this set, in descending order. Equivalent in
effect to descendingSet().iterator().

NavigableSet<E>
descendingSet()

Return a reverse order view of the elements contained in this set. The descending
set is backed by this set, so changes to the set are reflected in the descending
set and vice versa. If either set is modified (except through the iterator’s own
remove() operation) while iterating over the set, the results of the iteration
are undefined.

E floor(E e) Return the greatest element in this set less than or equal to e or null when there
is no such element. This method throws ClassCastException when e cannot be
compared with the elements currently in the set and NullPointerException when
e is null and this set doesn’t permit null elements.

NavigableSet<E> headSet
(E toElement,
boolean inclusive)

Return a view of the portion of this set whose elements are less than (or equal
to, when inclusive is true) toElement. The returned set is backed by this set,
so changes in the returned set are reflected in this set and vice versa. The
returned set supports all optional set operations that this set supports. This
method throws ClassCastException when toElement is not compatible with this
set’s comparator (or, when the set has no comparator, when toElement doesn’t
implement Comparable), NullPointerException when toElement is null and this
set doesn’t permit null elements, and IllegalArgumentException when this set
has a restricted range and toElement lies outside of this range’s bounds.

E higher(E e) Return the least element in this set strictly greater than the given element or
null when there is no such element. This method throws ClassCastException
when e cannot be compared with the elements currently in the set and
NullPointerException when e is null and this set doesn’t permit null elements.

E lower(E e) Return the greatest element in this set strictly less than the given element or
null when there is no such element. This method throws ClassCastException
when e cannot be compared with the elements currently in the set and
NullPointerException when e is null and this set doesn’t permit null elements.

E pollFirst() Return and remove the first (lowest) element from this set or return null when this
set is empty.

(continued)

362 CHAPTER 9: Exploring the Collections Framework

Listing 9-13 demonstrates a navigable set based on a tree set.

Listing 9-13. Navigating a Set of Integers

import java.util.Iterator;
import java.util.NavigableSet;
import java.util.TreeSet;

public class NavigableSetDemo
{
 public static void main(String[] args)
 {
 NavigableSet<Integer> ns = new TreeSet<Integer>();
 int[] ints = { 82, -13, 4, 0, 11, -6, 9 };
 for (int i: ints)
 ns.add(i);
 System.out.print("Ascending order: ");
 Iterator iter = ns.iterator();
 while (iter.hasNext())
 System.out.print(iter.next() + " ");
 System.out.println();

Method Description

E pollLast() Return and remove the last (highest) element from this set or return null when this
set is empty.

NavigableSet<E> subSet
(E fromElement,
boolean fromInclusive,
E toElement,
boolean toInclusive)

Return a view of the portion of this set whose elements range from fromElement
to toElement. (When fromElement and toElement are equal, the returned set is
empty unless fromInclusive and toInclusive are both true.) The returned set
is backed by this set, so changes in the returned set are reflected in this set
and vice versa. The returned set supports all optional set operations that this
set supports. This method throws ClassCastException when fromElement and
toElement cannot be compared to one another using this set’s comparator (or,
when the set has no comparator, using natural ordering), NullPointerException
when fromElement or toElement is null and this set doesn’t permit null elements,
and IllegalArgumentException when fromElement is greater than toElement or
when this set has a restricted range and fromElement or toElement lies outside of
this range’s bounds.

NavigableSet<E>
tailSet(E fromElement,
boolean inclusive)

Return a view of the portion of this set whose elements are greater than (or
equal to, when inclusive is true) fromElement. The returned set is backed by
this set, so changes in the returned set are reflected in this set and vice versa.
The returned set supports all optional set operations that this set supports. This
method throws ClassCastException when fromElement is not compatible with this
set’s comparator (or, when the set has no comparator, when fromElement doesn’t
implement Comparable), NullPointerException when fromElement is null and this
set doesn’t permit null elements, and IllegalArgumentException when this set
has a restricted range and fromElement lies outside of this range’s bounds.

Table 9-4. (continued)

363CHAPTER 9: Exploring the Collections Framework

 System.out.print("Descending order: ");
 iter = ns.descendingIterator();
 while (iter.hasNext())
 System.out.print(iter.next() + " ");
 System.out.println("\n");
 outputClosestMatches(ns, 4);
 outputClosestMatches(ns.descendingSet(), 12);
 }

 static void outputClosestMatches(NavigableSet<Integer> ns, int i)
 {
 System.out.println("Element < " + i + " is " + ns.lower(i));
 System.out.println("Element <= " + i + " is " + ns.floor(i));
 System.out.println("Element > " + i + " is " + ns.higher(i));
 System.out.println("Element >= " + i +" is " + ns.ceiling(i));
 System.out.println();
 }
}

Listing 9-13 creates a navigable set of Integer elements. It takes advantage of autoboxing to ensure
that ints are converted to Integers.

When you run this application, it generates the following output:

Ascending order: -13 -6 0 4 9 11 82
Descending order: 82 11 9 4 0 -6 -13

Element < 4 is 0
Element <= 4 is 4
Element > 4 is 9
Element >= 4 is 4

Element < 12 is 82
Element <= 12 is 82
Element > 12 is 11
Element >= 12 is 11

The first four output lines beginning with Element pertain to an ascending-order set where the
element being matched (4) is a member of the set. The second four Element-prefixed lines pertain to
a descending-order set where the element being matched (12) is not a member.

As well as letting you conveniently locate set elements via its closest-match methods (ceiling(),
floor(), higher(), and lower()), NavigableSet lets you return set views containing all elements
within certain ranges as demonstrated by the following examples:

 ns.subSet(-13, true, 9, true): Return all elements from -13 through 9.

 ns.tailSet(-6, false): Return all elements greater than -6.

 ns.headSet(4, true): Return all elements less than or equal to 4.

Finally, you can return and remove from the set the first (lowest) element by calling pollFirst() and
the last (highest) element by calling pollLast(). For example, ns.pollFirst() removes and returns
-13, and ns.pollLast() removes and returns 82.

364 CHAPTER 9: Exploring the Collections Framework

Exploring Queues
A queue is a collection in which elements are stored and retrieved in a specific order. Most queues
are categorized as one of the following:

 First-In, First-Out (FIFO) queue: Elements are inserted at the queue’s tail and
removed at the queue’s head.

 Last-In, First-Out (LIFO) queue: Elements are inserted and removed at one end
of the queue such that the last element inserted is the first element retrieved.
This kind of queue behaves as a stack.

 Priority queue: Elements are inserted according to their natural ordering or
according to a comparator that is supplied to the queue implementation.

Queue, whose generic type is Queue<E>, extends Collection, redeclaring add() to adjust its contract
(insert the specified element into this queue if it’s possible to do so immediately without violating
capacity restrictions), and inheriting the other methods from Collection. Table 9-5 describes add()
and the other Queue-specific methods.

Table 9-5. Queue-Specific Methods

Method Description

boolean add(E e) Insert element e into this queue if it is possible to do so immediately without violating
capacity restrictions. Return true on success; otherwise, throw IllegalStateException
when the element cannot be added at this time because no space is currently available.
This method also throws ClassCastException when e’s class prevents e from being
added to this queue, NullPointerException when e contains the null reference and this
queue doesn’t permit null elements to be added, and IllegalArgumentException when
some property of e prevents it from being added to this queue.

E element() Return but don’t also remove the element at the head of this queue. This method throws
NoSuchElementException when this queue is empty.

boolean offer(E e) Insert element e into this queue if it is possible to do so immediately without violating
capacity restrictions. Return true on success; otherwise, return false when the element
cannot be added at this time because no space is currently available. This method
throws ClassCastException when e’s class prevents e from being added to this queue,
NullPointerException when e contains the null reference and this queue doesn’t permit
null elements to be added, and IllegalArgumentException when some property of e
prevents it from being added to this queue.

E peek() Return but don’t also remove the element at the head of this queue. This method returns
null when this queue is empty.

E poll() Return and also remove the element at the head of this queue. This method returns null
when this queue is empty.

E remove() Return and also remove the element at the head of this queue. This method throws
NoSuchElementException when this queue is empty. This is the only difference between
remove() and poll().

365CHAPTER 9: Exploring the Collections Framework

Table 9-5 reveals two sets of methods: in one set, a method (e.g., add()) throws an exception when
an operation fails; in the other set, a method (e.g., offer()) returns a special value (false or null) in
the presence of failure. The methods that return a special value are useful in the context of
capacity-restricted Queue implementations where failure is a normal occurrence.

Note The offer() method is generally preferable to add() when using a capacity-restricted queue
because offer() doesn’t throw IllegalStateException.

Java supplies many Queue implementation classes, where most of these classes are members of
the java.util.concurrent package: LinkedBlockingQueue and SynchronousQueue are examples.
In contrast, the java.util package provides LinkedList and PriorityQueue as its Queue
implementation classes.

Caution Many Queue implementation classes don’t allow null elements to be added. However, some
classes (e.g., LinkedList) permit null elements. You should avoid adding a null element because null
is used as a special return value by the peek() and poll() methods to indicate that a queue is empty.

PriorityQueue
The PriorityQueue class provides an implementation of a priority queue, which is a queue that
orders its elements according to their natural ordering or by a comparator provided when the
queue is instantiated. Priority queues don’t permit null elements and don’t permit insertion of
non-Comparable objects when relying on natural ordering.

The element at the head of the priority queue is the least element with respect to the specified
ordering. When multiple elements are tied for least element, one of those elements is arbitrarily
chosen as the least element. Similarly, the element at the tail of the priority queue is the greatest
element, which is arbitrarily chosen when there is a tie.

Priority queues are unbounded but have a capacity that governs the size of the internal array that
is used to store the priority queue’s elements. The capacity value is at least as large as the queue’s
length and grows automatically as elements are added to the priority queue.

PriorityQueue (whose generic type is PriorityQueue<E>) supplies six constructors:

 PriorityQueue() creates a PriorityQueue instance with an initial capacity of
11 elements and which orders its elements according to their natural ordering.

 PriorityQueue(Collection<? extends E> c) creates a PriorityQueue instance
containing c’s elements. If c is a SortedSet or PriorityQueue instance, this
priority queue will be ordered according to the same ordering. Otherwise, this
priority queue will be ordered according to the natural ordering of its elements.
This constructor throws ClassCastException when c’s elements cannot be
compared to one another according to the priority queue’s ordering and
NullPointerException when c or any of its elements contain the null reference.

366 CHAPTER 9: Exploring the Collections Framework

 PriorityQueue(int initialCapacity) creates a PriorityQueue instance with
the specified initialCapacity and which orders its elements according to their
natural ordering. This constructor throws IllegalArgumentException when
initialCapacity is less than 1.

 PriorityQueue(int initialCapacity, Comparator<? super E> comparator)
creates a PriorityQueue instance with the specified initialCapacity and which
orders its elements according to the specified comparator. Natural ordering
is used when comparator contains the null reference. This constructor throws
IllegalArgumentException when initialCapacity is less than 1.

 PriorityQueue(PriorityQueue<? extends E> pq) creates a PriorityQueue
instance containing pq’s elements. This priority queue will be ordered according
to the same ordering as pq. This constructor throws ClassCastException when
pq’s elements cannot be compared to one another according to pq’s ordering
and NullPointerException when pq or any of its elements contains the null
reference.

 PriorityQueue(SortedSet<? extends E> ss) creates a PriorityQueue instance
containing ss’s elements. This priority queue will be ordered according to
the same ordering as ss. This constructor throws ClassCastException when
ss’s elements cannot be compared to one another according to ss’s ordering
and NullPointerException when ss or any of its elements contains the null
reference.

Listing 9-14 demonstrates a priority queue.

Listing 9-14. Adding Randomly Generated Integers to a Priority Queue

import java.util.PriorityQueue;
import java.util.Queue;

public class PriorityQueueDemo
{
 public static void main(String[] args)
 {
 Queue<Integer> qi = new PriorityQueue<Integer>();
 for (int i = 0; i < 15; i++)
 qi.add((int) (Math.random() * 100));
 while (!qi.isEmpty())
 System.out.print(qi.poll() + " ");
 System.out.println();
 }
}

After creating a priority queue, PriorityQueueDemo’s main thread adds 15 randomly generated
integers (ranging from 0 through 99) to this queue. It then enters a while loop that repeatedly polls
the priority queue for the next element and outputs that element until the queue is empty.

367CHAPTER 9: Exploring the Collections Framework

When you run this application, it outputs a line of 15 integers in ascending numerical order from left
to right. For example, I observed the following output from one run:

30 43 53 61 61 66 66 67 76 78 80 83 87 90 97

Because poll() returns null when there are no more elements, I could have coded this loop as
follows:

Integer i;
while ((i = qi.poll()) != null)
 System.out.print(i + " ");

Suppose you want to reverse the order of the previous example’s output so that the largest element
appears on the left and the smallest element appears on the right. As Listing 9-15 demonstrates,
you can achieve this task by passing a comparator to the appropriate PriorityQueue constructor.

Listing 9-15. Using a Comparator with a Priority Queue

import java.util.Comparator;
import java.util.PriorityQueue;
import java.util.Queue;

public class PriorityQueueDemo
{
 final static int NELEM = 15; // number of elements

 public static void main(String[] args)
 {
 Comparator<Integer> cmp;
 cmp = new Comparator<Integer>()
 {
 @Override
 public int compare(Integer e1, Integer e2)
 {
 return e2 - e1;
 }
 };
 Queue<Integer> qi = new PriorityQueue<Integer>(NELEM, cmp);
 for (int i = 0; i < NELEM; i++)
 qi.add((int) (Math.random() * 100));
 while (!qi.isEmpty())
 System.out.print(qi.poll() + " ");
 System.out.println();
 }
}

Listing 9-15 is similar to Listing 9-14, but there are some differences. First, I have declared a
constant named NELEM so that I can easily change both the priority queue’s initial capacity and the
number of elements inserted into the priority queue by specifying the new value in one place.

368 CHAPTER 9: Exploring the Collections Framework

Second, Listing 9-15 declares and instantiates an anonymous class that implements Comparator.
Its compareTo() method subtracts element e2 from element e1 to achieve descending numerical
order. The compiler handles the task of unboxing e2 and e1 by converting e2 - e1 to
e2.intValue() - e1.intValue().

Finally, Listing 9-15 passes an initial capacity of NELEM elements and the instantiated comparator to
the PriorityQueue(int initialCapacity, Comparator<? super E> comparator) constructor. The
priority queue will use this comparator to order these elements.

Run this application and you will now see a single output line of 15 integers shown in descending
numerical order from left to right. For example, I observed this output line:

97 72 70 70 67 64 56 43 36 22 9 5 3 2 1

Exploring Deques
A deque (pronounced deck) is a double-ended queue in which element insertion or removal occurs
at its head or tail. Deques can be used as queues or stacks.

Deque, whose generic type is Deque<E>, extends Queue in which the inherited add(E e) method inserts
e at the deque’s tail. Table 9-6 describes Deque-specific methods.

Table 9-6. Deque-Specific Methods

Method Description

void addFirst(E e) Insert e at the head of this deque if it is possible to do so immediately
without violating capacity restrictions. When using a capacity-restricted
deque, it is generally preferable to use method offerFirst(). This
method throws IllegalStateException when e cannot be added at this
time because of capacity restrictions, ClassCastException when e’s class
prevents e from being added to this deque, NullPointerException when
e contains the null reference and this deque doesn’t permit null elements
to be added, and IllegalArgumentException when some property of e
prevents it from being added to this deque.

void addLast(E e) Insert e at the tail of this deque if it is possible to do so immediately
without violating capacity restrictions. When using a capacity-restricted
deque, it is generally preferable to use method offerLast(). This method
throws IllegalStateException when e cannot be added at this time
because of capacity restrictions, ClassCastException when e’s class
prevents e from being added to this deque, NullPointerException when
e contains the null reference and this deque doesn’t permit null elements
to be added, and IllegalArgumentException when some property of e
prevents it from being added to this deque.

Iterator<E>
descendingIterator()

Return an iterator over the elements in this deque in reverse sequential
order. The elements will be returned in order from last (tail) to first (head).
The inherited Iterator<E> iterator() method returns elements from the
head to the tail.

(continued)

369CHAPTER 9: Exploring the Collections Framework

Method Description

E element() Retrieve but don’t remove the first element of this deque (at
the head). This method differs from peek() only in that it throws
NoSuchElementException when this deque is empty. This method is
equivalent to getFirst().

E getFirst() Retrieve but don’t remove the first element of this deque. This method
differs from peekFirst() only in that it throws NoSuchElementException
when this deque is empty.

E getLast() Retrieve but don’t remove the last element of this deque. This method
differs from peekLast() only in that it throws NoSuchElementException
when this deque is empty.

boolean offer(E e) Insert e at the tail of this deque if it is possible to do so immediately
without violating capacity restrictions, returning true on success and
false when no space is currently available. When using a capacity-
restricted deque, this method is generally preferable to the add()
method, which can fail to insert an element only by throwing an
exception. This method throws ClassCastException when e’s class
prevents e from being added to this deque, NullPointerException when
e contains the null reference and this deque doesn’t permit null elements
to be added, and IllegalArgumentException when some property of e
prevents it from being added to this deque. This method is equivalent to
offerLast().

boolean
offerFirst(E e)

Insert e at the head of this deque unless it would violate capacity
restrictions. When using a capacity-restricted deque, this method
is generally preferable to the addFirst() method, which can fail to
insert an element only by throwing an exception. This method throws
ClassCastException when e’s class prevents e from being added to
this deque, NullPointerException when e contains the null reference
and this deque doesn’t permit null elements to be added, and
IllegalArgumentException when some property of e prevents it from
being added to this deque.

boolean
offerLast(E e)

Insert e at the tail of this deque unless it would violate capacity
restrictions. When using a capacity-restricted deque, this method
is generally preferable to the addLast() method, which can fail to
insert an element only by throwing an exception. This method throws
ClassCastException when e’s class prevents e from being added to
this deque, NullPointerException when e contains the null reference
and this deque doesn’t permit null elements to be added, and
IllegalArgumentException when some property of e prevents it from
being added to this deque.

Table 9-6. (continued)

(continued)

370 CHAPTER 9: Exploring the Collections Framework

Method Description

E peek() Retrieve but don’t remove the first element of this deque (at the head)
or return null when this deque is empty. This method is equivalent to
peekFirst().

E peekFirst() Retrieve but don’t remove the first element of this deque (at the head) or
return null when this deque is empty.

E peekLast() Retrieve but don’t remove the last element of this deque (at the tail) or
return null when this deque is empty.

E poll() Retrieve and remove the first element of this deque (at the head) or return
null when this deque is empty. This method is equivalent to pollFirst().

E pollFirst() Retrieve and remove the first element of this deque (at the head) or return
null when this deque is empty.

E pollLast() Retrieve and remove the last element of this deque (at the tail) or return
null when this deque is empty.

E pop() Pop an element from the stack represented by this deque. In other
words, remove and return the first element of this deque. This method is
equivalent to removeFirst().

void push(E e) Push e onto the stack represented by this deque (in other words, at
the head of this deque) if it is possible to do so immediately without
violating capacity restrictions, returning true on success and throwing
IllegalStateException when no space is currently available. This
method also throws ClassCastException when e’s class prevents e from
being added to this deque, NullPointerException when e contains
the null reference and this deque doesn’t permit null elements to
be added, and IllegalArgumentException when some property of e
prevents it from being added to this deque. This method is equivalent
to addFirst().

E remove() Retrieve and remove the first element of this deque (at the head). This
method differs from poll() only in that it throws NoSuchElementException
when this deque is empty. This method is equivalent to removeFirst().

E removeFirst() Retrieve and remove the first element of this deque. This method differs
from pollFirst() only in that it throws NoSuchElementException when this
deque is empty.

boolean
removeFirstOccurrence(Object o)

Remove the first occurrence of o from this deque. If the deque doesn’t
contain o, it is unchanged. Return true when this deque contained o
(or equivalently, when this deque changed as a result of the call). This
method throws ClassCastException when o’s class prevents o from being
added to this deque and NullPointerException when o contains the null
reference and this deque doesn’t permit null elements to be added. The
inherited boolean remove(Object o) method is equivalent to this method.

Table 9-6. (continued)

(continued)

371CHAPTER 9: Exploring the Collections Framework

As Table 9-6 reveals, Deque declares methods to access elements at both ends of the deque.
Methods are provided to insert, remove, and examine the element. Each of these methods exists
in two forms: one throws an exception when the operation fails, the other returns a special value
(either null or false, depending on the operation). The latter form of the insert operation is designed
specifically for use with capacity-restricted Deque implementations; in most implementations, insert
operations cannot fail.

Figure 9-2 reveals a table from Deque’s Java documentation that nicely summarizes both forms of the
insert, remove, and examine methods for both the head and the tail.

Method Description

E removeLast() Retrieve and remove the last element of this deque. This method differs
from pollLast() only in that it throws NoSuchElementException when this
deque is empty.

boolean
removeLastOccurrence(Object o)

Remove the last occurrence of o from this deque. If the deque doesn’t
contain o, it is unchanged. Return true when this deque contained o
(or equivalently, when this deque changed as a result of the call). This
method throws ClassCastException when o’s class prevents o from being
added to this deque and NullPointerException when o contains the null
reference and this deque doesn’t permit null elements to be added.

Table 9-6. (continued)

Figure 9-2. Deque declares 12 methods for inserting, removing, and examining elements at the head or tail of a deque

When a deque is used as a queue, you observe FIFO (First-In, First-Out) behavior. Elements are
added at the end of the deque and removed from the beginning. The methods inherited from the
Queue interface are precisely equivalent to the Deque methods as indicated in Table 9-7.

Table 9-7. Queue and Equivalent Deque Methods

Queue Method Equivalent Deque Method

add(e) addLast(e)

offer(e) offerLast(e)

remove() removeFirst()

poll() pollFirst()

element() getFirst()

peek() peekFirst()

372 CHAPTER 9: Exploring the Collections Framework

Finally, deques can also be used as LIFO (Last-In, First-Out) stacks. When a deque is used as
a stack, elements are pushed and popped from the beginning of the deque. Because a stack’s
push(e) method would be equivalent to Deque’s addFirst(e) method, its pop() method would be
equivalent to Deque’s removeFirst() method, and its peek() method would be equivalent to Deque’s
peekFirst() method, Deque declares the E peek(), E pop(), and void push(E e) stack-oriented
convenience methods.

ArrayDeque
The ArrayDeque class provides a resizable-array implementation of the Deque interface. It prohibits
null elements from being added to a deque, and its iterator() method returns fail-fast iterators.

ArrayDeque supplies three constructors:

 ArrayDeque() creates an empty array deque with an initial capacity of 16
elements.

 ArrayDeque(Collection<? extends E> c) creates an array deque containing
c’s elements in the order in which they are returned by c’s iterator. (The first
element returned by c’s iterator becomes the first element or front of the deque.)
NullPointerException is thrown when c contains the null reference.

 ArrayDeque(int numElements) creates an empty array deque with an initial
capacity sufficient to hold numElements elements. No exception is thrown when
the argument passed to numElements is less than or equal to zero.

Listing 9-16 demonstrates an array deque.

Listing 9-16. Using an Array Deque as a Stack

import java.util.ArrayDeque;
import java.util.Deque;

public class ArrayDequeDemo
{
 public static void main(String[] args)
 {
 Deque<String> stack = new ArrayDeque<String>();
 String[] weekdays = { "Sunday", "Monday", "Tuesday", "Wednesday",
 "Thursday", "Friday", "Saturday" };
 for (String weekday: weekdays)
 stack.push(weekday);
 while (stack.peek() != null)
 System.out.println(stack.pop());
 }
}

ArrayDequeDemo creates a deque for use as a stack and an array of weekday names. It then pushes
these names on this stack and pops them, outputting the names in reverse order.

373CHAPTER 9: Exploring the Collections Framework

When you run this application, it generates the following output:

Saturday
Friday
Thursday
Wednesday
Tuesday
Monday
Sunday

Exploring Maps
A map is a group of key/value pairs (also known as entries). Because the key identifies an entry, a
map cannot contain duplicate keys. Furthermore, each key can map to at most one value. Maps are
described by the Map interface, which has no parent interface, and whose generic type is Map<K,V>
(K is the key’s type; V is the value’s type).

Table 9-8 describes Map’s methods.

Table 9-8. Map Methods

Method Description

void clear() Remove all elements from this map, leaving it empty. This method throws
UnsupportedOperationException when clear() is not supported.

boolean
containsKey(Object key)

Return true when this map contains an entry for the specified key; otherwise,
return false. This method throws ClassCastException when key is of an
inappropriate type for this map and NullPointerException when key contains the
null reference and this map doesn’t permit null keys.

boolean
containsValue(Object
value)

Return true when this map maps one or more keys to value. This method throws
ClassCastException when value is of an inappropriate type for this map and
NullPointerException when value contains the null reference and this map
doesn’t permit null values.

Set<Map.Entry<K,V>>
entrySet()

Return a Set view of the entries contained in this map. Because this map backs
the view, changes that are made to the map are reflected in the set and vice
versa.

boolean equals(Object o) Compare o with this map for equality. Return true when o is also a map and the
two maps represent the same entries; otherwise, return false.

V get(Object key) Return the value to which key is mapped or null when this map contains no
entry for key. If this map permits null values, then a return value of null doesn’t
necessarily indicate that the map contains no entry for key; it is also possible that
the map explicitly maps key to the null reference. The containsKey() method
may be used to distinguish between these two cases. This method throws
ClassCastException when key is of an inappropriate type for this map and
NullPointerException when key contains the null reference and this map doesn’t
permit null keys.

(continued)

374 CHAPTER 9: Exploring the Collections Framework

Method Description

int hashCode() Return the hash code for this map. A map’s hash code is defined to be the sum
of the hash codes for the entries in the map’s entrySet() view.

boolean isEmpty() Return true when this map contains no entries; otherwise, return false.

Set<K> keySet() Return a Set view of the keys contained in this map. Because this map backs the
view, changes that are made to the map are reflected in the set and vice versa.

V put(K key,V value) Associate value with key in this map. If the map previously contained an entry for
key, the old value is replaced by value. This method returns the previous
value associated with key or null when there was no entry for key. (The null
return value can also indicate that the map previously associated the null
reference with key, if the implementation supports null values.) This method
throws UnsupportedOperationException when put() is not supported,
ClassCastException when key’s or value’s class is not appropriate for this map,
IllegalArgumentException when some property of key or value prevents it from
being stored in this map, and NullPointerException when key or value contains
the null reference and this map doesn’t permit null keys or values.

void putAll(Map<? extends
K,? extends V> m)

Copy all entries from map m to this map. The effect of this call is equivalent to that
of calling put(k, v) on this map once for each mapping from key k to value v in
map m. This method throws UnsupportedOperationException when putAll() is
not supported, ClassCastException when the class of a key or value in map m
is not appropriate for this map, IllegalArgumentException when some property
of a key or value in map m prevents it from being stored in this map, and
NullPointerException when m contains the null reference or when m contains null
keys or values and this map doesn’t permit null keys or values.

V remove(Object key) Remove key’s entry from this map when it is present. This method returns the value
to which this map previously associated with key or null when the map contained
no mapping for key. If this map permits null values, then a return value of
null doesn’t necessarily indicate that the map contained no entry for key;
it is also possible that the map explicitly mapped key to null. This map will
not contain an entry for key once the call returns. This method throws
UnsupportedOperationException when remove() is not supported,
ClassCastException when the class of key is not appropriate for this map, and
NullPointerException when key contains the null reference and this map doesn’t
permit null keys.

int size() Return the number of key/value entries in this map. If the map contains more
than Integer.MAX_VALUE entries, this method returns Integer.MAX_VALUE.

Collection<V> values() Return a Collection view of the values contained in this map. Because this map
backs the view, changes that are made to the map are reflected in the collection
and vice versa.

Table 9-8. (continued)

375CHAPTER 9: Exploring the Collections Framework

Unlike List, Set, and Queue, Map doesn’t extend Collection. However, it is possible to view a map
as a Collection instance by calling Map’s keySet(), values(), and entrySet() methods, which,
respectively, return a Set of keys, a Collection of values, and a Set of key/value pair entries.

Note The values() method returns Collection instead of Set because multiple keys can map to
the same value, and values() would then return multiple copies of the same value.

The Collection views returned by these methods (recall that a Set is a Collection because Set
extends Collection) provide the only means to iterate over a Map. For example, suppose you declare
Listing 9-17’s Color enum with its three Color constants, RED, GREEN, and BLUE.

Listing 9-17. A Colorful enum

enum Color
{
 RED(255, 0, 0),
 GREEN(0, 255, 0),
 BLUE(0, 0, 255);

 private int r, g, b;

 private Color(int r, int g, int b)
 {
 this.r = r;
 this.g = g;
 this.b = b;
 }

 @Override
 public String toString()
 {
 return "r = " + r + ", g = " + g + ", b = " + b;
 }
}

The following example declares a map of String keys and Color values, adds several entries to the
map, and iterates over the keys and values:

Map<String, Color> colorMap = . . .; // . . . represents the creation of a Map implementation
colorMap.put("red", Color.RED);
colorMap.put("blue", Color.BLUE);
colorMap.put("green", Color.GREEN);
colorMap.put("RED", Color.RED);
for (String colorKey: colorMap.keySet())
 System.out.println(colorKey);
Collection<Color> colorValues = colorMap.values();
for (Iterator<Color> it = colorValues.iterator(); it.hasNext();)
 System.out.println(it.next());

376 CHAPTER 9: Exploring the Collections Framework

When running this code fragment against a hashmap implementation (discussed later) of colorMap,
you should observe output similar to the following:

red
blue
green
RED
r = 255, g = 0, b = 0
r = 0, g = 0, b = 255
r = 0, g = 255, b = 0
r = 255, g = 0, b = 0

The first four output lines identify the map’s keys; the second four output lines identify the map’s
values.

The entrySet() method returns a Set of Map.Entry objects. Each of these objects describes a single
entry as a key/value pair and is an instance of a class that implements the Map.Entry interface,
where Entry is a nested interface of Map. Table 9-9 describes Map.Entry’s methods.

Table 9-9. Map.Entry Methods

Method Description

boolean
equals(Object o)

Compare o with this entry for equality. Return true when o is also a map entry and the
two entries have the same key and value.

K getKey() Return this entry’s key. This method optionally throws IllegalStateException when
this entry has previously been removed from the backing map.

V getValue() Return this entry’s value. This method optionally throws IllegalStateException when
this entry has previously been removed from the backing map.

int hashCode() Return this entry’s hash code.

V setValue(V value) Replace this entry’s value with value. The backing map is updated with the new value.
This method throws UnsupportedOperationException when setValue() is not supported,
ClassCastException when value’s class prevents it from being stored in the backing
map, NullPointerException when value contains the null reference and the backing map
doesn’t permit null, IllegalArgumentException when some property of value prevents it
from being stored in the backing map, and (optionally) IllegalStateException when this
entry has previously been removed from the backing map.

The following example shows you how you might iterate over the previous example’s map entries:

for (Map.Entry<String, Color> colorEntry: colorMap.entrySet())
 System.out.println(colorEntry.getKey() + ": " + colorEntry.getValue());

377CHAPTER 9: Exploring the Collections Framework

When running this example against the previously mentioned hashmap implementation, you would
observe the following output:

red: r = 255, g = 0, b = 0
blue: r = 0, g = 0, b = 255
green: r = 0, g = 255, b = 0
RED: r = 255, g = 0, b = 0

TreeMap
The TreeMap class provides a map implementation that is based on a red-black tree. As a result,
entries are stored in sorted order of their keys. However, accessing these entries is somewhat slower
than with the other Map implementations (which are not sorted) because links must be traversed.

Note Check out Wikipedia’s “Red-black tree” entry
(http://en.wikipedia.org/wiki/Red-black_tree) to learn about red-black trees.

TreeMap supplies four constructors:

 TreeMap() creates a new, empty tree map that is sorted according to the
natural ordering of its keys. All keys inserted into the map must implement the
Comparable interface.

 TreeMap(Comparator<? super K> comparator) creates a new, empty tree map
that is sorted according to the specified comparator. Passing null to comparator
implies that natural ordering will be used.

 TreeMap(Map<? extends K, ? extends V> m) creates a new tree map containing m’s
entries, sorted according to the natural ordering of its keys. All keys inserted into
the new map must implement the Comparable interface. This constructor throws
ClassCastException when m’s keys don’t implement Comparable or are not mutually
comparable and NullPointerException when m contains the null reference.

 TreeMap(SortedMap<K, ? extends V> sm) creates a new tree map containing the
same entries and using the same ordering as sm. (I discuss sorted maps later in
this chapter.) This constructor throws NullPointerException when sm contains
the null reference.

Listing 9-18 demonstrates a tree map.

Listing 9-18. Sorting a Map’s Entries According to the Natural Ordering of Their String-Based Keys

import java.util.Map;
import java.util.TreeMap;

public class TreeMapDemo
{
 public static void main(String[] args)

378 CHAPTER 9: Exploring the Collections Framework

 {
 Map<String, Integer> msi = new TreeMap<String, Integer>();
 String[] fruits = {"apples", "pears", "grapes", "bananas", "kiwis"};
 int[] quantities = {10, 15, 8, 17, 30};
 for (int i = 0; i < fruits.length; i++)
 msi.put(fruits[i], quantities[i]);
 for (Map.Entry<String, Integer> entry: msi.entrySet())
 System.out.println(entry.getKey() + ": " + entry.getValue());
 }
}

TreeMapDemo creates a tree map and an array of fruit names. It then populates this map with these
names and dumps the map’s entries to standard output.

When you run this application, it generates the following output:

apples: 10
bananas: 17
grapes: 8
kiwis: 30
pears: 15

HashMap
The HashMap class provides a map implementation that is based on a hashtable data structure.
This implementation supports all Map operations and permits null keys and null values. It makes no
guarantees on the order in which entries are stored.

A hashtable maps keys to integer values with the help of a hash function. Java provides this function
in the form of Object’s hashCode() method, which classes override to provide appropriate hash codes.

A hash code identifies one of the hashtable’s array elements, which is known as a bucket or slot.
For some hashtables, the bucket may store the value that is associated with the key. Figure 9-3
illustrates this kind of hashtable.

Bob Doe

John Doe

n-3

2

1

0 ACCTS

SALES

SALES

n-2

n-1

Sally Doe

hash function

bucketskeys

Figure 9-3. A simple hashtable maps keys to buckets that store values associated with those keys

379CHAPTER 9: Exploring the Collections Framework

The hash function hashes Bob Doe to 0, which identifies the first bucket. This bucket contains ACCTS,
which is Bob Doe’s employee type. The hash function also hashes John Doe and Sally Doe to 1 and 2
(respectively) whose buckets contain SALES.

A perfect hash function hashes each key to a unique integer value. However, this ideal is very
difficult to meet. In practice, some keys will hash to the same integer value. This nonunique mapping
is referred to as a collision.

To address collisions, most hashtables associate a linked list of entries with a bucket. Instead of
containing a value, the bucket contains the address of the first node in the linked list, and each node
contains one of the colliding entries. See Figure 9-4.

Bob Doe

John Doe

Sally Doe

Bob Doe

John Doe

Sally Doe

buckets entrieskeys

hash function

n-3

n-2

n-1

2

1

0 ACCTS

SALES

SALES

Figure 9-4. A complex hashtable maps keys to buckets that store references to linked lists whose node values are hashed from
the same keys

When storing a value in a hashtable, the hashtable uses the hash function to hash the key to its
hash code and then searches the appropriate linked list to see if an entry with a matching key
exists. If there is an entry, its value is updated with the new value. Otherwise, a new node is created,
populated with the key and value, and appended to the list.

When retrieving a value from a hashtable, the hashtable uses the hash function to hash the key to
its hash code and then searches the appropriate linked list to see if an entry with a matching key
exists. If there is an entry, its value is returned. Otherwise, the hashtable may return a special value
to indicate that there is no entry, or it might throw an exception.

The number of buckets is known as the hashtable’s capacity. The ratio of the number of stored
entries divided by the number of buckets is known as the hashtable’s load factor. Choosing the right
load factor is important for balancing performance with memory use:

As the load factor approaches 1, the probability of collisions and the cost of
handling them (by searching lengthy linked lists) increase.

As the load factor approaches 0, the hashtable’s size in terms of number of
buckets increases with little improvement in search cost.

For many hashtables, a load factor of 0.75 is close to optimal. This value is the
default for HashMap’s hashtable implementation.

380 CHAPTER 9: Exploring the Collections Framework

HashMap supplies four constructors:

 HashMap() creates a new, empty hashmap with an initial capacity of 16 and a
load factor of 0.75.

 HashMap(int initialCapacity) creates a new, empty hashmap with a capacity
specified by initialCapacity and a load factor of 0.75. This constructor throws
IllegalArgumentException when initialCapacity’s value is less than 0.

 HashMap(int initialCapacity, float loadFactor) creates a new, empty
hashmap with a capacity specified by initialCapacity and a load factor specified
by loadFactor. This constructor throws IllegalArgumentException when
initialCapacity is less than 0 or when loadFactor is less than or equal to 0.

 HashMap(Map<? extends K, ? extends V> m) creates a new hashmap containing
m’s entries. This constructor throws NullPointerException when m contains the
null reference.

Listing 9-19 demonstrates a hashmap.

Listing 9-19. Using a Hashmap to Count Command-Line Arguments

import java.util.HashMap;
import java.util.Map;

public class HashMapDemo
{
 public static void main(String[] args)
 {
 Map<String, Integer> argMap = new HashMap<String, Integer>();
 for (String arg: args)
 {
 Integer count = argMap.get(arg);
 argMap.put(arg, (count == null) ? 1 : count + 1);
 }
 System.out.println(argMap);
 System.out.println("Number of distinct arguments = " + argMap.size());
 }
}

HashMapDemo creates a hashmap of String keys and Integer values. Each key is one of the
command-line arguments passed to this application, and its value is the number of occurrences of
that argument on the command line.

For example, java HashMapDemo how much wood could a woodchuck chuck if a woodchuck could
chuck wood generates the following output:

{wood=2, could=2, how=1, if=1, chuck=2, a=2, woodchuck=2, much=1}
Number of distinct arguments = 8

Because the String class overrides equals() and hashCode(), Listing 9-19 can use String objects
as keys in a hashmap. When you create a class whose instances are to be used as keys, you must
ensure that you override both methods.

381CHAPTER 9: Exploring the Collections Framework

Listing 9-6 showed you that a class’s overriding hashCode() method can call a reference field’s
hashCode() method and return its value, provided that the class declares a single reference field
(and no primitive-type fields).

More commonly, classes declare multiple fields, and a better implementation of the hashCode()
method is required. The implementation should try to generate hash codes that minimize collisions.

There is no rule on how to best implement hashCode(), and various algorithms (recipes for
accomplishing tasks) have been created. My favorite algorithm appears in Effective Java, Second
Edition, by Joshua Bloch (Addison-Wesley, 2008; ISBN: 0321356683).

The following algorithm, which assumes the existence of an arbitrary class that is referred to as X,
closely follows Bloch’s algorithm, but is not identical:

1. Initialize int variable hashCode (the name is arbitrary) to an arbitrary nonzero
integer value, such as 19. This variable is initialized to a nonzero value to
ensure that it takes into account any initial fields whose hash codes are
zeros. If you initialize hashCode to 0, the final hash code will be unaffected by
such fields and you run the risk of increased collisions.

2. For each field f that is also used in X’s equals() method, calculate f’s hash
code and assign it to int variable hc as follows:

a. If f is of Boolean type, calculate hc = f ? 1 : 0.

b. If f is of byte integer, character, integer, or short integer type, calculate hc = (int) f.
The integer value is the hash code.

c. If f is of long integer type, calculate hc = (int) (f ^ (f >>> 32)). This expression
exclusive ORs the long integer’s least significant 32 bits with its most significant 32 bits.

d. If f is of type floating-point, calculate hc = Float.floatToIntBits(f). This method
takes +infinity, -infinity, and NaN into account.

e. If f is of type double precision floating-point, calculate long l = Double.
doubleToLongBits(f); hc = (int) (l ^ (l >>> 32)).

f. If f is a reference field with a null reference, calculate hc = 0.

g. If f is a reference field with a nonnull reference, and if X’s equals() method compares
the field by recursively calling equals() (as in Listing 9-12’s Employee class), calculate
hc = f.hashCode(). However, if equals() employs a more complex comparison,
create a canonical (simplest possible) representation of the field and call hashCode()
on this representation.

h. If f is an array, treat each element as a separate field by applying this algorithm
recursively and combining the hc values as shown in the next step.

3. Combine hc with hashCode as follows: hashCode = hashCode * 31 + hc.
Multiplying hashCode by 31 makes the resulting hash value dependent on the
order in which fields appear in the class, which improves the hash value when
a class contains multiple fields that are similar (several ints, for example).
I chose 31 to be consistent with the String class’s hashCode() method.

4. Return hashCode from hashCode().

382 CHAPTER 9: Exploring the Collections Framework

In Chapter 4, Listing 4-7’s Point class overrode equals() but didn’t override hashCode(). I later
presented a small code fragment that must be appended to Point’s main() method to demonstrate
the problem of not overriding hashCode(). I restate this problem here:

Although objects p1 and Point(10, 20) are logically equivalent, these objects have different hash
codes, resulting in each object referring to a different entry in the hashmap. If an object is not stored
(via put()) in that entry, get() returns null.

Listing 9-20 modifies Listing 4-7’s Point class by declaring a hashCode() method. This method uses
the aforementioned algorithm to ensure that logically equivalent Point objects hash to the same
entry.

Listing 9-20. Overriding hashCode() to Return Proper Hash Codes for Point Objects

import java.util.HashMap;
import java.util.Map;

public class Point
{
 private int x, y;

 Point(int x, int y)
 {
 this.x = x;
 this.y = y;
 }

 int getX()
 {
 return x;
 }

 int getY()
 {
 return y;
 }

 @Override
 public boolean equals(Object o)
 {
 if (!(o instanceof Point))
 return false;
 Point p = (Point) o;
 return p.x == x && p.y == y;
 }

 @Override
 public int hashCode()
 {
 int hashCode = 19;
 int hc = x;
 hashCode = hashCode * 31 + hc;

383CHAPTER 9: Exploring the Collections Framework

 hc = y;
 hashCode = hashCode * 31 + hc;
 return hashCode;
 }

 public static void main(String[] args)
 {
 Point p1 = new Point(10, 20);
 Point p2 = new Point(20, 30);
 Point p3 = new Point(10, 20);
 // Test reflexivity
 System.out.println(p1.equals(p1)); // Output: true
 // Test symmetry
 System.out.println(p1.equals(p2)); // Output: false
 System.out.println(p2.equals(p1)); // Output: false
 // Test transitivity
 System.out.println(p2.equals(p3)); // Output: false
 System.out.println(p1.equals(p3)); // Output: true
 // Test nullability
 System.out.println(p1.equals(null)); // Output: false
 // Extra test to further prove the instanceof operator's usefulness.
 System.out.println(p1.equals("abc")); // Output: false
 Map<Point, String> map = new HashMap<Point, String>();
 map.put(p1, "first point");
 System.out.println(map.get(p1)); // Output: first point
 System.out.println(map.get(new Point(10, 20))); // Output: null
 }
}

Listing 9-20’s hashCode() method is a little verbose in that it assigns each of x and y to local variable
hc rather than directly using these fields in the hash code calculation. However, I decided to follow
this approach to more closely mirror the hash code algorithm.

When you run this application, its last two lines of output are of the most interest. Instead of
presenting first point followed by null on two separate lines, the application now correctly
presents first point followed by first point on these lines.

Note LinkedHashMap is a subclass of HashMap that uses a linked list to store its entries. As a
result, LinkedHashMap’s iterator returns entries in the order in which they were inserted. For example,
if Listing 9-19 had specified Map<String, Integer> argMap = new LinkedHashMap<String,
Integer>();, the application’s output for java HashMapDemo how much wood could a
woodchuck chuck if a woodchuck could chuck wood would have been {how=1, much=1,
wood=2, could=2, a=2, woodchuck=2, chuck=2, if=1} followed by Number of distinct
arguments = 8.

384 CHAPTER 9: Exploring the Collections Framework

IdentityHashMap
The IdentityHashMap class provides a Map implementation that uses reference equality (==) instead
of object equality (equals()) when comparing keys and values. This is an intentional violation of Map’s
general contract, which mandates the use of equals() when comparing elements.

IdentityHashMap obtains hash codes via System’s int identityHashCode(Object x) class method
instead of via each key’s hashCode() method. identityHashCode() returns the same hash code for x
as returned by Object’s hashCode() method, whether or not x’s class overrides hashCode(). The hash
code for the null reference is zero.

These characteristics give IdentityHashMap a performance advantage over other Map
implementations. Also, IdentityHashMap supports mutable keys (objects used as keys and whose
hash codes change when their field values change while in the map). Listing 9-21 contrasts
IdentityHashMap with HashMap where mutable keys are concerned.

Listing 9-21. Contrasting IdentityHashMap with HashMap in a Mutable Key Context

import java.util.IdentityHashMap;
import java.util.HashMap;
import java.util.Map;

public class IdentityHashMapDemo
{
 public static void main(String[] args)
 {
 Map<Employee, String> map1 = new IdentityHashMap<Employee, String>();
 Map<Employee, String> map2 = new HashMap<Employee, String>();
 Employee e1 = new Employee("John Doe", 28);
 map1.put(e1, "SALES");
 System.out.println(map1);
 Employee e2 = new Employee("Jane Doe", 26);
 map2.put(e2, "MGMT");
 System.out.println(map2);
 System.out.println("map1 contains key e1 = " + map1.containsKey(e1));
 System.out.println("map2 contains key e2 = " + map2.containsKey(e2));
 e1.setAge(29);
 e2.setAge(27);
 System.out.println(map1);
 System.out.println(map2);
 System.out.println("map1 contains key e1 = " + map1.containsKey(e1));
 System.out.println("map2 contains key e2 = " + map2.containsKey(e2));
 }
}

class Employee
{
 private String name;
 private int age;

385CHAPTER 9: Exploring the Collections Framework

 Employee(String name, int age)
 {
 this.name = name;
 this.age = age;
 }

 @Override
 public boolean equals(Object o)
 {
 if (!(o instanceof Employee))
 return false;
 Employee e = (Employee) o;
 return e.name.equals(name) && e.age == age;
 }

 @Override
 public int hashCode()
 {
 int hashCode = 19;
 hashCode = hashCode * 31 + name.hashCode();
 hashCode = hashCode * 31 + age;
 return hashCode;
 }

 void setAge(int age)
 {
 this.age = age;
 }

 void setName(String name)
 {
 this.name = name;
 }

 @Override
 public String toString()
 {
 return name + " " + age;
 }
}

Listing 9-21’s main() method creates IdentityHashMap and HashMap instances that each store an
entry consisting of an Employee key and a String value. Because Employee instances are mutable
(because of setAge() and setName()), main() changes their ages while these keys are stored in their
maps. These changes result in the following output:

{John Doe 28=SALES}
{Jane Doe 26=MGMT}
map1 contains key e1 = true
map2 contains key e2 = true
{John Doe 29=SALES}

386 CHAPTER 9: Exploring the Collections Framework

{Jane Doe 27=MGMT}
map1 contains key e1 = true
map2 contains key e2 = false

The last four lines show that the changed entries remain in their maps. However, map2’s
containsKey() method reports that its HashMap instance no longer contains its Employee key
(which should be Jane Doe 27), whereas map1’s containsKey() method reports that its
IdentityHashMap instance still contains its Employee key, which is now John Doe 29.

Note IdentityHashMap’s documentation states that “a typical use of this class is topology-preserving
object graph transformations, such as serialization or deep copying.” (I discuss serialization in Chapter 11.) It
also states that “another typical use of this class is to maintain proxy objects.” Also, stackoverflow’s
“Use Cases for Identity HashMap” topic (http://stackoverflow.com/questions/838528/
use-cases-for-identity-hashmap)) mentions that it is much faster to use IdentityHashMap than
HashMap when the keys are java.lang.Class objects.

EnumMap
The EnumMap class provides a Map implementation whose keys are the members of the
same enum. Null keys are not permitted; any attempt to store a null key results in a thrown
NullPointerException. Because an enum map is represented internally as an array, an enum map
approaches an array in terms of performance.

EnumMap supplies the following constructors:

 EnumMap(Class<K> keyType) creates an empty enum map with the specified
keyType. This constructor throws NullPointerException when keyType contains
the null reference.

 EnumMap(EnumMap<K,? extends V> m) creates an enum map with the same key
type as m and with m’s entries. This constructor throws NullPointerException
when m contains the null reference.

 EnumMap(Map<K,? extends V> m) creates an enum map initialized with m’s
entries. If m is an EnumMap instance, this constructor behaves like the previous
constructor. Otherwise, m must contain at least one entry to determine the new
enum map’s key type. This constructor throws NullPointerException when
m contains the null reference and IllegalArgumentException when m is not an
EnumMap instance and is empty.

Listing 9-22 demonstrates EnumMap.

387CHAPTER 9: Exploring the Collections Framework

Listing 9-22. An Enum Map of Coin Constants

import java.util.EnumMap;
import java.util.Map;

enum Coin
{
 PENNY, NICKEL, DIME, QUARTER
}

public class EnumMapDemo
{
 public static void main(String[] args)
 {
 Map<Coin, Integer> map = new EnumMap<Coin, Integer>(Coin.class);
 map.put(Coin.PENNY, 1);
 map.put(Coin.NICKEL, 5);
 map.put(Coin.DIME, 10);
 map.put(Coin.QUARTER, 25);
 System.out.println(map);
 Map<Coin,Integer> mapCopy = new EnumMap<Coin, Integer>(map);
 System.out.println(mapCopy);
 }
}

EnumMapDemo creates a map of Coin keys and Integer values. It then inserts several Coin instances
into this map and outputs the map. Finally, it creates a copy of this map and outputs the copy.

When you run this application, it generates the following output:

{PENNY=1, NICKEL=5, DIME=10, QUARTER=25}
{PENNY=1, NICKEL=5, DIME=10, QUARTER=25}

Exploring Sorted Maps
TreeMap is an example of a sorted map, which is a map that maintains its entries in ascending order,
sorted according to the keys’ natural ordering or according to a comparator that is supplied when
the sorted map is created. Sorted maps are described by the SortedMap interface.

SortedMap (whose generic type is SortedMap<K, V>) extends Map. With two exceptions, the methods
it inherits from Map behave identically on sorted maps as on other maps:

The Iterator instance returned by the iterator() method on any of the sorted
map’s Collection views traverses the collections in order.

The arrays returned by the Collection views’ toArray() methods contain the
keys, values, or entries in order.

388 CHAPTER 9: Exploring the Collections Framework

SortedMap’s documentation requires that an implementation must provide the four standard
constructors that I presented in my discussion of TreeMap. Furthermore, implementations of this
interface must implement the methods that are described in Table 9-10.

Table 9-10. SortedMap-Specific Methods

Method Description

Comparator<? super K>
comparator()

Return the comparator used to order the keys in this map, or null when this map
uses the natural ordering of its keys.

Set<Map.Entry<K,V>>
entrySet()

Return a Set view of the mappings contained in this map. The set’s iterator returns
these entries in ascending key order. Because the view is backed by this map,
changes that are made to the map are reflected in the set and vice versa.

K firstKey() Return the first (lowest) key currently in this map, or throw a
NoSuchElementException instance when this map is empty.

SortedMap<K, V>
headMap(K toKey)

Return a view of that portion of this map whose keys are strictly less than
toKey. Because this map backs the returned map, changes in the returned
map are reflected in this map and vice versa. The returned map supports
all optional map operations that this map supports. This method throws
ClassCastException when toKey is not compatible with this map’s comparator
(or, when the map has no comparator, when toKey doesn’t implement Comparable),
NullPointerException when toKey is null and this map doesn’t permit null keys,
and IllegalArgumentException when this map has a restricted range and toKey lies
outside of this range’s bounds.

Set<K> keySet() Return a Set view of the keys contained in this map. The set’s iterator returns the
keys in ascending order. Because the map backs the view, changes that are made
to the map are reflected in the set and vice versa.

K lastKey() Return the last (highest) key currently in this map, or throw a
NoSuchElementException instance when this map is empty.

SortedMap<K, V>
subMap(K fromKey,
K toKey)

Return a view of the portion of this map whose keys range from fromKey, inclusive,
to toKey, exclusive. (When fromKey and toKey are equal, the returned map is
empty.) Because this map backs the returned map, changes in the returned map
are reflected in this map and vice versa. The returned map supports all optional
map operations that this map supports. This method throws ClassCastException
when fromKey and toKey cannot be compared to one another using this map’s
comparator (or, when the map has no comparator, using natural ordering),
NullPointerException when fromKey or toKey is null and this map doesn’t permit
null keys, and IllegalArgumentException when fromKey is greater than toKey or
when this map has a restricted range and fromKey or toKey lies outside of this
range’s bounds.

(continued)

Note Although not guaranteed, the toString() methods of the Collection views of SortedMap
implementations in the Collections Framework (e.g., TreeMap) return a string containing all of the
view’s elements in order.

389CHAPTER 9: Exploring the Collections Framework

Listing 9-23 demonstrates a sorted map based on a tree map.

Listing 9-23. A Sorted Map of Office Supply Names and Quantities

import java.util.Comparator;
import java.util.SortedMap;
import java.util.TreeMap;

public class SortedMapDemo
{
 public static void main(String[] args)
 {
 SortedMap<String, Integer> smsi = new TreeMap<String, Integer>();
 String[] officeSupplies =
 {
 "pen", "pencil", "legal pad", "CD", "paper"
 };
 int[] quantities =
 {
 20, 30, 5, 10, 20
 };
 for (int i = 0; i < officeSupplies.length; i++)
 smsi.put(officeSupplies[i], quantities[i]);
 System.out.println(smsi);
 System.out.println(smsi.headMap("pencil"));
 System.out.println(smsi.headMap("paper"));
 SortedMap<String, Integer> smsiCopy;
 Comparator<String> cmp;
 cmp = new Comparator<String>()
 {
 @Override
 public int compare(String key1, String key2)

Method Description

SortedMap<K, V>
tailMap(K fromKey)

Return a view of that portion of this map whose keys are greater than or equal to
fromKey. Because this map backs the returned map, changes in the returned map
are reflected in this map and vice versa. The returned map supports all optional
map operations that this map supports. This method throws ClassCastException
when fromKey is not compatible with this map’s comparator (or, when the
map has no comparator, when fromKey doesn’t implement Comparable),
NullPointerException when fromKey is null and this map doesn’t permit null
elements, and IllegalArgumentException when this map has a restricted range and
fromKey lies outside of the range’s bounds.

Collection<V> values() Return a Collection view of the values contained in this map. The collection’s
iterator returns the values in ascending order of the corresponding keys. Because
the map backs the collection, changes that are made to the map are reflected in the
collection and vice versa.

Table 9-10. (continued)

390 CHAPTER 9: Exploring the Collections Framework

 {
 return key2.compareTo(key1); // descending order
 }
 };
 smsiCopy = new TreeMap<String, Integer>(cmp);
 smsiCopy.putAll(smsi);
 System.out.println(smsiCopy);
 }
}

SortedMapDemo creates a sorted map and arrays of office supply names and quantities. It then
proceeds to populate the map from these arrays. After dumping out the map’s contents and head
views of parts of the map, it creates and outputs a copy of the map in descending order.

When you run this application, it generates the following output:

{CD=10, legal pad=5, paper=20, pen=20, pencil=30}
{CD=10, legal pad=5, paper=20, pen=20}
{CD=10, legal pad=5}
{pencil=30, pen=20, paper=20, legal pad=5, CD=10}

Exploring Navigable Maps
TreeMap is an example of a navigable map, which is a sorted map that can be iterated over in
descending order as well as ascending order and which can report closest matches for given
search targets. Navigable maps are described by the NavigableMap interface, whose generic type is
NavigableMap<K,V>, which extends SortedMap and which is described in Table 9-11.

Table 9-11. NavigableMap-Specific Methods

Method Description

Map.Entry<K,V>
ceilingEntry(K key)

Return the key-value mapping associated with the least key greater than or equal
to key or null when there is no such key. This method throws ClassCastException
when key cannot be compared with the keys currently in the map and
NullPointerException when key is null and this map doesn’t permit null keys.

K ceilingKey(K key) Return the least key greater than or equal to key or null when there is no such key.
This method throws ClassCastException when key cannot be compared with the
keys currently in the map and NullPointerException when key is null and this map
doesn’t permit null keys.

NavigableSet<K>
descendingKeySet()

Return a reverse order navigable set-based view of the keys contained in this map.
The set’s iterator returns the keys in descending order. This map backs the set,
so changes to the map are reflected in the set and vice versa. If the map is modified
(except through the iterator’s own remove() operation) while iterating over the set,
the results of the iteration are undefined.

(continued)

391CHAPTER 9: Exploring the Collections Framework

Method Description

NavigableMap<K,V>
descendingMap()

Return a reverse order view of the mappings contained in this map. This map
backs the descending map, so changes to the map are reflected in the descending
map and vice versa. If either map is modified while iterating over a collection view
of either map (except through the iterator’s own remove() operation), the results of
the iteration are undefined.

Map.Entry<K,V>
firstEntry()

Return a key-value mapping associated with the least key in this map or null when
the map is empty.

Map.Entry<K,V>
floorEntry(K key)

Return a key-value mapping associated with the greatest key less than or equal
to key or null when there is no such key. This method throws ClassCastException
when key cannot be compared with the keys currently in the map and
NullPointerException when key is null and this map doesn’t permit null keys.

K floorKey(K key) Return the greatest key less than or equal to key or null when there is no such key.
This method throws ClassCastException when key cannot be compared with the
keys currently in the map and NullPointerException when key is null and this map
doesn’t permit null keys.

NavigableMap<K,V>
headMap(K toKey,
boolean inclusive)

Return a view of the portion of this map whose keys are less than (or equal to,
when inclusive is true) toKey. This map backs the returned map, so changes
in the returned map are reflected in this map and vice versa. The returned map
supports all optional map operations that this map supports. This method throws
ClassCastException when toKey is not compatible with this map’s comparator (or,
when the map has no comparator, when toMap doesn’t implement Comparable),
NullPointerException when toKey is null and this map doesn’t permit null keys,
and IllegalArgumentException when this map has a restricted range and toKey lies
outside of this range’s bounds.

Map.Entry<K,V>
higherEntry(K key)

Return a key-value mapping associated with the least key strictly greater than
key or null when there is no such key. This method throws ClassCastException
when key cannot be compared with the keys currently in the map and
NullPointerException when key is null and this map doesn’t permit null keys.

K higherKey(K key) Return the least key strictly greater than key or null when there is no such key. This
method throws ClassCastException when key cannot be compared with the keys
currently in the map and NullPointerException when key is null and this map
doesn’t permit null keys.

Map.Entry<K,V>
lastEntry()

Return a key-value mapping associated with the greatest key in this map or null
when the map is empty.

Map.Entry<K,V>
lowerEntry(K key)

Return a key-value mapping associated with the greatest key strictly less than
key or null when there is no such key. This method throws ClassCastException
when key cannot be compared with the keys currently in the map and
NullPointerException when key is null and this map doesn’t permit null keys.

Table 9-11. (continued)

(continued)

392 CHAPTER 9: Exploring the Collections Framework

Table 9-11’s methods describe the NavigableMap equivalents of the NavigableSet methods
presented in Table 9-4 and even return NavigableSet instances in two instances.

Listing 9-24 demonstrates a navigable map based on a tree map.

Listing 9-24. Navigating a Map of (Bird, Count Within A Small Acreage) Entries

import java.util.Iterator;
import java.util.NavigableMap;

Method Description

K lowerKey(K key) Return the greatest key strictly less than key or null when there is no such key. This
method throws ClassCastException when key cannot be compared with the keys
currently in the map and NullPointerException when key is null and this map
doesn’t permit null keys.

NavigableSet<K>
navigableKeySet()

Return a navigable set-based view of the keys contained in this map. The set’s
iterator returns the keys in ascending order. This map backs the set, so changes to
the map are reflected in the set and vice versa. If the map is modified while iterating
over the set (except through the iterator’s own remove() operation), the results of
the iteration are undefined.

Map.Entry<K,V>
pollFirstEntry()

Remove and return a key-value mapping associated with the least key in this map
or null when the map is empty.

Map.Entry<K,V>
pollLastEntry()

Remove and return a key-value mapping associated with the greatest key in this
map or null when the map is empty.

NavigableMap<K,V>
subMap(K fromKey,
boolean fromInclusive,
K toKey, boolean
toInclusive)

Return a view of the portion of this map whose keys range from fromKey to
toKey. (When fromKey and toKey are equal, the returned map is empty unless
fromInclusive and toInclusive are both true.) This map backs the returned map,
so changes in the returned map are reflected in this map and vice versa. The
returned map supports all optional map operations that this map supports. This
method throws ClassCastException when fromKey and toKey cannot be compared
to one another using this map’s comparator (or, when the map has no comparator,
using natural ordering), NullPointerException when fromKey or toKey is null
and this map doesn’t permit null elements, and IllegalArgumentException when
fromKey is greater than toKey or when this map has a restricted range and fromKey
or toKey lies outside of this range’s bounds.

NavigableMap<K,V>
tailMap(K fromKey,
boolean inclusive)

Return a view of the portion of this map whose keys are greater than (or equal to,
when inclusive is true) fromKey. This map backs the returned map, so changes
in the returned map are reflected in this map and vice versa. The returned map
supports all optional map operations that this map supports. This method throws
ClassCastException when fromKey is not compatible with this map’s comparator
(or, when the map has no comparator, when fromKey doesn’t implement
Comparable), NullPointerException when fromKey is null and this map doesn’t
permit null keys, and IllegalArgumentException when this map has a restricted
range and fromKey lies outside of this range’s bounds.

Table 9-11. (continued)

393CHAPTER 9: Exploring the Collections Framework

import java.util.NavigableSet;
import java.util.TreeMap;

public class NavigableMapDemo
{
 public static void main(String[] args)
 {
 NavigableMap<String, Integer> nm = new TreeMap<String, Integer>();
 String[] birds = { "sparrow", "bluejay", "robin" };
 int[] ints = { 83, 12, 19 };
 for (int i = 0; i < birds.length; i++)
 nm.put(birds[i], ints[i]);
 System.out.println("Map = " + nm);
 System.out.print("Ascending order of keys: ");
 NavigableSet<String> ns = nm.navigableKeySet();
 Iterator iter = ns.iterator();
 while (iter.hasNext())
 System.out.print(iter.next() + " ");
 System.out.println();
 System.out.print("Descending order of keys: ");
 ns = nm.descendingKeySet();
 iter = ns.iterator();
 while (iter.hasNext())
 System.out.print(iter.next() + " ");
 System.out.println();
 System.out.println("First entry = " + nm.firstEntry());
 System.out.println("Last entry = " + nm.lastEntry());
 System.out.println("Entry < ostrich is " + nm.lowerEntry("ostrich"));
 System.out.println("Entry > crow is " + nm.higherEntry("crow"));
 System.out.println("Poll first entry: " + nm.pollFirstEntry());
 System.out.println("Map = " + nm);
 System.out.println("Poll last entry: " + nm.pollLastEntry());
 System.out.println("Map = " + nm);
 }
}

Listing 9-24’s System.out.println("Map = " + nm); method calls rely on TreeMap’s toString()
method to obtain the contents of a navigable map.

When you run this application, you observe the following output:

Map = {bluejay=12, robin=19, sparrow=83}
Ascending order of keys: bluejay robin sparrow
Descending order of keys: sparrow robin bluejay
First entry = bluejay=12
Last entry = sparrow=83
Entry < ostrich is bluejay=12
Entry > crow is robin=19
Poll first entry: bluejay=12
Map = {robin=19, sparrow=83}
Poll last entry: sparrow=83
Map = {robin=19}

394 CHAPTER 9: Exploring the Collections Framework

Exploring the Arrays and Collections Utility APIs
The Collections Framework would be incomplete without its Arrays and Collections utility classes.
Each class supplies various class methods that implement useful algorithms in the contexts of
collections and arrays.

Following is a sampling of the Arrays class’s array-oriented utility methods:

 static <T> List<T> asList(T. . . a) returns a fixed-size list backed by array a.
(Changes to the returned list “write through” to the array.) For example,
List<String> birds = Arrays.asList("Robin", "Oriole", "Bluejay");
converts the three-element array of Strings (recall that a variable sequence of
arguments is implemented as an array) to a List whose reference is assigned to
birds.

 static int binarySearch(int[] a, int key) searches array a for entry key
using the binary search algorithm (explained following this list). The array must
be sorted before calling this method; otherwise, the results are undefined.
This method returns the index of the search key, if it is contained in the array;
otherwise (-(insertion point) - 1) is returned. The insertion point is the point
at which key would be inserted into the array (the index of the first element
greater than key, or a.length if all elements in the array are less than key) and
guarantees that the return value will be greater than or equal to 0 if and only
if key is found. For example, Arrays.binarySearch(new String[] {"Robin",
"Oriole", "Bluejay"}, "Oriole") returns 1, "Oriole"’s index.

 static void fill(char[] a, char ch) stores ch in each element of the
specified character array. For example, Arrays.fill(screen[i], ' '); fills the
ith row of a 2D screen array with spaces.

 static void sort(long[] a) sorts the elements in the long integer array a into
ascending numerical order, for example, long lArray = new long[] { 20000L,
89L, 66L, 33L}; Arrays.sort(lArray);.

 static <T> void sort(T[] a, Comparator<? super T> c) sorts the elements
in array a using comparator c to order them. For example, when given
Comparator<String> cmp = new Comparator<String>() { @Override public
int compare(String e1, String e2) { return e2.compareTo(e1); } };
String[] innerPlanets = { "Mercury", "Venus", "Earth", "Mars" };,
Arrays.sort(innerPlanets, cmp); uses cmp to help in sorting innerPlanets into
descending order of its elements: Venus, Mercury, Mars, Earth is the result.

There are two common algorithms for searching an array for a specific element. Linear search
searches the array element by element from index 0 to the index of the searched-for element or the
end of the array. On average, half of the elements must be searched; larger arrays take longer to
search. However, the arrays don’t need to be sorted.

395CHAPTER 9: Exploring the Collections Framework

In contrast, binary search searches ordered array a’s n items for element e in a much faster amount
of time. It works by recursively performing the following steps:

1. Set low index to 0.

2. Set high index to n - 1.

3. If low index > high index, then Print “Unable to find ” e. End.

4. Set middle index to (low index + high index) / 2.

5. If e > a[middle index], then set low index to middle index + 1. Go to 3.

6. If e < a[middle index], then set high index to middle index - 1. Go to 3.

7. Print “Found ” e “at index ” middle index.

The algorithm is similar to optimally looking for a name in a phone book. Start by opening the book
to the exact middle. If the name is not on that page, proceed to open the book to the exact middle
of the first half or the second half, depending on which half the name occurs in. Repeat until you find
the name (or not).

Applying a linear search to 4,000,000,000 elements results in approximately 2,000,000,000
comparisons (on average), which takes time. In contrast, applying binary search to 4,000,000,000
elements performs a maximum of 32 comparisons. This is why Arrays contains binarySearch()
methods and not also linearSearch() methods.

Following is a sampling of the Collections class’s collection-oriented class methods:

 static <T extends Object & Comparable<? super T>> T min(Collection
<? extends T> c) returns the minimum element of collection c according to the
natural ordering of its elements. For example, System.out.println(Collections.min
(Arrays.asList(10, 3, 18, 25))); outputs 3. All of c’s elements must
implement the Comparable interface. Furthermore, all elements must be mutually
comparable. This method throws NoSuchElementException when c is empty.

 static void reverse(List<?> l) reverses the order of list l’s elements.
For example, List<String> birds = Arrays.asList("Robin", "Oriole",
"Bluejay"); Collections.reverse(birds); System.out.println(birds);
results in [Bluejay, Oriole, Robin] as the output.

 static <T> List<T> singletonList(T o) returns an immutable list containing
only object o. For example, list.removeAll(Collections.singletonList(null));
removes all null elements from list.

 static <T> Set<T> synchronizedSet(Set<T> s) returns a synchronized
(thread-safe) set backed by the specified set s, for example, Set<String>
ss = Collections.synchronizedSet(new HashSet<String>());. To guarantee
serial access, it’s critical that all access to the backing set (s) is accomplished
through the returned set.

396 CHAPTER 9: Exploring the Collections Framework

Note For performance reasons, collections implementations are unsynchronized—unsynchronized
collections have better performance than synchronized collections. To use a collection in a
multithreaded context, however, you need to obtain a synchronized version of that collection. You obtain
that version by calling a method such as synchronizedSet().

 static <K,V> Map<K,V> unmodifiableMap(Map<? extends K,? extends V> m)
returns an unmodifiable view of map m, for example, Map<String, Integer>
msi = Collections.unmodifiableMap(new HashMap<String, Integer>());.
Query operations on the returned map “read through” to the specified map; and
attempts to modify the returned map, whether direct or via its collection views,
result in an UnsupportedOperationException.

You might be wondering about the purpose for the various “empty” class methods in the Collections
class. For example, static final <T> List<T> emptyList() returns an immutable empty list, as
in List<String> ls = Collections.emptyList();. These methods are present because they offer
a useful alternative to returning null (and avoiding potential NullPointerExceptions) in certain
contexts. Consider Listing 9-25.

Listing 9-25. Empty and Nonempty Lists of Birds

import java.util.ArrayList;
import java.util.Collections;
import java.util.Iterator;
import java.util.List;

class Birds
{
 private List<String> birds;

 Birds()
 {
 birds = Collections.emptyList();
 }

 Birds(String. . . birdNames)
 {
 birds = new ArrayList<String>();
 for (String birdName: birdNames)
 birds.add(birdName);
 }

 @Override
 public String toString()
 {
 return birds.toString();
 }
}

397CHAPTER 9: Exploring the Collections Framework

class EmptyListDemo
{
 public static void main(String[] args)
 {
 Birds birds = new Birds();
 System.out.println(birds);
 birds = new Birds("Swallow", "Robin", "Bluejay", "Oriole");
 System.out.println(birds);
 }
}

Listing 9-25 declares a Birds class that stores the names of various birds in a list. This class
provides two constructors: a noargument constructor and a constructor that takes a variable number
of String arguments identifying various birds.

The noargument constructor invokes emptyList() to initialize its private birds field to an empty List
of String—emptyList() is a generic method and the compiler infers its return type from its context.

If you’re wondering about the need for emptyList(), look at the toString() method. Notice that
this method evaluates birds.toString(). If you didn’t assign a reference to an empty List<String>
to birds, birds would contain null (the default value for this instance field when the object is
created), and a NullPointerException instance would be thrown when attempting to evaluate
birds.toString().

When you run this application (java EmptyListDemo), it generates the following output:

[]
[Swallow, Robin, Bluejay, Oriole]

The emptyList() method is implemented as follows: return (List<T>) EMPTY_LIST;. This statement
returns the single List instance assigned to the EMPTY_LIST class field in the Collections class.

You might want to work with EMPTY_LIST directly, but you’ll run into an unchecked warning message
if you do because EMPTY_LIST is declared to be of the raw type List, and mixing raw and generic
types leads to such messages. Although you could suppress the warning, you’re better off using the
emptyList() method.

Suppose you add a void setBirds(List<String> birds) method to Birds and pass an empty list
to this method, as in birds.setBirds(Collections.emptyList());. The compiler will respond with
an error message stating that it requires the argument to be of type List<String>, but instead the
argument is of type List<Object>. It does so because the compiler cannot figure out the proper type
from this context, and so it chooses List<Object>.

There is a way to solve this problem, which will probably look very strange. Specify birds.setBirds
(Collections.<String>emptyList());, where the formal type parameter list and its actual type
argument appear after the member access operator and before the method name. The compiler will
now know that the proper type argument is String and that emptyList() is to return List<String>.

398 CHAPTER 9: Exploring the Collections Framework

Note Applications use properties for various purposes. For example, if your application has a
graphical user interface, you could store the screen location and size of its main window in a file via a
Properties object so that the application can restore the window’s location and size when it next runs.

Exploring the Legacy Collection APIs
Java 1.2 introduced the Collections Framework. Before the framework’s inclusion in Java,
developers had two choices where collections were concerned: create their own frameworks, or use
the Vector, Enumeration, Stack, Dictionary, Hashtable, Properties, and BitSet types, which were
introduced by Java 1.0.

Vector is a concrete class that describes a growable array, much like ArrayList. Unlike an ArrayList
instance, a Vector instance is synchronized. Vector has been generified and also retrofitted to
support the Collections Framework, which makes statements such as List<String> list = new
Vector<String>(); legal.

The Collections Framework provides Iterator for iterating over a collection’s elements. In contrast,
Vector’s elements() method returns an instance of a class that implements the Enumeration
interface for enumerating (iterating over and returning) a Vector instance’s elements via
Enumeration’s hasMoreElements() and nextElement() methods.

Vector is subclassed by the concrete Stack class, which represents a LIFO data structure. Stack
provides an E push(E item) method for pushing an object onto the stack, an E pop() method for
popping an item off the top of the stack, and a few other methods, such as boolean empty() for
determining whether or not the stack is empty.

Stack is a good example of bad API design. By inheriting from Vector, it’s possible to call Vector’s
void add(int index, E element) method to add an element anywhere you wish and violate a Stack
instance’s integrity. In hindsight, Stack should have used composition in its design: use a Vector
instance to store a Stack instance’s elements.

Dictionary is an abstract superclass for subclasses that map keys to values. The concrete
Hashtable class is Dictionary’s only subclass. As with Vector, HashTable instances are
synchronized, HashTable has been generified, and HashTable has been retrofitted to support the
Collections Framework.

Hashtable is subclassed by Properties, a concrete class representing a persistent set of properties
(String-based key/value pairs that identify application settings). Properties provides Object
setProperty(String key, String value) for storing a property and String getProperty(String
key) for returning a property’s value.

Properties is another good example of bad API design. By inheriting from Hashtable, you can
call Hashtable’s V put(K key, V value) method to store an entry with a non-String key and/or a
non-String value. In hindsight, Properties should have leveraged composition: store a Properties
instance’s elements in a Hashtable instance.

399CHAPTER 9: Exploring the Collections Framework

Note In Chapter 4 I discussed wrapper classes, which is how Stack and Properties should have
been implemented.

Finally, BitSet is a concrete class that describes a variable-length set of bits. This class’s ability
to represent bitsets of arbitrary length contrasts with the previously described integer-based,
fixed-length bitset that is limited to a maximum number of members: 32 members for an int-based
bitset or 64 members for a long-based bitset.

BitSet provides a pair of constructors for initializing a BitSet instance: BitSet() initializes the
instance to initially store an implementation-dependent number of bits, whereas BitSet(int nbits)
initializes the instance to initially store nbits bits. BitSet also provides various methods, including
the following:

 void and(BitSet bs) bitwise ANDs this bitset with bs. This bitset is modified
such that a bit is set to 1 when it and the bit at the same position in bs are 1.

 void andNot(BitSet bs) sets all of the bits in this bitset to 0 whose
corresponding bits are set to 1 in bs.

 void clear() sets all of the bits in this bitset to 0.

 Object clone() clones this bitset to produce a new bitset. The clone has exactly
the same bits set to one as this bitset.

 boolean get(int bitIndex) returns the value of this bitset’s bit as a Boolean
true/false value (true for 1, false for 0) at the zero-based bitIndex. This method
throws IndexOutOfBoundsException when bitIndex is less than 0.

 int length() returns the “logical size” of this bitset, which is the index of the
highest 1 bit plus 1, or 0 if this bitset contains no 1 bits.

 void or(BitSet bs) bitwise inclusive ORs this bitset with bs. This bitset is
modified such that a bit is set to 1 when it or the bit at the same position in bs is
1 or when both bits are 1.

 void set(int bitIndex, boolean value) sets the bit at the zero-based
bitIndex to value (true is converted to 1; false is converted to 0). This method
throws IndexOutOfBoundsException when bitIndex is less than 0.

 int size() returns the number of bits that are being used by this bitset to
represent bit values.

 String toString() returns a string representation of this bitset in terms of the
positions of bits that are 1, for example, {4, 5, 9, 10}.

 void xor(BitSet set) bitwise exclusive ORs this bitset with bs. This bitset is
modified such that a bit is set to 1 when either it or the bit at the same position
in bs (but not both) is 1.

Listing 9-26 presents an application that demonstrates some of these methods and gives you more
insight into how the bitwise AND (&), bitwise inclusive OR (|), and bitwise exclusive OR (^) operators
work.

400 CHAPTER 9: Exploring the Collections Framework

Listing 9-26. Working with Variable-Length Bitsets

import java.util.BitSet;

public class BitSetDemo
{
 public static void main(String[] args)
 {
 BitSet bs1 = new BitSet();
 bs1.set(4, true);
 bs1.set(5, true);
 bs1.set(9, true);
 bs1.set(10, true);
 BitSet bsTemp = (BitSet) bs1.clone();
 dumpBitset(" ", bs1);
 BitSet bs2 = new BitSet();
 bs2.set(4, true);
 bs2.set(6, true);
 bs2.set(7, true);
 bs2.set(9, true);
 dumpBitset(" ", bs2);
 bs1.and(bs2);
 dumpSeparator(Math.min(bs1.size(), 16));
 dumpBitset("AND (&) ", bs1);
 System.out.println();
 bs1 = bsTemp;
 dumpBitset(" ", bs1);
 dumpBitset(" ", bs2);
 bsTemp = (BitSet) bs1.clone();
 bs1.or(bs2);
 dumpSeparator(Math.min(bs1.size(), 16));
 dumpBitset("OR (|) ", bs1);
 System.out.println();
 bs1 = bsTemp;
 dumpBitset(" ", bs1);
 dumpBitset(" ", bs2);
 bsTemp = (BitSet) bs1.clone();
 bs1.xor(bs2);
 dumpSeparator(Math.min(bs1.size(), 16));
 dumpBitset("XOR (^) ", bs1);
 }

 static void dumpBitset(String preamble, BitSet bs)
 {
 System.out.print(preamble);
 int size = Math.min(bs.size(), 16);
 for (int i = 0; i < size; i++)
 System.out.print(bs.get(i) ? "1" : "0");
 System.out.print(" size(" + bs.size() + "), length(" + bs.length() + ")");
 System.out.println();
 }

401CHAPTER 9: Exploring the Collections Framework

 static void dumpSeparator(int len)
 {
 System.out.print(" ");
 for (int i = 0; i < len; i++)
 System.out.print("-");
 System.out.println();
 }
}

Why did I specify Math.min(bs.size(), 16) in dumpBitset() and pass a similar expression to
dumpSeparator()? I wanted to display exactly 16 bits and 16 dashes (for aesthetics) and needed
to account for a bitset’s size being less than 16. Although this doesn’t happen with Oracle’s and
Google’s BitSet classes, it might happen with some other variant.

When you run this application, it generates the following output:

 0000110001100000 size(64), length(11)
 0000101101000000 size(64), length(10)

AND (&) 0000100001000000 size(64), length(10)

 0000110001100000 size(64), length(11)
 0000101101000000 size(64), length(10)

OR (|) 0000111101100000 size(64), length(11)

 0000110001100000 size(64), length(11)
 0000101101000000 size(64), length(10)

XOR (^) 0000011100100000 size(64), length(11)

Caution Unlike Vector and Hashtable, BitSet is not synchronized. You must externally
synchronize access to this class when using BitSet in a multithreaded context.

The Collections Framework has made Vector, Enumeration, Stack, Dictionary, and Hashtable
obsolete. These types continue to be part of the standard class library to support legacy code. Also,
the Preferences API has made Properties largely obsolete. Because BitSet is still relevant, this
class continues to be improved (as recently as Java 7).

402 CHAPTER 9: Exploring the Collections Framework

EXERCISES

The following exercises are designed to test your understanding of Chapter 9’s content:

1. What is a collection?

2. What is the Collections Framework?

3. The Collections Framework largely consists of what components?

4. Define comparable.

5. When would you have a class implement the Comparable interface?

6. What is a comparator and what is its purpose?

7. True or false: A collection uses a comparator to define the natural ordering of its elements.

8. What does the Iterable interface describe?

9. What does the Collection interface represent?

10. Identify a situation where Collection’s add() method would throw an instance of the
UnsupportedOperationException class.

11. Iterable’s iterator() method returns an instance of a class that implements the Iterator
interface. What methods does this interface provide?

12. What is the purpose of the enhanced for loop statement?

13. How is the enhanced for loop statement expressed?

14. True or false: The enhanced for loop works with arrays.

15. Define autoboxing.

16. Define unboxing.

17. What is a list?

18. What does a ListIterator instance use to navigate through a list?

19. What is a view?

20. Why would you use the subList() method?

Note It’s not surprising that BitSet is being improved when you realize the usefulness of variable-length
bitsets. Because of their compactness and other advantages, variable-length bitsets are often used to
implement an operating system’s priority queues and facilitate memory page allocation. Unix-oriented
file systems also use bitsets to facilitate the allocation of inodes (information nodes) and disk sectors. And
bitsets are useful in Huffman coding, a data-compression algorithm for achieving lossless
data compression.

403CHAPTER 9: Exploring the Collections Framework

21. What does the ArrayList class provide?

22. What does the LinkedList class provide?

23. Define node.

24. True or false: ArrayList provides faster element insertions and deletions than LinkedList.

25. What is a set?

26. What does the TreeSet class provide?

27. What does the HashSet class provide?

28. True or false: To avoid duplicate elements in a hashset, your own classes must correctly override
equals() and hashCode().

29. What is the difference between HashSet and LinkedHashSet?

30. What does the EnumSet class provide?

31. Define sorted set.

32. What is a navigable set?

33. True or false: HashSet is an example of a sorted set.

34. Why would a sorted set’s add() method throw ClassCastException when you attempt to add an
element to the sorted set?

35. What is a queue?

36. True or false: Queue’s element() method throws NoSuchElementException when it is called on
an empty queue.

37. What does the PriorityQueue class provide?

38. What is a map?

39. What does the TreeMap class provide?

40. What does the HashMap class provide?

41. What does a hashtable use to map keys to integer values?

42. Continuing from the previous question, what are the resulting integer values called and what do they
accomplish?

43. What is a hashtable’s capacity?

44. What is a hashtable’s load factor?

45. What is the difference between HashMap and LinkedHashMap?

46. What does the IdentityHashMap class provide?

47. What does the EnumMap class provide?

48. Define sorted map.

49. What is a navigable map?

404 CHAPTER 9: Exploring the Collections Framework

50. True or false: TreeMap is an example of a sorted map.

51. What is the purpose of the Arrays class’s static <T> List<T> asList(T. . . array)
method?

52. True or false: Binary search is slower than linear search.

53. Which Collections method would you use to return a synchronized variation of a hashset?

54. Identify the seven legacy collections-oriented types.

55. As an example of array list usefulness, create a JavaQuiz application that presents a multiple-
choice-based quiz on Java features. The JavaQuiz class’s main() method first populates the array
list with the entries in a QuizEntry array (e.g., new QuizEntry("What was Java's original
name?", new String[] { "Oak", "Duke", "J", "None of the above" }, 'A')). Each
entry consists of a question, four possible answers, and the letter (A, B, C, or D) of the correct answer.
main() then uses the array list’s iterator() method to return an Iterator instance and this
instance’s hasNext() and next() methods to iterate over the list. Each of the iterations outputs
the question and four possible answers and then prompts the user to enter the correct choice. After
the user enters A, B, C, or D (via System.in.read()), main() outputs a message stating whether
or not the user made the correct choice.

56. Why is (int) (f ^ (f >>> 32)) used instead of (int) (f ^ (f >> 32)) in the hash code
generation algorithm?

57. Collections provides the static int frequency(Collection<?> c, Object o) method
to return the number of collection c elements that are equal to o. Create a FrequencyDemo
application that reads its command-line arguments and stores all arguments except for the last
argument in a list and then calls frequency() with the list and last command-line argument as
this method’s arguments. It then outputs this method’s return value (the number of occurrences
of the last command-line argument in the previous command-line arguments). For example,
java FrequencyDemo should output Number of occurrences of null = 0, and java
FrequencyDemo how much wood could a woodchuck chuck if a woodchuck could
chuck wood wood should output Number of occurrences of wood = 2.

Summary
A collection is a group of objects that are stored in an instance of a class designed for this purpose.
To save you from having to create your own collections classes, Java provides the Collections
Framework for representing and manipulating collections.

The Collections Framework largely consists of core interfaces, implementation classes, and
the Arrays and Collections utility classes. The core interfaces make it possible to manipulate
collections independently of their implementations.

Core interfaces include Iterable, Collection, List, Set, SortedSet, NavigableSet, Queue, Deque,
Map, SortedMap, and NavigableMap. Collection extends Iterable; List, Set, and Queue each
extend Collection; SortedSet extends Set; NavigableSet extends SortedSet; Deque extends Queue;
SortedMap extends Map; and NavigableMap extends SortedMap.

405CHAPTER 9: Exploring the Collections Framework

Implementation classes include ArrayList, LinkedList, TreeSet, HashSet, LinkedHashSet, EnumSet,
PriorityQueue, ArrayDeque, TreeMap, HashMap, LinkedHashMap, IdentityHashMap, WeakHashMap,
and EnumMap. The name of each concrete class ends in a core interface name, identifying the core
interface on which it is based.

The Collections Framework would not be complete without its Arrays and Collections utility
classes. Each class supplies various class methods that implement useful algorithms in the contexts
of arrays and collections. For example, Arrays lets you efficiently search and sort arrays, and
Collections lets you obtain synchronized and unmodifiable collections.

Before Java 1.2’s introduction of the Collections Framework, developers could create their own
frameworks or use the Vector, Enumeration, Stack, Dictionary, Hashtable, Properties, and BitSet
types, which were introduced by Java 1.0.

The Collections Framework has made Vector, Enumeration, Stack, Dictionary, and Hashtable
obsolete. Also, the Preferences API has made Properties largely obsolete. Because BitSet is still
relevant, this class continues to be improved.

In Chapter 10 I continue to explore the utility APIs by focusing on the Concurrency Utilities, the Date
class, the Formatter class, the Random class, the Scanner class, and more.

407

Chapter 10
Exploring Additional Utility APIs

In Chapter 10 I continue to explore Java’s utility APIs by introducing Concurrency Utilities, the
Date class (for representing time), the Formatter class (for formatting data items), the Random class
(for generating random numbers), the Scanner class (for parsing an input stream of characters into
integers, strings, and other values), and the APIs for working with ZIP and JAR files.

Exploring the Concurrency Utilities
Java 5 introduced Concurrency Utilities whose classes and interfaces simplify the development of
concurrent (multithreaded) applications, and which were extended by Java 6. These types
are located in the java.util.concurrent package and in its java.util.concurrent.atomic and
java.util.concurrent.locks subpackages.

Note Android supports all of the Java 5 and Java 6 concurrency types. It doesn’t support Java 7
additions at the time of writing.

These utilities leverage the low-level Threads API (see Chapter 8) in their implementations
and provide higher-level building blocks (such as locking idioms) to make it easier to create
multithreaded applications. They are organized into executor, synchronizer, concurrent collection,
lock, and atomic variable categories.

Executors
In Chapter 8 I introduced the Threads API, which lets you execute runnable tasks via expressions
such as new java.lang.Thread(new RunnableTask()).start();. These expressions tightly couple
task submission with the task’s execution mechanics (run on the current thread, a new thread, or a
thread arbitrarily chosen from a pool [group] of threads).

408 CHAPTER 10: Exploring Additional Utility APIs

The concurrency-oriented utilities provide executors as a high-level alternative to low-level Threads
API expressions for executing runnable tasks. An executor is an object whose class directly
or indirectly implements the java.util.concurrent.Executor interface, which decouples task
submission from task-execution mechanics.

Note A task is an object whose class implements the java.lang.Runnable interface (a runnable task)
or the java.util.concurrent.Callable interface (a callable task).

Note The executor framework’s use of interfaces to decouple task submission from task-execution mechanics
is analogous to the Collections Framework’s use of core interfaces to decouple lists, sets, queues, and maps
from their implementations. Decoupling results in flexible code that is easier to maintain.

Executor declares a solitary void execute(Runnable runnable) method that executes the runnable task
named runnable at some point in the future. execute() throws java.lang.NullPointerException
when runnable is null and java.util.concurrent.RejectedExecutionException when it cannot
execute runnable.

Note RejectedExecutionException can be thrown when an executor is shutting down and doesn’t
want to accept new tasks. Also, this exception can be thrown when the executor doesn’t have enough
room to store the task (perhaps the executor uses a bounded blocking queue to store tasks and the queue
is full—I discuss blocking queues later in this chapter).

The following example presents the Executor equivalent of the aforementioned new Thread
(new RunnableTask()).start(); expression:

Executor executor = ...; // ... represents some executor creation
executor.execute(new RunnableTask());

Although Executor is easy to use, this interface is limited in various ways:

 Executor focuses exclusively on Runnable. Because Runnable’s run() method
doesn’t return a value, there is no convenient way for a runnable task to return a
value to its caller.

 Executor doesn’t provide a way to track the progress of executing runnable
tasks, cancel an executing runnable task, or determine when the runnable task
finishes execution.

409CHAPTER 10: Exploring Additional Utility APIs

 Executor cannot execute a collection of runnable tasks.

 Executor doesn’t provide a way for an application to shut down an executor
(much less to properly shut down an executor).

These limitations are addressed by the java.util.concurrent.ExecutorService interface, which
extends Executor and whose implementation is typically a thread pool. Table 10-1 describes
ExecutorService’s methods.

Table 10-1. ExecutorService Methods

Method Description

boolean awaitTermination
(long timeout,
TimeUnit unit)

Block (wait) until all tasks have finished after a shutdown request, the
timeout (measured in unit time units) expires, or the current thread is
interrupted, whichever happens first. Return true when this executor has
terminated and false when the timeout elapses before termination. This
method throws java.lang.InterruptedException when interrupted.

<T> List<Future<T>>
invokeAll(Collection<?
extends Callable<T>> tasks)

Execute each callable task in the tasks collection and return a java.util.List
of java.util.concurrent.Future instances that hold task statuses and
results when all tasks complete—a task completes through normal
termination or by throwing an exception. The List of Futures is in the same
sequential order as the sequence of tasks returned by tasks’ iterator. This
method throws InterruptedException when it is interrupted while waiting,
in which case unfinished tasks are canceled; NullPointerException when
tasks or any of its elements is null; and RejectedExecutionException
when any one of tasks’ tasks cannot be scheduled for execution.

<T> List<Future<T>>
invokeAll(Collection<?
extends Callable<T>> tasks,
long timeout,
TimeUnit unit)

Execute each callable task in the tasks collection and return a List of
Future instances that hold task statuses and results when all tasks
complete—a task completes through normal termination or by throwing
an exception—or the timeout (measured in unit time units) expires. Tasks
that are not completed at expiry are canceled. The List of Futures is in
the same sequential order as the sequence of tasks returned by tasks’
iterator. This method throws InterruptedException when it is interrupted
while waiting, in which case unfinished tasks are canceled. It also throws
NullPointerException when tasks, any of its elements, or unit is null; and
throws RejectedExecutionException when any one of tasks’ tasks cannot
be scheduled for execution.

(continued)

410 CHAPTER 10: Exploring Additional Utility APIs

Method Description

<T> T invokeAny(Collection<
? extends Callable<T>> tasks)

Execute the given tasks, returning the result of an arbitrary task that has
completed successfully (i.e., without throwing an exception), if any does.
On normal or exceptional return, tasks that have not completed are canceled.
This method throws InterruptedException when it is interrupted while
waiting, NullPointerException when tasks or any of its elements is null,
java.lang.IllegalArgumentException when tasks is empty,
java.util.concurrent.ExecutionException when no task completes
successfully, and RejectedExecutionException when none of the tasks can
be scheduled for execution.

<T> T invokeAny(Collection<?
extends Callable<T>> tasks,
long timeout, TimeUnit unit)

Execute the given tasks, returning the result of an arbitrary task that
has completed successfully (i.e., without throwing an exception), if any
does before the timeout (measured in unit time units) expires—tasks
that are not completed at expiry are canceled. On normal or exceptional
return, tasks that have not completed are canceled. This method
throws InterruptedException when it is interrupted while waiting;
NullPointerException when tasks, any of its elements, or unit is null;
IllegalArgumentException when tasks is empty; java.util.concurrent.
TimeoutException when the timeout elapses before any task successfully
completes; ExecutionException when no task completes successfully; and
RejectedExecutionException when none of the tasks can be scheduled
for execution.

boolean isShutdown() Return true when this executor has been shut down; otherwise, return false.

boolean isTerminated() Return true when all tasks have completed following shutdown;
otherwise, return false. This method will never return true prior to
shutdown() or shutdownNow() being called.

void shutdown() Initiate an orderly shutdown in which previously submitted tasks are
executed, but no new tasks will be accepted. Calling this method has
no effect after the executor has shut down. This method doesn’t wait for
previously submitted tasks to complete execution. Use awaitTermination()
when waiting is necessary.

List<Runnable> shutdownNow() Attempt to stop all actively executing tasks, halt the processing of waiting
tasks, and return a list of the tasks that were awaiting execution. There
are no guarantees beyond best-effort attempts to stop processing actively
executing tasks. For example, typical implementations will cancel via
Thread.interrupt(), so any task that fails to respond to interrupts may
never terminate.

(continued)

Table 10-1. (continued)

411CHAPTER 10: Exploring Additional Utility APIs

Table 10-1 refers to java.util.concurrent.TimeUnit, an enum that represents time durations
at given units of granularity: DAYS, HOURS, MICROSECONDS, MILLISECONDS, MINUTES, NANOSECONDS,
and SECONDS. Furthermore, TimeUnit declares methods for converting across units (e.g., long
toHours(long duration)) and for performing timing and delay operations (e.g., void sleep
(long timeout)) in these units.

Table 10-1 also refers to callable tasks, which are analogous to runnable tasks. Unlike Runnable,
whose void run() method cannot throw checked exceptions, Callable<V> declares a V call()
method that returns a value and which can throw checked exceptions because call() is declared
with a throws Exception clause.

Finally, Table 10-1 refers to the Future interface, which represents the result of an asynchronous
computation. Future, whose generic type is Future<V>, provides methods for canceling a task,
for returning a task’s value, and for determining whether or not the task has finished. Table 10-2
describes Future’s methods.

Method Description

<T> Future<T>
submit(Callable<T> task)

Submit a callable task for execution and return a Future instance representing
task’s pending results. The Future instance’s get() method returns task’s result
on successful completion. This method throws RejectedExecutionException
when task cannot be scheduled for execution and NullPointerException
when task is null. If you would like to immediately block while waiting for
a task to complete, you can use constructions of the form result =
exec.submit(aCallable).get();.

Future<?> submit(Runnable
task)

Submit a runnable task for execution and return a Future instance
representing task’s pending results. The Future instance’s get() method
returns task’s result on successful completion. This method throws
RejectedExecutionException when task cannot be scheduled for execution
and NullPointerException when task is null.

<T> Future<T> submit(Runnable
task, T result)

Submit a runnable task for execution and return a Future instance whose
get() method returns result on successful completion. This method
throws RejectedExecutionException when task cannot be scheduled for
execution and NullPointerException when task is null.

Table 10-1. (continued)

412 CHAPTER 10: Exploring Additional Utility APIs

Table 10-2. Future Methods

Method Description

boolean cancel(boolean
mayInterruptIfRunning)

Attempt to cancel execution of this task and return true when the task
was canceled; otherwise, return false (perhaps the task completed
normally before this method was called).

The cancellation attempt fails when the task has completed, has
already been canceled, or could not be canceled for some other
reason. If successful and this task had not started when cancel() was
called, the task should never run. If the task has already started, then
mayInterruptIfRunning determines whether (true) or not (false) the
thread executing this task should be interrupted in an attempt to stop
the task. After this method returns, subsequent calls to isDone()
always return true. Subsequent calls to isCancelled() always return
true when cancel() returns true.

V get() Wait if necessary for the task to complete and then return the result.
This method throws java.util.concurrent.CancellationException
when the task was canceled prior to this method being called,
ExecutionException when the task threw an exception, and
InterruptedException when the current thread was interrupted
while waiting.

V get(long timeout, TimeUnit unit) Wait at most timeout units (as specified by unit) for the task to
complete and then return the result (if available). This method throws
CancellationException when the task was canceled prior to this
method being called, ExecutionException when the task threw
an exception, InterruptedException when the current thread was
interrupted while waiting, and TimeoutException when this method’s
timeout value expires (the wait times out).

boolean isCancelled() Return true when this task was canceled before it completed normally;
otherwise, return false.

boolean isDone() Return true when this task completed; otherwise, return false.
Completion may be due to normal termination, an exception, or
cancellation—this method returns true in all of these cases.

Suppose you intend to write an application whose graphical user interface lets the user enter a word.
After the user enters the word, the application presents this word to several online dictionaries and
obtains each dictionary’s entry. These entries are subsequently displayed to the user.

Because online access can be slow, and because the user interface should remain responsive
(perhaps the user might want to end the application), you offload the “obtain word entries” task to
an executor that runs this task on a separate thread. The following example uses ExecutorService,
Callable, and Future to accomplish this objective:

ExecutorService executor = ...; // ... represents some executor creation
Future<String[]> taskFuture = executor.submit(new Callable<String[]>()

413CHAPTER 10: Exploring Additional Utility APIs

 {
 @Override
 public String[] call()
 {
 String[] entries = ...;
 // Access online dictionaries
 // with search word and populate
 // entries with their resulting
 // entries.
 return entries;
 }
 });
// Do stuff.
String entries = taskFuture.get();

After obtaining an executor in some manner (you will learn how shortly), the example’s main thread
submits a callable task to the executor. The submit() method immediately returns with a reference to
a Future object for controlling task execution and accessing results. The main thread ultimately calls
this object’s get() method to get these results.

Note The java.util.concurrent.ScheduledExecutorService interface extends
ExecutorService and describes an executor that lets you schedule tasks to run once or to execute
periodically after a given delay.

Although you could create your own Executor, ExecutorService, and ScheduledExecutorService
implementations (such as class DirectExecutor implements Executor { @Override public void
execute(Runnable r) { r.run(); } }—run executor directly on the calling thread), there is a simpler
alternative: java.util.concurrent.Executors.

Tip If you intend to create your own ExecutorService implementations, you will find it helpful to work
with the java.util.concurrent.AbstractExecutorService and
java.util.concurrent.FutureTask classes.

The Executors utility class declares several class methods that return instances of various
ExecutorService and ScheduledExecutorService implementations (and other kinds of instances).
This class’s static methods accomplish the following tasks:

Create and return an ExecutorService instance that is configured with
commonly used configuration settings.

Create and return a ScheduledExecutorService instance that is configured with
commonly used configuration settings.

414 CHAPTER 10: Exploring Additional Utility APIs

Create and return a “wrapped” ExecutorService or ScheduledExecutorService
instance that disables reconfiguration of the executor service by making
implementation-specific methods inaccessible.

Create and return a java.util.concurrent.ThreadFactory instance (i.e., an
instance of a class that implements the ThreadFactory interface) for creating
new threads.

Create and return a Callable instance out of other closure-like forms so that
it can be used in execution methods that require Callable arguments (e.g.,
ExecutorService’s submit(Callable) method). (Check out Wikipedia’s “Closure
(computer science)” entry [http://en.wikipedia.org/wiki/Closure_(computer_science)]
to learn about closures.)

For example, static ExecutorService newFixedThreadPool(int nThreads) creates a thread pool
that reuses a fixed number of threads operating off of a shared unbounded queue. At most, nThreads
threads are actively processing tasks. If additional tasks are submitted when all threads are active,
they wait in the queue for an available thread.

If any thread terminates because of a failure during execution before the executor shuts down, a
new thread will take its place when needed to execute subsequent tasks. The threads in the pool will
exist until the executor is explicitly shut down. This method throws IllegalArgumentException when
you pass zero or a negative value to nThreads.

Note Thread pools are used to eliminate the overhead from having to create a new thread for each
submitted task. Thread creation is not cheap, and having to create many threads could severely impact
an application’s performance.

You would commonly use executors, runnables, callables, and futures in file and network input/
output contexts. Performing a lengthy calculation offers another scenario where you could use these
types. For example, Listing 10-1 uses an executor, a callable, and a future in a calculation context of
Euler’s number e (2.71828…).

Listing 10-1. Calculating Euler’s Number e

import java.math.BigDecimal;
import java.math.MathContext;
import java.math.RoundingMode;

import java.util.concurrent.Callable;
import java.util.concurrent.ExecutionException;
import java.util.concurrent.ExecutorService;
import java.util.concurrent.Executors;
import java.util.concurrent.Future;

public class CalculateE
{
 final static int LASTITER = 17;

415CHAPTER 10: Exploring Additional Utility APIs

 public static void main(String[] args)
 {
 ExecutorService executor = Executors.newFixedThreadPool(1);
 Callable<BigDecimal> callable;
 callable = new Callable<BigDecimal>()
 {
 @Override
 public BigDecimal call()
 {
 MathContext mc = new MathContext(100,
 RoundingMode.HALF_UP);
 BigDecimal result = BigDecimal.ZERO;
 for (int i = 0; i <= LASTITER; i++)
 {
 BigDecimal factorial = factorial(new BigDecimal (i));
 BigDecimal res = BigDecimal.ONE.divide(factorial, mc);
 result = result.add(res);
 }
 return result;
 }

 public BigDecimal factorial(BigDecimal n)
 {
 if (n.equals(BigDecimal.ZERO))
 return BigDecimal.ONE;
 else
 return n.multiply(factorial(n.subtract(BigDecimal.ONE)));
 }
 };
 Future<BigDecimal> taskFuture = executor.submit(callable);
 try
 {
 while (!taskFuture.isDone())
 System.out.println("waiting");
 System.out.println(taskFuture.get());
 }
 catch(ExecutionException ee)
 {
 System.err.println("task threw an exception");
 System.err.println(ee);
 }
 catch(InterruptedException ie)
 {
 System.err.println("interrupted while waiting");
 }
 executor.shutdownNow();
 }
}

The main thread that executes Listing 10-1’s main() method first obtains an executor by calling
Executors’ newFixedThreadPool() method. It then instantiates an anonymous class that implements
the Callable interface and submits this task to the executor, receiving a Future instance in response.

416 CHAPTER 10: Exploring Additional Utility APIs

After submitting a task, a thread typically does some other work until it requires the task’s result.
I’ve chosen to simulate this work by having the main thread repeatedly output a waiting message
until the Future instance’s isDone() method returns true. (In a realistic application, I would avoid this
looping.) At this point, the main thread calls the instance’s get() method to obtain the result, which
is then output.

Caution It’s important to shut down the executor after it completes; otherwise, the application might
not end. The executor accomplishes this task by calling shutdownNow().

The callable’s call() method calculates e by evaluating the mathematical power series e = 1 / 0! + 1
/ 1! + 1 / 2! + …. This series can be evaluated by summing 1 / n!, where n ranges from 0 to infinity.

call() first instantiates java.math.MathContext to encapsulate a precision (number of digits) and
a rounding mode. I chose 100 as an upper limit on e’s precision, and I also chose HALF_UP as the
rounding mode.

Tip Increase the precision as well as LASTITER’s value to converge the series to a lengthier and more
accurate approximation of e.

call() next initializes a java.math.BigDecimal local variable named result to BigDecimal.ZERO. It
then enters a loop that calculates a factorial, divides BigDecimal.ONE by the factorial, and adds
the division result to result.

The divide() method takes the MathContext instance as its second argument to ensure that the division
doesn’t result in a nonterminating decimal expansion (the quotient result of the division cannot be
represented exactly—0.3333333…, for example), which throws java.lang.ArithmeticException
(to alert the caller to the fact that the quotient cannot be represented exactly), which the executor
rethrows as ExecutionException.

When you run this application, you should observe output similar to the following:

waiting
waiting
waiting
waiting
waiting
2.7182818284590450705160477958486050611789796352510326989007350040652250425048433140558879743442457
41730039454062711

417CHAPTER 10: Exploring Additional Utility APIs

Synchronizers
The Threads API offers synchronization primitives for synchronizing thread access to critical
sections. Because it can be difficult to correctly write synchronized code that is based on these
primitives, the concurrency-oriented utilities includes synchronizers, classes that facilitate common
forms of synchronization.

Four commonly used synchronizers are countdown latches, cyclic barriers, exchangers, and
semaphores:

A countdown latch lets one or more threads wait at a “gate” until another
thread opens this gate, at which point these other threads can continue. The
java.util.concurrent.CountDownLatch class implements this synchronizer.

A cyclic barrier lets a group of threads wait for each other to reach a
common barrier point. The java.util.concurrent.CyclicBarrier class
implements this synchronizer and makes use of the java.util.concurrent.
BrokenBarrierException class. CyclicBarrier instances are useful in
applications involving fixed size parties of threads that must occasionally wait
for each other. CyclicBarrier supports an optional Runnable known as a
barrier action, which runs once per barrier point after the last thread in the party
arrives but before any threads are released. This barrier action is useful for
updating shared state before any of the parties continue.

An exchanger lets a pair of threads exchange objects at a synchronization point.
The java.util.concurrent.Exchanger class implements this synchronizer.
Each thread presents some object on entry to Exchanger’s exchange() method,
matches with a partner thread, and receives its partner’s object on return.
Exchangers may be useful in applications such as genetic algorithms (see
http://en.wikipedia.org/wiki/Genetic_algorithm) and pipeline designs.

A semaphore maintains a set of permits for restricting the number of threads
that can access a limited resource. The java.util.concurrent.Semaphore
class implements this synchronizer. Each call to one of Semaphore’s acquire()
methods blocks if necessary until a permit is available and then takes it. Each
call to release() returns a permit, potentially releasing a blocking acquirer.
However, no actual permit objects are used; the Semaphore instance only keeps
a count of the number of available permits and acts accordingly. Semaphores are
often used to restrict the number of threads that can access some (physical or
logical) resource.

Consider the CountDownLatch class. Each of its instances is initialized to a nonzero count. A thread
calls one of CountDownLatch’s await() methods to block until the count reaches zero. Another thread
calls CountDownLatch’s countDown() method to decrement the count. Once the count reaches zero,
the waiting threads are allowed to continue.

418 CHAPTER 10: Exploring Additional Utility APIs

You can use CountDownLatch to ensure that threads start working at approximately the same time.
For example, check out Listing 10-2.

Listing 10-2. Using a Countdown Latch to Trigger a Coordinated Start

import java.util.concurrent.CountDownLatch;
import java.util.concurrent.ExecutorService;
import java.util.concurrent.Executors;

public class CountDownLatchDemo
{
 final static int NTHREADS = 3;

 public static void main(String[] args)
 {
 final CountDownLatch startSignal = new CountDownLatch(1);
 final CountDownLatch doneSignal = new CountDownLatch(NTHREADS);
 Runnable r = new Runnable()
 {
 @Override
 public void run()
 {
 try
 {
 report("entered run()");
 startSignal.await(); // wait until told to proceed
 report("doing work");
 Thread.sleep((int) (Math.random() * 1000));
 doneSignal.countDown(); // reduce count on which
 // main thread is waiting
 }
 catch (InterruptedException ie)
 {
 System.err.println(ie);
 }
 }

 void report(String s)
 {
 System.out.println(System.currentTimeMillis() + ": " +
 Thread.currentThread() + ": " + s);
 }
 };

Note After waiting threads are released, subsequent calls to await() return immediately. Also, because
the count cannot be reset, a CountDownLatch instance can be used only once. When repeated use is a
requirement, use the CyclicBarrier class instead.

419CHAPTER 10: Exploring Additional Utility APIs

 ExecutorService executor = Executors.newFixedThreadPool(NTHREADS);
 for (int i = 0; i < NTHREADS; i++)
 executor.execute(r);
 try
 {
 System.out.println("main thread doing something");
 Thread.sleep(1000); // sleep for 1 second
 startSignal.countDown(); // let all threads proceed
 System.out.println("main thread doing something else");
 doneSignal.await(); // wait for all threads to finish
 executor.shutdownNow();
 }
 catch (InterruptedException ie)
 {
 System.err.println(ie);
 }
 }
}

Listing 10-2’s main thread first creates a pair of countdown latches. The startSignal countdown
latch prevents any worker thread from proceeding until the main thread is ready for them to proceed.
The doneSignal countdown latch causes the main thread to wait until all worker threads have
finished.

The main thread next creates a runnable whose run() method is executed by subsequently created
worker threads.

The run() method first outputs an initial message and then calls startSignal’s await() method
to wait for this countdown latch’s count to read zero before it can proceed. Once this happens,
run() outputs a message that indicates work being done and sleeps for a random period of time
(0 through 999 milliseconds) to simulate this work.

At this point, run() invokes doneSignal’s countDown() method to decrement this latch’s count. Once
this count reaches zero, the main thread waiting on this signal will continue, shutting down the
executor and terminating the application.

After creating the runnable, the main thread obtains an executor that’s based on a thread pool of
NTHREADS threads and then calls the executor’s execute() method NTHREADS times, passing the
runnable to each of the NTHREADS pool-based threads. This action starts the worker threads, which
enter run().

Next, the main thread outputs a message and sleeps for one second to simulate doing additional
work (giving all the worker threads a chance to have entered run() and invoke startSignal.await()),
invokes startSignal’s countDown() method to cause the worker threads to start running, outputs a
message to indicate that it is doing something else, and invokes doneSignal’s await() method to
wait for this countdown latch’s count to reach zero before it can proceed.

When you run this application, you will observe output similar to the following:

main thread doing something
1353265795934: Thread[pool-1-thread-3,5,main]: entered run()
1353265795934: Thread[pool-1-thread-2,5,main]: entered run()
1353265795934: Thread[pool-1-thread-1,5,main]: entered run()

420 CHAPTER 10: Exploring Additional Utility APIs

main thread doing something else
1353265796948: Thread[pool-1-thread-1,5,main]: doing work
1353265796948: Thread[pool-1-thread-2,5,main]: doing work
1353265796948: Thread[pool-1-thread-3,5,main]: doing work

Note For brevity, I’ve avoided examples that demonstrate CyclicBarrier, Exchanger, and Semaphore.
Instead, I refer you to Java documentation for these classes. Each class’s documentation provides
an example that shows you how to use the class.

Concurrent Collections
The java.util.concurrent package includes several interfaces and classes that are
concurrency-oriented extensions to the Collections Framework (see Chapter 9):

 BlockingDeque is a subinterface of BlockingQueue and java.util.Deque that
also supports blocking operations that wait for the deque to become nonempty
before retrieving an element and wait for space to become available in the
deque before storing an element. The LinkedBlockingDeque class implements
this interface.

 BlockingQueue is a subinterface of java.util.Queue that also supports blocking
operations that wait for the queue to become nonempty before retrieving an
element and wait for space to become available in the queue before storing an
element. Each of the ArrayBlockingQueue, DelayQueue, LinkedBlockingDeque,
LinkedBlockingQueue, PriorityBlockingQueue, and SynchronousQueue classes
implements this interface.

 ConcurrentMap is a subinterface of java.util.Map that declares
additional atomic putIfAbsent(), remove(), and replace() methods. The
ConcurrentHashMap class (the concurrent equivalent of java.util.HashMap) and
the ConcurrentSkipListMap class implement this interface.

 ConcurrentNavigableMap is a subinterface of ConcurrentMap and java.util.
NavigableMap. The ConcurrentSkipListMap class implements this interface.

 ConcurrentLinkedQueue is an unbounded, thread-safe FIFO implementation of
the Queue interface.

 ConcurrentSkipListSet is a scalable concurrent NavigableSet implementation.

 CopyOnWriteArrayList is a thread-safe variant of java.util.ArrayList in which
all mutative (nonimmutable) operations (add, set, and so on) are implemented by
making a fresh copy of the underlying array.

 CopyOnWriteArraySet is a java.util.Set implementation that uses an internal
CopyOnWriteArrayList instance for all its operations.

Listing 10-3 uses BlockingQueue and ArrayBlockingQueue in an alternative to Listing 8-14’s
producer-consumer application (PC).

421CHAPTER 10: Exploring Additional Utility APIs

Listing 10-3. The Blocking Queue Equivalent of Listing 8-14’s PC Application

import java.util.concurrent.ArrayBlockingQueue;
import java.util.concurrent.BlockingQueue;
import java.util.concurrent.ExecutorService;
import java.util.concurrent.Executors;

public class PC
{
 public static void main(String[] args)
 {
 final BlockingQueue<Character> bq;
 bq = new ArrayBlockingQueue<Character>(26);
 final ExecutorService executor = Executors.newFixedThreadPool(2);
 Runnable producer;
 producer = new Runnable()
 {
 @Override
 public void run()
 {
 for (char ch = 'A'; ch <= 'Z'; ch++)
 {
 try
 {
 bq.put(ch);
 System.out.println(ch + " produced by producer.");
 }
 catch (InterruptedException ie)
 {
 assert false;
 }
 }
 }
 };
 executor.execute(producer);
 Runnable consumer;
 consumer = new Runnable()
 {
 @Override
 public void run()
 {
 char ch = '\0';
 do
 {
 try
 {
 ch = bq.take();
 System.out.println(ch + " consumed by consumer.");
 }

422 CHAPTER 10: Exploring Additional Utility APIs

 catch (InterruptedException ie)
 {
 assert false;
 }
 }
 while (ch != 'Z');
 executor.shutdownNow();
 }
 };
 executor.execute(consumer);
 }
}

Listing 10-3 uses BlockingQueue’s put() and take() methods, respectively, to put an object on the
blocking queue and to remove an object from the blocking queue. put() blocks when there is no
room to put an object; take() blocks when the queue is empty.

Although BlockingQueue ensures that a character is never consumed before it is produced, this
application’s output may indicate otherwise. For example, here is a portion of the output from
one run:

Y consumed by consumer.
Y produced by producer.
Z consumed by consumer.
Z produced by producer.

Chapter 8’s PC application overcame this incorrect output order by introducing an extra layer
of synchronization around setSharedChar()/System.out.println() and an extra layer of
synchronization around getSharedChar()/System.out.println(). In the next section I show you an
alternative in the form of locks.

Locks
The java.util.concurrent.locks package provides interfaces and classes for locking and waiting
for conditions in a manner that is distinct from built-in synchronization and monitors. This package’s
most basic lock interface is Lock, which provides more extensive locking operations than can be
achieved via the synchronized reserved word. Lock also supports a wait/notification mechanism
through associated Condition objects.

Note The biggest advantage of Lock objects over the implicit locks that are obtained when threads
enter critical sections (controlled via the synchronized reserved word) is their ability to back out
of an attempt to acquire a lock. For example, the tryLock() method backs out when the lock is not
available immediately or before a timeout expires (if specified). Also, the lockInterruptibly()
method backs out when another thread sends an interrupt before the lock is acquired.

423CHAPTER 10: Exploring Additional Utility APIs

ReentrantLock implements Lock, describing a reentrant mutual exclusion Lock implementation with
the same basic behavior and semantics as the implicit monitor lock accessed via synchronized
but with extended capabilities.

Listing 10-4 demonstrates Lock and ReentrantLock in a version of Listing 10-3 that ensures that
the output is never shown in incorrect order (a consumed message appearing before a produced
message).

Listing 10-4. Achieving Synchronization in Terms of Locks

import java.util.concurrent.ArrayBlockingQueue;
import java.util.concurrent.BlockingQueue;
import java.util.concurrent.ExecutorService;
import java.util.concurrent.Executors;

import java.util.concurrent.locks.Lock;
import java.util.concurrent.locks.ReentrantLock;

public class PC
{
 public static void main(String[] args)
 {
 final Lock lock = new ReentrantLock();
 final BlockingQueue<Character> bq;
 bq = new ArrayBlockingQueue<Character>(26);
 final ExecutorService executor = Executors.newFixedThreadPool(2);
 Runnable producer;
 producer = new Runnable()
 {
 @Override
 public void run()
 {
 for (char ch = 'A'; ch <= 'Z'; ch++)
 {
 try
 {
 lock.lock();
 try
 {
 while (!bq.offer(ch))
 {
 lock.unlock();
 Thread.sleep(50);
 lock.lock();
 }
 System.out.println(ch + " produced by producer.");
 }
 catch (InterruptedException ie)
 {
 assert false;
 }
 }

424 CHAPTER 10: Exploring Additional Utility APIs

 finally
 {
 lock.unlock();
 }
 }
 }
 };
 executor.execute(producer);
 Runnable consumer;
 consumer = new Runnable()
 {
 @Override
 public void run()
 {
 char ch = '\0';
 do
 {
 try
 {
 lock.lock();
 try
 {
 Character c;
 while ((c = bq.poll()) == null)
 {
 lock.unlock();
 Thread.sleep(50);
 lock.lock();
 }
 ch = c; // unboxing behind the scenes
 System.out.println(ch + " consumed by consumer.");
 }
 catch (InterruptedException ie)
 {
 assert false;
 }
 }
 finally
 {
 lock.unlock();
 }
 }
 while (ch != 'Z');
 executor.shutdownNow();
 }
 };
 executor.execute(consumer);
 }
}

425CHAPTER 10: Exploring Additional Utility APIs

Listing 10-4 uses Lock’s lock() and unlock() methods to obtain and release a lock. When a thread
calls lock() and the lock is unavailable, the thread is disabled (and cannot be scheduled) until the
lock becomes available.

This listing also uses BlockingQueue’s offer() method instead of put() to store an object in the
blocking queue and its poll() method instead of take() to retrieve an object from the queue. These
alternative methods are used because they don’t block.

If I had used put() and take(), this application would have deadlocked in the following scenario:

1. The consumer thread acquires the lock via its lock.lock() call.

2. The producer thread attempts to acquire the lock via its lock.lock() call and
is disabled because the consumer thread has already acquired the lock.

3. The consumer thread calls take() to obtain the next java.lang.Character
object from the queue.

4. Because the queue is empty, the consumer thread must wait.

5. The consumer thread doesn’t give up the lock that the producer thread
requires before waiting, so the producer thread also continues to wait.

Note If I had access to the private lock used by BlockingQueue implementations, I would have used
put() and take() and also would have called Lock’s lock() and unlock() methods on that lock.
The resulting application would then have been identical (from a lock perspective) to Listing 8-14’s
PC application, which used synchronized twice for each of the producer and consumer threads.

Run this application and you’ll discover that, as with Listing 8-14’s PC application, it never outputs a
consuming message before a producing message for the same item.

Atomic Variables
The java.util.concurrent.atomic package provides Atomic-prefixed classes (such as AtomicLong)
that support lock-free, thread-safe operations on single variables. Each class declares methods such
as get() and set() to read and write this variable without the need for external synchronization.

Listing 8-10 declared a small utility class named ID for returning unique long integer identifiers via
ID’s getNextID() class method. Because this method wasn’t synchronized, multiple threads could
obtain the same identifier. Listing 10-5 fixes this problem by including reserved word synchronized in
the method header.

426 CHAPTER 10: Exploring Additional Utility APIs

Listing 10-5. Returning Unique Identifiers in a Thread-Safe Manner via synchronized

class ID
{
 private static long nextID = 0;
 static synchronized long getNextID()
 {
 return nextID++;
 }
}

Although synchronized is appropriate for this class, excessive use of this reserved word in more
complex classes can lead to deadlock, starvation, or other problems. Listing 10-6 shows you how to
avoid these assaults on a concurrent application’s liveness (the ability to execute in a timely manner)
by replacing synchronized with an atomic variable.

Listing 10-6. Returning Unique IDs in a Thread-Safe Manner via AtomicLong

import java.util.concurrent.atomic.AtomicLong;

class ID
{
 private static AtomicLong nextID = new AtomicLong(0);
 static long getNextID()
 {
 return nextID.getAndIncrement();
 }
}

In Listing 10-6, I’ve converted nextID from a long to an AtomicLong instance, initializing this object
to 0. I’ve also refactored the getNextID() method to call AtomicLong’s getAndIncrement() method,
which increments the AtomicLong instance’s internal long integer variable by 1 and returns the
previous value in one indivisible step.

Exploring the Date Class
In Chapter 8 I introduced you to the java.lang.System class’s long currentTimeMillis() class
method, which returns the number of milliseconds since January 1, 1970 00:00:00 UTC. Because
Unix was officially released on this date, it is forever known as the Unix epoch.

The java.util.Date class describes dates in terms of these long integers. Although much of this class
has been deprecated, portions of Date are still useful. Table 10-3 describes the non-deprecated part
of the Date class.

427CHAPTER 10: Exploring Additional Utility APIs

Table 10-3. Date Constructors and Methods

Method Description

Date() Allocate a Date object and initialize it to the current time by calling
System.currentTimeMillis().

Date(long date) Allocate a Date object and initialize it to the time represented by date
milliseconds. A negative value indicates a time before the epoch, 0 indicates
the epoch, and a positive value indicates a time after the epoch.

boolean after(Date date) Return true when this date occurs after date. This method throws
NullPointerException when date is null.

boolean before(Date date) Return true when this date occurs before date. This method throws
NullPointerException when date is null.

Object clone() Return a copy of this object.

int compareTo(Date date) Compare this date with date. Return 0 when this date equals date, a negative
value when this date comes before date, and a positive value when this date
comes after date. This method throws NullPointerException when date
is null.

boolean equals(Object obj) Compare this date with the Date object represented by obj. Return true if and
only if obj is not null and is a Date object that represents the same point in
time (to the millisecond) as this date.

long getTime() Return the number of milliseconds that must elapse before the epoch
(a negative value) or have elapsed since the epoch (a positive value).

int hashCode() Return this date’s hash code. The result is the exclusive OR of the two halves
of the long integer value returned by getTime(). That is, the hash code is the
value of expression (int) (this.getTime() ^ (this.getTime() >>> 32)).

void setTime(long time) Set this date to represent the point in time specified by time milliseconds
(a negative value refers to before the epoch; a positive value refers to after
the epoch).

String toString() Return a java.lang.String object containing this date’s representation as
dow mon dd hh:mm:ss zzz yyyy, where dow is the day of the week (Sun, Mon,
Tue, Wed, Thu, Fri, Sat); mon is the month (Jan, Feb, Mar, Apr, May, Jun, Jul,
Aug, Sep, Oct, Nov, Dec); dd is the two-decimal digit day of the month
(01 through 31); hh is the two-decimal digit hour of the day (00 through 23);
mm is the two-decimal digit minute within the hour (00 through 59); ss is the
two-decimal digit second within the minute (00 through 61, where 60 and 61
account for leap seconds); zzz is the (possibly empty) time zone (and may
reflect daylight saving time); and yyyy is the four-decimal digit year.

428 CHAPTER 10: Exploring Additional Utility APIs

Listing 10-7 provides a small demonstration of the Date class.

Listing 10-7. Demonstrating the Date Class

import java.util.Date;

public class DateDemo
{
 public static void main(String[] args)
 {
 Date now = new Date();
 System.out.println(now);
 Date later = new Date(now.getTime() + 86400);
 System.out.println(later);
 System.out.println(now.after(later));
 System.out.println(now.before(later));
 }
}

Listing 10-7’s main() method creates a pair of Date objects (now and later) and outputs their dates,
formatted according to Date’s implicitly called toString() method. main() then demonstrates
after() and before(), proving that now comes before later, which is in the future.

When you run this application, it generates output similar to the following:

Wed Nov 21 13:21:20 CST 2012
Wed Nov 21 13:22:46 CST 2012
false
true

Exploring the Formatter Class
The C language’s standard library offers a powerful data-formatting capability via printf() and
related functions. For example, printf("%05d %x", 2380, 2830); formats integer literal 2380 as a
decimal character sequence and integer literal 2830 as a hexadecimal character sequence. Format
specifier %05d tells printf() to fit the formatted result of 2380 into a five-character field with leading
zeros for values smaller than this width. Format specifier %x tells printf() to create the hexadecimal
equivalent of 2830 and use lowercase for hexadecimal digits A-F. The resulting 02380 b0e character
sequence is output to the standard output device.

Java 5 introduced the java.util.Formatter class as an interpreter for printf()-style format strings.
This class provides support for layout justification and alignment; common formats for numeric,
string, and date/time data; and more. Commonly used Java types (e.g., byte and BigDecimal) are
supported. Also, limited formatting customization for arbitrary user-defined types is provided through
the associated java.util.Formattable interface and java.util.FormattableFlags class.

Formatter declares several constructors for creating Formatter objects. These constructors give
you the opportunity to specify where you want formatted output to be sent. For example, the
Formatter() constructor writes formatted output to an internal java.lang.StringBuilder instance,
whereas Formatter(OutputStream os) writes formatted output to the specified output stream—I
discuss output streams in Chapter 11. You can access the destination by calling Formatter’s
Appendable out() method.

429CHAPTER 10: Exploring Additional Utility APIs

After creating a Formatter object, you would call a format() method to format a varying number of
values. For example, Formatter format(String format, Object . . . args) formats the args array
according to the string of format specifiers passed to the format parameter. This method throws
java.util.IllegalFormatException when a format string contains an illegal syntax, a format
specifier that’s incompatible with the given arguments, insufficient arguments given the format string,
or other illegal conditions. It throws java.util.FormatterClosedException when this formatter has
been closed by calling its void close() method. A reference to this Formatter instance is returned
so that you can chain format() method calls together.

Listing 10-8 provides a simple demonstration of Formatter.

Listing 10-8. Demonstrating with the Formatter Class

import java.util.Formatter;

public class FormatterDemo
{
 public static void main(String[] args)
 {
 Formatter formatter = new Formatter();
 formatter.format("%05d %x", 2380, 2830);
 System.out.println(formatter.toString()); // Output: 02380 b0e
 }
}

Listing 10-8’s main() method first creates a Formatter object whose destination is a StringBuilder
instance. It then invokes format() to format the second and third format() arguments according to
the first argument and sends the formatted character sequence to the StringBuilder appendable.
Finally, it invokes Formatter’s String toString() method to return this appendable’s content,
which it subsequently outputs. (I could have specified System.out.println(formatter); instead
because the System.out.print() and System.out.println() methods automatically call an object’s
toString() method to return a string representation of that object.)

For more information on Formatter and its supported format specifiers, I refer you to Formatter’s
Java documentation. You might also want to check out Oracle’s documentation on the Formattable
interface and FormattableFlags class to learn about customizing Formatter.

Note The java.lang.Appendable interface describes an object to which char values and
character sequences can be appended. Classes whose instances are to receive formatted output
(via the Formatter class) implement Appendable. It declares methods such as Appendable
append(char c)—append c’s character to this appendable. This method throws
java.io.IOException when an I/O error occurs.

430 CHAPTER 10: Exploring Additional Utility APIs

Exploring the Random Class
In Chapter 7 I formally introduced you to the java.lang.Math class’s random() method. If you were
to investigate this method’s source code from the perspective of Java 7, you would encounter the
following implementation:

private static Random randomNumberGenerator;

private static synchronized Random initRNG() {
 Random rnd = randomNumberGenerator;
 return (rnd == null) ? (randomNumberGenerator = new Random()) : rnd;
}

public static double random() {
 Random rnd = randomNumberGenerator;
 if (rnd == null) rnd = initRNG();
 return rnd.nextDouble();
}

This code excerpt shows you that Math’s random() method is implemented in terms of a class named
Random, which is located in the java.util package. Random instances generate sequences of random
numbers and are known as random number generators.

Note These numbers are not truly random because they are generated from a mathematical algorithm.
As a result, they are often referred to as pseudorandom numbers. However, it is often convenient
to drop the “pseudo” prefix and refer to them as random numbers. Also, delaying object creation
(new Random(), for example) until the first time the object is needed is known as lazy initialization.

Random generates its sequence of random numbers by starting with a special 48-bit value that is
known as a seed. This value is subsequently modified by a mathematical algorithm, which is known
as a linear congruential generator.

Note Check out Wikipedia’s “Linear congruential generator” entry
(http://en.wikipedia.org/wiki/Linear_congruential_generator) to learn about this algorithm
for generating random numbers.

Random declares a pair of constructors:

 Random() creates a new random number generator. This constructor sets the
seed of the random number generator to a value that is very likely to be distinct
from any other call to this constructor.

 Random(long seed) creates a new random number generator using its seed argument.
This argument is the initial value of the internal state of the random number
generator, which is maintained by the protected int next(int bits) method.

431CHAPTER 10: Exploring Additional Utility APIs

Random(long seed) calls the void setSeed(long seed) method to set the seed to the specified value.
If you call setSeed() after instantiating Random, the random number generator is reset to the state
that it was in immediately after calling Random(long seed).

The previous code excerpt demonstrates Random’s double nextDouble() method, which returns the
next pseudorandom, uniformly distributed double precision floating-point value between 0.0 and 1.0
in this random number generator’s sequence.

Random also declares the following methods for returning other kinds of values:

 boolean nextBoolean() returns the next pseudorandom, uniformly distributed
Boolean value in this random number generator’s sequence. Values true and
false are generated with (approximately) equal probability.

 void nextBytes(byte[] bytes) generates pseudorandom byte integer values
and stores them in the bytes array. The number of generated bytes is equal to
the length of the bytes array.

 float nextFloat() returns the next pseudorandom, uniformly distributed
floating-point value between 0.0 and 1.0 in this random number generator’s
sequence.

 double nextGaussian() returns the next pseudorandom, Gaussian (“normally”)
distributed double precision floating-point value with mean 0.0 and standard
deviation 1.0 in this random number generator’s sequence.

 int nextInt() returns the next pseudorandom, uniformly distributed integer
value in this random number generator’s sequence. All 4,294,967,296 possible
integer values are generated with (approximately) equal probability.

 int nextInt(int n) returns a pseudorandom, uniformly distributed integer value
between 0 (inclusive) and the specified value (exclusive) drawn from this random
number generator’s sequence. All n possible integer values are generated with
(approximately) equal probability.

 long nextLong() returns the next pseudorandom, uniformly distributed long
integer value in this random number generator’s sequence. Because Random
uses a seed with only 48 bits, this method will not return all possible 64-bit long
integer values.

Because Random() doesn’t take a seed argument, the resulting random number generator always
generates a different sequence of random numbers. This explains why Math.random() generates a
different sequence each time an application starts running.

Tip Random(long seed) gives you the opportunity to reuse the same seed value, allowing the same
sequence of random numbers to be generated. You will find this capability useful when debugging
a faulty application that involves random numbers.

432 CHAPTER 10: Exploring Additional Utility APIs

The java.util.Collections class declares a pair of shuffle() methods for shuffling the contents of
a list. In contrast, the java.util.Arrays class doesn’t declare a shuffle() method for shuffling the
contents of an array. Listing 10-9 addresses this omission.

Listing 10-9. Shuffling an Array of Integers

import java.util.Random;

public class Shuffler
{
 public static void main(String[] args)
 {
 Random r = new Random();
 int[] array = { 0, 1, 2, 3, 4, 5, 6, 7, 8, 9 };
 for (int i = 0; i < array.length; i++)
 {
 int n = r.nextInt(array.length);
 // swap array[i] with array[n]
 int temp = array[i];
 array[i] = array[n];
 array[n] = temp;
 }
 for (int i = 0; i < array.length; i++)
 System.out.print(array[i] + " ");
 System.out.println();
 }
}

Listing 10-9 presents a simple recipe for shuffling an array of integers—this recipe could be generalized.
For each array entry from the start of the array to the end of the array, this entry is swapped with
another entry whose index is chosen by int nextInt(int n).

When you run this application, you will observe a shuffled sequence of integers that is similar to the
following sequence that I observed:

9 0 5 6 2 3 8 4 1 7

Exploring the Scanner Class
The C language’s standard library offers a scanf() function for parsing an input stream of characters
into integers, floating-point values, and so on. Not to be outdone, Java 5 introduced the
java.util.Scanner class to parse these characters into primitive types, strings, and big integers/
decimals with the help of regular expressions (discussed in Chapter 13).

Scanner declares several constructors for scanning content originating from diverse sources. For
example, Scanner(InputStream source) creates a scanner for scanning the specified input stream,
whereas Scanner(String source) creates a scanner for scanning the specified string.

A Scanner instance uses a delimiter pattern, which matches whitespace by default, to break its input
into discrete values. After creating this instance, you can call one of the “hasNext” methods to verify

433CHAPTER 10: Exploring Additional Utility APIs

that an anticipated character sequence is present for scanning. For example, you could call boolean
hasNextDouble() to determine whether or not the next sequence of characters can be scanned into
a double precision floating-point value.

When the value is present, you would call the appropriate “next” method to scan the value. For
example, you would call double nextDouble() to scan this sequence and return a double containing
its value.

The following example shows you how to create a scanner for scanning values from standard input
and then scanning an integer followed by a double precision floating-point value:

Scanner sc = new Scanner(System.in);
if (sc.hasNextInt())
 i = sc.nextInt();
if (sc.hasNextDouble())
 d = sc.nextDouble();

Listing 10-10 presents a more realistic (menu-oriented) example.

Listing 10-10. Scanning Input in a Menu Context

import java.util.Scanner;

public class ScannerDemo
{
 public static void main(String[] args)
 {
 Scanner scanner = new Scanner(System.in);
 while (true)
 {
 System.out.printf("%nMenu Options%n%n");
 System.out.println("1: Frequency Count");
 System.out.printf("2: Quit%n%n");
 System.out.print("Enter your selection (1 or 2): ");
 int selection = scanner.nextInt();
 scanner.nextLine();
 if (selection == 1)
 {
 System.out.printf("%nEnter sentence: ");
 String sentence = scanner.nextLine();
 System.out.print("Enter index: ");
 int index = scanner.nextInt();
 int count = 0;
 for (int i = 0; i < sentence.length(); i++)
 if (sentence.charAt(i) == sentence.charAt(index))
 count++;
 System.out.printf("Count of [%c] in [%s]: %d%n",
 sentence.charAt(index), sentence, count);
 }

434 CHAPTER 10: Exploring Additional Utility APIs

 else
 if (selection == 2)
 break;
 }
 }
}

Listing 10-10’s main() method creates a scanner that scans input from the standard input stream
and then enters a while loop. Each of the loop iterations presents a two-option menu and prompts
the user to select one of these options.

Option selection is made via a scanner.nextInt() method call. Because nextInt() doesn’t consume
the line terminator following the selection number, a call to Scanner’s void nextLine() method is
made to skip over the line terminator so as not to affect sentence entry (when option 1 is chosen).

If the user selected option 1, the user is prompted to enter a sentence along with the zero-based
index of one of the sentence characters. The sentence is then iterated over and all occurrences of
the indexed character are tallied. This count is subsequently output.

If the user selected option 2, the loop is broken and the application ends.

Compile Listing 10-10 (javac ScannerDemo.java) and run this application (java ScannerDemo). The
following output reveals one run of this application:

Menu Options

1: Frequency Count
2: Quit

Enter your selection (1 or 2): 1

Enter sentence: This is a test.
Enter index: 2
Count of [i] in [This is a test.]: 2

Menu Options

1: Frequency Count
2: Quit

Enter your selection (1 or 2): 2

To learn more about Scanner, check out this class’s Java documentation.

Exploring the ZIP and JAR APIs
You might need to develop an application that must create a new ZIP file and store files in that file
or extract content from an existing ZIP file. Perhaps you might need to perform either task in the
context of a JAR file, which you might think of as a ZIP file with a .jar file extension. This section
introduces you to the APIs for working with ZIP and JAR files.

435CHAPTER 10: Exploring Additional Utility APIs

Exploring the ZIP API
The java.util.zip package provides classes for working with ZIP files, which are also known as
ZIP archives. Each ZIP archive stores files that are typically compressed, and each stored file is
known as a ZIP entry. You can use these classes to write ZIP entries to or read ZIP entries from a
ZIP archive in the standard ZIP and GZIP (GNU ZIP) file formats, compress and decompress data via
the DEFLATE compression algorithm that these formats use, and compute the CRC-32 and Adler-32
checksums of arbitrary input streams.

Note See Wikipedia’s “Cyclic redundancy check” (http://en.wikipedia.org/wiki/CRC-32) and
“Adler-32” (http://en.wikipedia.org/wiki/Adler-32) entries to learn about CRC-32 and Adler-32.

The ZipEntry class represents a ZIP entry. You must instantiate this class to write new entries to a
ZIP archive or read entries from an existing ZIP archive. ZipEntry offers two constructors:

 ZipEntry(String name) creates a new ZIP entry with the specified name.
This constructor throws NullPointerException when name is null and
IllegalArgumentException when the length of the string assigned to name
exceeds 65,535 bytes.

 ZipEntry(ZipEntry ze) creates a new ZIP entry with values taken from existing
ZIP entry ze.

Additionally, ZipEntry declares several methods including those presented in the following list:

 String getComment() returns the entry’s comment string or null when there is no
comment string. A comment provides user-specific information associated with
an entry.

 long getCompressedSize() returns the size of the entry’s compressed data or −1
when not specified. The compressed size is the same as the uncompressed size
when the entry data is stored without compression.

 long getCrc() returns the CRC-32 checksum of the entry’s uncompressed data
or −1 when the checksum has not been specified.

 int getMethod() returns the compression method used to compress the entry’s
data. This value is one of ZipEntry’s DEFLATED or STORED (not compressed)
constants or is −1 when the compression method has not been specified.

 String getName() returns the entry’s name.

 long getSize() returns the uncompressed size of the entry’s data or −1 when
the size has not been specified.

 boolean isDirectory() returns true when the entry describes a directory;
otherwise, this method returns false.

436 CHAPTER 10: Exploring Additional Utility APIs

 void setComment(String comment) sets the entry’s comment string to comment.
A comment string is optional. When specified, the maximum length should be
65,535 bytes; remaining bytes are truncated.

 void setCompressedSize(long csize) sets the size (in bytes) of the entry’s
compressed data to csize.

 void setCrc(long crc) sets the CRC-32 checksum of the entry’s
uncompressed data to crc. This method throws IllegalArgumentException
when crc’s value is less than 0 or greater than 0xFFFFFFFF.

 void setMethod(int method) sets the compression method to method. This
method throws IllegalArgumentException when any value other than
ZipEntry.DEFLATED (compress data file at a specific level) or ZipEntry.STORED
(don’t compress) is passed to method.

 void setSize(long size) sets the uncompressed size of the entry’s data to
size. This method throws IllegalArgumentException when size’s value is
less than 0 or the value is greater than 0xFFFFFFFF when “ZIP64”
(http://en.wikipedia.org/wiki/Zip_(file_format)#ZIP64) isn’t supported.

You will shortly learn how to work with this class.

Writing Files to a ZIP Archive
Use the ZipOutputStream class to write ZIP entries (compressed as well as uncompressed) to a
ZIP archive.

Note Use the GZIPOutputStream class to create a GZIP archive and write files to this archive in the
GZIP format. For brevity, I don’t discuss this class.

ZipOutputStream declares the ZipOutputStream(OutputStream out) constructor for creating a ZIP
output stream. (You will learn about output streams in Chapter 11.) Although ZipEntry instances are
conceptually written to this stream, it’s really the data described by these instances that is written.

The following example instantiates ZipOutputStream with an underlying file output stream:

ZipOutputStream zos = new ZipOutputStream(new FileOutputStream("archive.zip"));

ZipOutputStream also declares several methods and inherits additional methods from its
DeflaterOutputStream superclass. You minimally work with the following methods:

 void close() closes the ZIP output stream along with the underlying output
stream.

 void closeEntry() closes the current ZIP entry and positions the stream for
writing the next entry.

437CHAPTER 10: Exploring Additional Utility APIs

 void putNextEntry(ZipEntry e) begins writing a new ZIP entry and positions
the stream to the start of the entry data. The current entry is closed when still
active (i.e., when closeEntry() was not invoked on the previous entry).

 void write(byte[] b, int off, int len) writes len bytes starting at offset off
from buffer b to the current ZIP entry. This method will block until all the bytes
are written.

Each method throws IOException when a generic I/O error has occurred and ZipException (which
subclasses IOException) when a ZIP-specific I/O error has occurred.

Listing 10-11 presents a ZipCreate application that shows you how to minimally use
ZipOutputStream and ZipEntry to store assorted files in a new ZIP archive.

Listing 10-11. Creating a ZIP Archive and Storing Specified Files in That Archive

import java.io.FileInputStream;
import java.io.FileOutputStream;
import java.io.IOException;

import java.util.zip.ZipEntry;
import java.util.zip.ZipOutputStream;

public class ZipCreate
{
 public static void main(String[] args) throws IOException
 {
 if (args.length < 2)
 {
 System.err.println("usage: java ZipCreate ZIPfile infile1 "+
 "infile2 ...");
 return;
 }
 ZipOutputStream zos = null;
 try
 {
 zos = new ZipOutputStream(new FileOutputStream(args[0]));
 byte[] buf = new byte[1024];
 for (String filename: args)
 {
 if (filename.equals(args[0]))
 continue;
 FileInputStream fis = null;
 try
 {
 fis = new FileInputStream(filename);
 zos.putNextEntry(new ZipEntry(filename));
 int len;
 while ((len = fis.read(buf)) > 0)
 zos.write(buf, 0, len);
 }

438 CHAPTER 10: Exploring Additional Utility APIs

 catch (IOException ioe)
 {
 System.err.println("I/O error: " + ioe.getMessage());
 }
 finally
 {
 if (fis != null)
 try
 {
 fis.close();
 }
 catch (IOException ioe)
 {
 assert false; // shouldn't happen in this context
 }
 }
 zos.closeEntry();
 }
 }
 catch (IOException ioe)
 {
 System.err.println("I/O error: " + ioe.getMessage());
 }
 finally
 {
 if (zos != null)
 try
 {
 zos.close();
 }
 catch (IOException ioe)
 {
 assert false; // shouldn't happen in this context
 }
 }
 }
}

Listing 10-11 is fairly straightforward. It first validates the number of command-line arguments,
which must be at least two: the first argument is always the name of the ZIP file to be created. If
successful, this application creates a ZIP output stream with an underlying file output stream to this
file and then writes the contents of those files identified by successive command-line arguments to
the ZIP output stream.

The only part of this source code that might seem confusing is if (filename.equals(args[0]))
continue;. This statement prevents the first command-line argument, which happens to be the
name of the ZIP archive, from being added to the archive, which doesn’t make sense because of its
recursive nature. If this possibility was permitted, a ZipException instance containing a “duplicate
entry” message would be thrown.

439CHAPTER 10: Exploring Additional Utility APIs

Compile Listing 10-11 (javac ZipCreate.java) and run this application via the following command
line, which creates a ZIP archive named a.zip and stores file ZipCreate.java in this archive—the
application isn’t recursive (it will not recurse into directories):

java ZipCreate a.zip ZipCreate.java

You should not observe any output. Instead, you should observe a file named a.zip in the current
directory. Furthermore, when you unzip a.zip, you should detect an unarchived ZipCreate.java file.

You cannot store duplicate files in an archive because that makes no sense. For example, you
will observe an exception message about a duplicate entry when you execute the following
command line:

java ZipCreate a.zip ZipCreate.java ZipCreate.java

ZipOutputStream offers more capabilities. For example, you can use its void setLevel(int
level) method to set the compression level for successive entries. Specify an integer argument
from 0 through 9, where 0 indicates no compression and 9 indicates best compression—better
compression slows down performance. (Google reports these limits as −1 and 8.) Alternatively,
specify one of the Deflator class’s BEST_COMPRESSION, BEST_SPEED, DEFAULT_COMPRESSION (to which
setLevel() defaults), and other constants as an argument.

Reading Files from a ZIP Archive
Use the ZipInputStream class to read ZIP entries (compressed as well as uncompressed) from a
ZIP archive.

Note Use the GZIPInputStream class to open a GZIP archive and read files from this archive in the
GZIP format. For brevity, I don’t discuss this class.

ZipInputStream declares the ZipInputStream(InputStream in) constructor for creating a ZIP
input stream. (You will learn about input streams in Chapter 11.) Although ZipEntry instances are
conceptually read from this stream, it is really the data described by these instances that is read.

The following example instantiates ZipInputStream with an underlying file input stream:

ZipInputStream zis = new ZipInputStream(new FileInputStream("archive.zip"));

ZipInputStream also declares several methods and inherits additional methods from its
InflaterInputStream superclass. You minimally work with the following methods:

 void close() closes the ZIP input stream along with the underlying input
stream.

 void closeEntry() closes the current ZIP entry and positions the stream for
reading the next entry.

440 CHAPTER 10: Exploring Additional Utility APIs

 ZipEntry getNextEntry() reads the next ZIP entry and positions the stream
to the start of the entry data. This method returns null when there are no more
entries.

 int read(byte[] b, int off, int len) reads a maximum of len bytes from the
current ZIP entry into buffer b starting at offset off. This method will block until
all the bytes are read.

Each method throws IOException when a generic I/O error has occurred and (except for close())
ZipException when a ZIP-specific I/O error has occurred. Also, read() throws NullPointerException
when b is null and java.lang.IndexOutOfBoundsException when off is negative, len is negative, or
len is greater than b.length - off.

Listing 10-12 presents a ZipAccess application that shows you how to minimally use ZipInputStream
and ZipEntry to extract assorted files from an existing ZIP archive.

Listing 10-12. Accessing a ZIP Archive and Extracting Specified Files from That Archive

import java.io.FileInputStream;
import java.io.FileOutputStream;
import java.io.IOException;

import java.util.zip.ZipEntry;
import java.util.zip.ZipInputStream;

public class ZipAccess
{
 public static void main(String[] args) throws IOException
 {
 if (args.length != 1)
 {
 System.err.println("usage: java ZipAccess zipfile");
 return;
 }
 ZipInputStream zis = null;
 try
 {
 zis = new ZipInputStream(new FileInputStream(args[0]));
 byte[] buffer = new byte[4096];
 ZipEntry ze;
 while ((ze = zis.getNextEntry()) != null)
 {
 System.out.println("Extracting: " + ze);
 FileOutputStream fos = null;
 try
 {
 fos = new FileOutputStream(ze.getName());
 int numBytes;
 while ((numBytes = zis.read(buffer, 0, buffer.length)) != -1)
 fos.write(buffer, 0, numBytes);
 }

441CHAPTER 10: Exploring Additional Utility APIs

 catch (IOException ioe)
 {
 System.err.println("I/O error: " + ioe.getMessage());
 }
 finally
 {
 if (fos != null)
 try
 {
 fos.close();
 }
 catch (IOException ioe)
 {
 assert false; // shouldn't happen in this context
 }
 }
 zis.closeEntry();
 }
 }
 catch (IOException ioe)
 {
 System.err.println("I/O error: " + ioe.getMessage());
 }
 finally
 {
 if (zis != null)
 try
 {
 zis.close();
 }
 catch (IOException ioe)
 {
 assert false; // shouldn't happen in this context
 }
 }
 }
}

Listing 10-12 is fairly straightforward. It first validates the number of command-line arguments,
which must be exactly one: the name of the ZIP file to be accessed. Assuming success, it creates
a ZIP input stream with an underlying file input stream to this file and then reads the contents of the
various files that are stored in this archive, creating these files in the current directory.

Compile Listing 10-12 (javac ZipAccess.java) and run this application via the following command
line, which accesses the previous a.zip archive and extracts file ZipCreate.java from this archive:

java ZipAccess a.zip

You should observe “Extracting: ZipCreate.java” as the single line of output, and also note the
appearance of a ZipCreate.java file in the current directory.

442 CHAPTER 10: Exploring Additional Utility APIs

The java.util.zip package contains a ZipFile class that seems to be an alias for ZipInputStream. As with
ZipInputStream, you can use ZipFile to read a ZIP file’s entries. However, ZipFile has a couple of differences that
make it worth considering as an alternative:

ZipFile allows random access to ZIP entries via its ZipEntry getEntry(String name)
method. Given a ZipEntry instance, you can call ZipEntry’s InputStream
getInputStream(ZipEntry entry) method to obtain an input stream for reading the entry’s
content. ZipInputStream supports sequential access to ZIP entries.

According to the “Compressing and Decompressing Data Using Java APIs” article
(www.oracle.com/technetwork/articles/java/compress-1565076.html), ZipFile
internally caches ZIP entries for improved performance. ZipInputStream doesn’t cache entries.

You might be curious about a ZipFile constructor that declares a mode parameter of type int. The argument passed to
mode is ZipFile.OPEN_READ or ZipFile.OPEN_READ | ZipFile.OPEN_DELETE. The latter argument causes the
underlying file to be deleted sometime between when it is opened and when it is closed.

This capability was introduced by Java 1.3 to solve a problem related to caching downloaded JAR files in the context of
long-running server applications or Remote Method Invocation. The problem is discussed at
http://docs.oracle.com/javase/7/docs/technotes/guides/lang/enhancements.html.

Exploring the JAR API
The java.util.jar package provides classes for working with JAR files. Because a JAR file is a
kind of ZIP file, it isn’t surprising that this package provides classes that extend their java.util.zip
counterparts. For example, java.util.jar.JarEntry extends java.util.zip.ZipEntry.

The java.util.jar package also provides classes that have no java.util.zip counterparts,
for example, Manifest. These classes provide access to JAR-specific capabilities. For example,
Manifest lets you work with a JAR file’s manifest (explained shortly).

Listing 10-13 presents a MakeRunnableJAR application that shows you how to work with some of the
types in the java.util.jar package to create a runnable JAR file.

Listing 10-13. Creating a Runnable JAR File

import java.io.FileInputStream;
import java.io.FileOutputStream;
import java.io.IOException;

import java.util.jar.Attributes;
import java.util.jar.JarEntry;
import java.util.jar.JarOutputStream;
import java.util.jar.Manifest;

ZIPFILE VERSUS ZIPINPUTSTREAM

443CHAPTER 10: Exploring Additional Utility APIs

public class MakeRunnableJAR
{
 public static void main(String[] args) throws IOException
 {
 if (args.length < 2)
 {
 System.err.println("usage: java MakeRunnableJAR JARfile " +
 "classfile1 classfile2 ...");
 return;
 }
 JarOutputStream jos = null;
 try
 {
 Manifest mf = new Manifest();
 Attributes attr = mf.getMainAttributes();
 attr.put(Attributes.Name.MANIFEST_VERSION, "1.0");
 attr.put(Attributes.Name.MAIN_CLASS,
 args[1].substring(0, args[1].indexOf('.')));
 jos = new JarOutputStream(new FileOutputStream(args[0]), mf);
 byte[] buf = new byte[1024];
 for (String filename: args)
 {
 if (filename.equals(args[0]))
 continue;
 FileInputStream fis = null;
 try
 {
 fis = new FileInputStream(filename);
 jos.putNextEntry(new JarEntry(filename));
 int len;
 while ((len = fis.read(buf)) > 0)
 jos.write(buf, 0, len);
 }
 catch (IOException ioe)
 {
 System.err.println("I/O error: " + ioe.getMessage());
 }
 finally
 {
 if (fis != null)
 try
 {
 fis.close();
 }
 catch (IOException ioe)
 {
 assert false; // shouldn't happen in this context
 }
 }
 jos.closeEntry();
 }
 }

444 CHAPTER 10: Exploring Additional Utility APIs

The key part of Listing 10-13 that sets it apart from Listing 10-11 is the following code fragment:

Manifest mf = new Manifest();
Attributes attr = mf.getMainAttributes();
attr.put(Attributes.Name.MANIFEST_VERSION, "1.0");
attr.put(Attributes.Name.MAIN_CLASS,
 args[1].substring(0, args[1].indexOf('.')));
jos = new JarOutputStream(new FileOutputStream(args[0]), mf);

 catch (IOException ioe)
 {
 System.err.println("I/O error: " + ioe.getMessage());
 }
 finally
 {
 if (jos != null)
 try
 {
 jos.close();
 }
 catch (IOException ioe)
 {
 assert false; // shouldn't happen in this context
 }
 }
 }
}

Because Listing 10-13 is very similar to Listing 10-11, albeit with java.util.jar classes replacing
their java.util.zip counterparts, I’ll focus on only that part of this application the creates the
manifest. However, you first need to understand the concept of a JAR file manifest.

A manifest is a special file named MANIFEST.MF that stores information about the contents of the JAR
file. This file is located in the JAR file’s META-INF directory. For example, the manifest would look as
follows for an executable hello.jar JAR file containing a Hello application class:

Manifest-Version: 1.0
Main-Class: Hello

The first line signifies the version of the manifest and must be present. The second line identifies the
application class that is to run when the JAR file is executed. A .class file extension must not be
specified. Doing so would suggest that you want to run class class in the Hello package.

Caution You must insert an empty line after Main-Class: Hello. Otherwise, you will receive a
“no main manifest attribute, in hello.jar” error message when trying to run the application.

445CHAPTER 10: Exploring Additional Utility APIs

Because the .class file extension must be specified when specifying the name of a classfile as
a command-line argument, expression args[1].substring(0, args[1].indexOf('.')) is used to
remove this extension—you can specify multiple classfile names as command-line arguments; the
first name is stored (without its .class extension) in the manifest.

Finally, JarOutputStream is instantiated in a similar manner to ZipOutputStream. However, the
initialized Manifest instance is also passed to the constructor, as the second argument.

To play with this application, you minimally need a class with a public static void main
(String[] args) method. For simplicity, consider Listing 10-14.

Listing 10-14. Saying Hello

public class Hello
{
 public static void main(String[] args)
 {
 System.out.println("Hello");
 }
}

Listing 10-14 isn’t much of an application but is sufficient for our purpose. Compile Listings 10-13
and 10-14 and execute the following command:

java MakeRunnableJAR hello.jar Hello.class

If all goes well, you should observe a hello.jar file in the current directory. Execute the following
command to run this file:

java -jar hello.jar

Assuming success, you should observe a single line of output consisting of Hello.

The Manifest class is first instantiated (via its noargument constructor) to describe the soon-to-be-
created manifest. Its getMainAttributes() method is then called to return an Attributes instance for
accessing existing manifest attributes or creating new manifest attributes (such as Main-Class).

Attributes is essentially a map and provides Object put(Object key, Object value) for storing an
attribute name/value pair. The value passed to key must be an Attributes.Name constant such as
Attributes.Name.MANIFEST_VERSION or Attributes.Name.MAIN_CLASS.

Caution You must store MANIFEST_VERSION; otherwise, you’ll observe a thrown exception at runtime.

446 CHAPTER 10: Exploring Additional Utility APIs

The following exercises are designed to test your understanding of Chapter 10’s content:

1. Define task.

2. Define executor.

3. Identify the Executor interface’s limitations.

4. How are Executor’s limitations overcome?

5. What differences exist between Runnable’s run() method and Callable’s call() method?

6. True or false: You can throw checked and unchecked exceptions from Runnable’s run() method
but can only throw unchecked exceptions from Callable’s call() method.

7. Define future.

8. Describe the Executors class’s newFixedThreadPool() method.

9. Define synchronizer.

10. Identify and describe four commonly used synchronizers.

11. What concurrency-oriented extensions to the Collections Framework are provided by the Concurrency
Utilities?

12. Define lock.

13. What is the biggest advantage that Lock objects hold over the implicit locks that are obtained when
threads enter critical sections (controlled via the synchronized reserved word)?

14. Define atomic variable.

15. What does the Date class describe?

16. What is the purpose of the Formatter class?

17. What does the Random class accomplish?

18. What is the purpose of the Scanner class?

19. What do you do to determine if a character sequence represents an integer or some other kind of
value before scanning that sequence?

20. Identify two differences between ZipFile and ZipInputStream.

21. Create a ZipList application that is similar to ZipAccess but only outputs information about the
archive: It doesn’t extract file contents as well. Information to be output is the name of the entry, the
compressed and uncompressed sizes, and the last modification time. Use the Date class to convert
the last modification time to a human-readable string.

EXERCISES

447CHAPTER 10: Exploring Additional Utility APIs

Summary
Java 5 introduced Concurrency Utilities to simplify the development of concurrent applications.
These utilities are organized into executor, synchronizer, concurrent collection, lock, and atomic
variable categories and leverage the low-level Threads API in their implementations.

An executor decouples task submission from task-execution mechanics and is described by the
Executor, ExecutorService, and ScheduledExecutorService interfaces. A synchronizer facilitates
common forms of synchronization; countdown latches, cyclic barriers, exchangers, and semaphores
are commonly used synchronizers.

A concurrent collection is an extension to the Collections Framework. A lock supports high-level
locking and can associate with conditions in a manner that is distinct from built-in synchronization
and monitors. Finally, an atomic variable encapsulates a single variable and supports lock-free,
thread-safe operations on that variable.

The Date class describes dates in terms of long integer values that are relative to the Unix epoch.
Although much of this class has been deprecated, portions of Date (e.g., the long getTime()
method) are still useful.

Java 5 introduced the Formatter class as an interpreter for printf()-style format strings. This class
provides support for layout justification and alignment; common formats for numeric, string, and
date/time data; and more.

The Math class’s random() method is implemented in terms of the Random class, whose instances are
known as random number generators. Random generates a sequence of random numbers by starting
with a special 48-bit seed. This value is subsequently modified via a mathematical algorithm that is
known as a linear congruential generator.

Java 5 introduced the Scanner class for parsing an input stream of characters into primitive types,
strings, and big integers/decimals with the help of regular expressions. You invoke a “hasNext”
method to verify that an anticipated character sequence is present for scanning and the appropriate
“next” method to scan the value.

You might need to develop an application that must create a new ZIP file and store files in that file or
extract content from an existing ZIP file. The java.util.zip package provides classes for working
with ZIP files, which are also known as ZIP archives. Each ZIP archive stores files that are typically
compressed, and each stored file is known as a ZIP entry.

Perhaps you might need to perform either task in the context of a JAR file, which you might think of
as a ZIP file with a .jar file extension. The java.util.jar package provides classes for working with
JAR files. Because a JAR file is a kind of ZIP file, it isn’t surprising that this package provides classes
that extend their java.util.zip counterparts.

This chapter completes my tour of Java’s utility APIs. In Chapter 11 I explore Java’s classic I/O APIs:
File, RandomAccessFile, streams, and writers/readers.

449

Chapter 11
Performing Classic I/O

Applications often input data for processing and output processing results. Data is input from a
file or some other source and is output to a file or some other destination. Java supports I/O via
the classic I/O APIs located in the java.io package and the new I/O APIs located in java.nio and
related subpackages (and java.util.regex). This chapter introduces you to the classic I/O APIs.

Note You’ve already experienced classic I/O in the context of Chapter 1’s Standard I/O coverage,
Chapter 8’s Process class, and Chapter 10’s ZIP and JAR APIs.

Working with the File API
Applications often interact with a filesystem, which is usually expressed as a hierarchy of files and
directories starting from a root directory.

Android and other platforms on which a virtual machine runs typically support at least one
filesystem. For example, a Unix/Linux (and Linux-based Android) platform combines all mounted
(attached and prepared) disks into one virtual filesystem. In contrast, Windows associates a separate
filesystem with each active disk drive.

Java offers access to the underlying platform’s available filesystem(s) via its concrete java.io.File
class. File declares the File[] listRoots() class method to return the root directories (roots) of
available filesystems as an array of File objects.

Note The set of available filesystem roots is affected by platform-level operations, such as inserting
or ejecting removable media, and disconnecting or unmounting physical or virtual disk drives.

450 CHAPTER 11: Performing Classic I/O

Listing 11-1 presents a DumpRoots application that uses listRoots() to obtain an array of available
filesystem roots and then outputs the array’s contents.

Listing 11-1. Dumping Available Filesystem Roots to Standard Output

import java.io.File;

public class DumpRoots
{
 public static void main(String[] args)
 {
 File[] roots = File.listRoots();
 for (File root: roots)
 System.out.println(root);
 }
}

When I run this application on my Windows 7 platform, I receive the following output, which reveals
four available roots:

C:\
D:\
E:\
F:\

If I happened to run DumpRoots on a Unix or Linux platform, I would receive one line of output that
consists of the virtual filesystem root (/).

Apart from using listRoots(), you can obtain a File instance by calling a File constructor such as
File(String pathname), which creates a File instance that stores the pathname string. The following
assignment statements demonstrate this constructor:

File file1 = new File("/x/y");
File file2 = new File("C:\\temp\\x.dat");

The first statement assumes a Unix/Linux platform, starts the pathname with root directory symbol /,
and continues with directory name x, separator character /, and file or directory name y. (It also
works on Windows, which assumes this path begins at the root directory on the current drive.)

Note A path is a hierarchy of directories that must be traversed to locate a file or a directory.
A pathname is a string representation of a path; a platform-dependent separator character
(e.g., the Windows backslash [\] character) appears between consecutive names.

The second statement assumes a Windows platform, starts the pathname with drive specifier C:,
and continues with root directory symbol \, directory name temp, separator character \, and filename
x.dat (although x.dat might refer to a directory).

451CHAPTER 11: Performing Classic I/O

Caution Always double backslash characters that appear in a string literal, especially when
specifying a pathname; otherwise, you run the risk of bugs or compiler error messages. For example, I
doubled the backslash characters in the second statement to denote a backslash and not a tab (\t) and
to avoid a compiler error message (\x is illegal).

Each statement’s pathname is an absolute pathname, which is a pathname that starts with the
root directory symbol; no other information is required to locate the file/directory that it denotes.
In contrast, a relative pathname doesn’t start with the root directory symbol; it’s interpreted via
information taken from some other pathname.

Note The java.io package’s classes default to resolving relative pathnames against the current
user (also known as working) directory, which is identified by system property user.dir and which is
typically the directory in which the virtual machine was launched. (Chapter 8 showed you how to read
system properties via java.lang.System’s getProperty() method.)

File instances contain abstract representations of file and directory pathnames (these files or
directories may or may not exist in their filesystems) by storing abstract pathnames, which offer
platform-independent views of hierarchical pathnames. In contrast, user interfaces and operating
systems use platform-dependent pathname strings to name files and directories.

An abstract pathname consists of an optional platform-dependent prefix string, such as a disk drive
specifier—“/” for the Unix/Linux root directory or “\\” for a Windows Universal Naming Convention
(UNC) pathname—and a sequence of zero or more string names. The first name in an abstract
pathname may be a directory name or, in the case of Windows UNC pathnames, a hostname. Each
subsequent name denotes a directory; the last name may denote a directory or a file. The empty
abstract pathname has no prefix and an empty name sequence.

The conversion of a pathname string to or from an abstract pathname is inherently platform
dependent. When a pathname string is converted into an abstract pathname, the names within this
string may be separated by the default name-separator character or by any other name-separator
character that is supported by the underlying platform. When an abstract pathname is converted
into a pathname string, each name is separated from the next by a single copy of the default
name-separator character.

Note The default name-separator character is defined by the system property file.separator and
is made available in File’s public static separator and separatorChar fields—the first field
stores the character in a java.lang.String instance and the second field stores it as a char value.

452 CHAPTER 11: Performing Classic I/O

File offers additional constructors for instantiating this class. For example, the following
constructors merge parent and child pathnames into combined pathnames that are stored in File
objects:

 File(String parent, String child) creates a new File instance from a parent
pathname string and a child pathname string.

 File(File parent, String child) creates a new File instance from a parent
pathname File instance and a child pathname string.

Each constructor’s parent parameter is passed a parent pathname, a string that consists of
all pathname components except for the last name, which is specified by child. The following
statement demonstrates this concept via File(String, String):

File file3 = new File("prj/books/", "ljfad2");

The constructor merges parent pathname prj/books/ with child pathname ljfad2 into pathname
prj/books/ljfad2. (If I had specified prj/books as the parent pathname, the constructor would have
added the separator character after books.)

Tip Because File(String pathname), File(String parent, String child), and
File(File parent, String child) don’t detect invalid pathname arguments (apart from
throwing java.lang.NullPointerException when pathname or child is null), you must
be careful when specifying pathnames. You should strive to only specify pathnames that are valid for
all platforms on which the application will run. For example, instead of hard-coding a drive specifier
(such as C:) in a pathname, use the roots that are returned from listRoots(). Even better, keep your
pathnames relative to the current user/working directory (returned from the user.dir system property).

After obtaining a File object, you can interrogate it to learn about its stored abstract pathname by
calling the methods that are described in Table 11-1.

453CHAPTER 11: Performing Classic I/O

Table 11-1. File Methods for Learning About a Stored Abstract Pathname

Method Description

File getAbsoluteFile() Return the absolute form of this File object’s abstract pathname. This
method is equivalent to new File(this.getAbsolutePath()).

String getAbsolutePath() Return the absolute pathname string of this File object’s abstract
pathname. When it’s already absolute, the pathname string is returned
as if by calling getPath(). When it’s the empty abstract pathname, the
pathname string of the current user directory (identified via user.dir) is
returned. Otherwise, the abstract pathname is resolved in a platform-
dependent manner. On Unix/Linux platforms, a relative pathname is made
absolute by resolving it against the current user directory. On Windows
platforms, the pathname is made absolute by resolving it against the
current directory of the drive named by the pathname, or the current user
directory when there is no drive.

File getCanonicalFile() Return the canonical (simplest possible, absolute and unique) form of this
File object’s abstract pathname. This method throws java.io.IOException
when an I/O error occurs (creating the canonical pathname may require
filesystem queries); it equates to new File(this.getCanonicalPath()).

String getCanonicalPath() Return the canonical pathname string of this File object’s abstract
pathname. This method first converts this pathname to absolute form
when necessary, as if by invoking getAbsolutePath(), and then maps it to
its unique form in a platform-dependent way. Doing so typically involves
removing redundant names such as “.” and “..” from the pathname,
resolving symbolic links (on Unix/Linux platforms), and converting drive
letters to a standard case (on Windows platforms). This method throws
IOException when an I/O error occurs (creating the canonical pathname
may require filesystem queries).

String getName() Return the filename or directory name denoted by this File object’s abstract
pathname. This name is the last in a pathname’s name sequence. The
empty string is returned when the pathname’s name sequence is empty.

String getParent() Return the parent pathname string of this File object’s pathname, or return
null when this pathname doesn’t name a parent directory.

File getParentFile() Return a File object storing this File object’s abstract pathname’s parent
abstract pathname; return null when the parent pathname isn’t a directory.

String getPath() Convert this File object’s abstract pathname into a pathname string where
the names in the sequence are separated by the character stored in File’s
separator field. Return the resulting pathname string.

boolean isAbsolute() Return true when this File object’s abstract pathname is absolute;
otherwise, return false when it’s relative. The definition of absolute pathname
is system dependent. On Unix/Linux platforms, a pathname is absolute
when its prefix is “/”. On Windows platforms, a pathname is absolute when
its prefix is a drive specifier followed by “\” or when its prefix is “\\”.

String toString() A synonym for getPath().

454 CHAPTER 11: Performing Classic I/O

Table 11-1 refers to IOException, which is the common exception superclass for those exception
classes that describe various kinds of I/O errors such as java.io.FileNotFoundException.

Listing 11-2 instantiates File with its pathname command-line argument and calls some of the File
methods described in Table 11-1 to learn about this pathname.

Listing 11-2. Obtaining Abstract Pathname Information

import java.io.File;
import java.io.IOException;

public class PathnameInfo
{
 public static void main(final String[] args) throws IOException
 {
 if (args.length != 1)
 {
 System.err.println("usage: java PathnameInfo pathname");
 return;
 }
 File file = new File(args[0]);
 System.out.println("Absolute path = " + file.getAbsolutePath());
 System.out.println("Canonical path = " + file.getCanonicalPath());
 System.out.println("Name = " + file.getName());
 System.out.println("Parent = " + file.getParent());
 System.out.println("Path = " + file.getPath());
 System.out.println("Is absolute = " + file.isAbsolute());
 }
}

For example, when I specify java PathnameInfo . (the period represents the current directory on my
Windows 7 platform), I observe the following output:

Absolute path = C:\prj\dev\ljfad2\ch11\code\PathnameInfo\.
Canonical path = C:\prj\dev\ljfad2\ch11\code\PathnameInfo
Name = .
Parent = null
Path = .
Is absolute = false

This output reveals that the canonical pathname doesn’t include the period. It also shows that there
is no parent pathname and that the pathname is relative.

Continuing, I now specify java PathnameInfo c:\reports\2012\..\2011\February. This time, I
observe the following output:

Absolute path = c:\reports\2012\..\2011\February
Canonical path = C:\reports\2011\February
Name = February
Parent = c:\reports\2012\..\2011
Path = c:\reports\2012\..\2011\February
Is absolute = true

455CHAPTER 11: Performing Classic I/O

This output reveals that the canonical pathname doesn’t include 2012. It also shows that the
pathname is absolute.

For my final example, suppose I specify java PathnameInfo "" to obtain information for the empty
pathname. In response, this application generates the following output:

Absolute path = C:\prj\dev\ljfad2\ch11\code\PathnameInfo
Canonical path = C:\prj\dev\ljfad2\ch11\code\PathnameInfo
Name =
Parent = null
Path =
Is absolute = false

The output reveals that getName() and getPath() return the empty string ("") because the empty
pathname is empty.

You can interrogate the filesystem to learn about the file or directory represented by a File object’s
stored pathname by calling the methods that are described in Table 11-2.

Table 11-2. File Methods for Learning About a File or Directory

Method Description

boolean canExecute() Return true when this File object’s abstract pathname represents an existing
executable file.

boolean canRead() Return true when this File object’s abstract pathname represents an existing
readable file.

boolean canWrite() Return true when this File object’s abstract pathname represents an existing file
that can be modified.

boolean exists() Return true if and only if the file or directory that’s denoted by this File object’s
abstract pathname exists.

boolean isDirectory() Return true when this File object’s abstract pathname refers to an existing directory.

boolean isFile() Return true when this File object’s abstract pathname refers to an existing normal
file. A file is normal when it’s not a directory and satisfies other platform-dependent
criteria: it’s not a symbolic link or a named pipe, for example. Any nondirectory file
created by a Java application is guaranteed to be a normal file.

boolean isHidden() Return true when the file denoted by this File object’s abstract pathname is hidden.
The exact definition of hidden is platform dependent. On Unix/Linux platforms, a file
is hidden when its name begins with a period character. On Windows platforms, a
file is hidden when it has been marked as such in the filesystem.

long lastModified() Return the time that the file denoted by this File object’s abstract pathname was
last modified, or 0 when the file doesn’t exist or an I/O error occurred during this
method call. The returned value is measured in milliseconds since the Unix epoch
(00:00:00 GMT, January 1, 1970).

long length() Return the length of the file denoted by this File object’s abstract pathname.
The return value is unspecified when the pathname denotes a directory and will be
0 when the file doesn’t exist.

456 CHAPTER 11: Performing Classic I/O

Listing 11-3 instantiates File with its pathname command-line argument, and calls all of the File
methods described in Table 11-2 to learn about the pathname’s file/directory.

Listing 11-3. Obtaining File/Directory Information

import java.io.File;
import java.io.IOException;

import java.util.Date;

public class FileDirectoryInfo
{
 public static void main(final String[] args) throws IOException
 {
 if (args.length != 1)
 {
 System.err.println("usage: java FileDirectoryInfo pathname");
 return;
 }
 File file = new File(args[0]);
 System.out.println("About " + file + ":");
 System.out.println("Can execute = " + file.canExecute());
 System.out.println("Can read = " + file.canRead());
 System.out.println("Can write = " + file.canWrite());
 System.out.println("Exists = " + file.exists());
 System.out.println("Is directory = " + file.isDirectory());
 System.out.println("Is file = " + file.isFile());
 System.out.println("Is hidden = " + file.isHidden());
 System.out.println("Last modified = " + new Date(file.lastModified()));
 System.out.println("Length = " + file.length());
 }
}

For example, suppose I have a 3-byte read-only file named x.dat. When I specify java
FileDirectoryInfo x.dat, I observe the following output:

About x.dat:
Can execute = true
Can read = true
Can write = false
Exists = true
Is directory = false
Is file = true
Is hidden = false
Last modified = Tue Nov 20 12:12:09 CST 2012
Length = 3

457CHAPTER 11: Performing Classic I/O

Note Java 6 added long getFreeSpace(), long getTotalSpace(), and long
getUsableSpace() methods to File that return disk space information about the partition
(a platform-specific portion of storage for a filesystem; for example, C:\) described by the File
instance’s pathname. Android supports these additional methods.

Table 11-3. File Methods for Obtaining Directory Content

Method Description

String[] list() Return a potentially empty array of strings naming the files and
directories in the directory denoted by this File object’s abstract
pathname. If the pathname doesn’t denote a directory, or if an I/O error
occurs, this method returns null. Otherwise, it returns an array of strings,
one string for each file or directory in the directory.

Names denoting the directory itself and the directory’s parent directory
are not included in the result. Each string is a filename rather than a
complete path. Also, there is no guarantee that the name strings in the
resulting array will appear in alphabetical or any other order.

String[]
list(FilenameFilter filter)

A convenience method for calling list() and returning only those
Strings that satisfy filter.

File[] listFiles() A convenience method for calling list(), converting its array of Strings
to an array of Files, and returning the Files array.

File[]
listFiles(FileFilter filter)

A convenience method for calling list(), converting its array of Strings
to an array of Files, but only for those Strings that satisfy filter, and
returning the Files array.

File[]
listFiles(FilenameFilter filter)

A convenience method for calling list(), converting its array of Strings
to an array of Files, but only for those Strings that satisfy filter, and
returning the Files array.

File declares five methods that return the names of files and directories located in the directory
identified by a File object’s abstract pathname. Table 11-3 describes these methods.

The overloaded list() methods return arrays of Strings denoting file and directory names. The
second method lets you return only those names of interest (e.g., only those names that end with
extension .txt) via a java.io.FilenameFilter-based filter object.

The FilenameFilter interface declares a single boolean accept(File dir, String name) method
that is called for each file/directory located in the directory identified by the File object’s pathname:

 dir identifies the parent portion of the pathname (the directory path).

 name identifies the final directory name or the filename portion of the pathname.

458 CHAPTER 11: Performing Classic I/O

The accept() method uses the arguments passed to these parameters to determine whether or not
the file or directory satisfies its criteria for what is acceptable. It returns true when the file/directory
name should be included in the returned array; otherwise, this method returns false.

Listing 11-4 presents a Dir(ectory) application that uses list(FilenameFilter) to obtain only those
names that end with a specific extension.

Listing 11-4. Listing Specific Names

import java.io.File;
import java.io.FilenameFilter;

public class Dir
{
 public static void main(final String[] args)
 {
 if (args.length != 2)
 {
 System.err.println("usage: java Dir dirpath ext");
 return;
 }
 File file = new File(args[0]);
 FilenameFilter fnf = new FilenameFilter()
 {
 @Override
 public boolean accept(File dir, String name)
 {
 return name.endsWith(args[1]);
 }
 };
 String[] names = file.list(fnf);
 for (String name: names)
 System.out.println(name);
 }
}

When I, for example, specify java Dir c:\windows exe on my Windows 7 platform, Dir outputs only
those \windows directory filenames that have the .exe extension:

bfsvc.exe
explorer.exe
fveupdate.exe
HelpPane.exe
hh.exe
notepad.exe
regedit.exe
splwow64.exe
twunk_16.exe
twunk_32.exe
winhlp32.exe
write.exe

459CHAPTER 11: Performing Classic I/O

The overloaded listFiles() methods return arrays of Files. For the most part, they’re symmetrical
with their list() counterparts. However, listFiles(FileFilter) introduces an asymmetry.

The java.io.FileFilter interface declares a single boolean accept(String pathname) method that
is called for each file/directory located in the directory identified by the File object’s pathname: the
argument passed to pathname identifies the complete path of the file or directory.

The accept() method uses this argument to determine whether or not the file or directory satisfies its
criteria for what is acceptable. It returns true when the file/directory name should be included in the
returned array; otherwise, this method returns false.

Note Because each interface’s accept() method accomplishes the same task, you might be
wondering which interface to use. If you prefer a path broken into its directory and name components,
use FilenameFilter. However, if you prefer a complete pathname, use FileFilter; you can
always call getParent() and getName() to get these components.

File also declares several methods for creating files and manipulating existing files. Table 11-4
describes these methods.

Table 11-4. File Methods for Creating Files and Manipulating Existing Files

Method Description

boolean createNewFile() Atomically create a new, empty file named by this File object’s abstract
pathname if and only if a file with this name doesn’t yet exist. The check for
file existence and the creation of the file when it doesn’t exist are a single
operation that’s atomic with respect to all other filesystem activities that
might affect the file. This method returns true when the named file doesn’t
exist and was successfully created, and returns false when the named file
already exists. It throws IOException when an I/O error occurs.

static File
createTempFile
(String prefix,
String suffix)

Create an empty file in the default temporary file directory using the given
prefix and suffix to generate its name. This overloaded class method calls
its three-parameter variant, passing prefix, suffix, and null to this other
method, and returning the other method’s return value.

static File
createTempFile(String
prefix, String suffix,
File directory)

Create an empty file in the specified directory using the given prefix and
suffix to generate its name. The name begins with the character sequence
specified by prefix and ends with the character sequence specified by
suffix; “.tmp” is used as the suffix when suffix is null. This method
returns the created file’s pathname when successful. It throws
java.lang.IllegalArgumentException when prefix contains fewer than
three characters and IOException when the file couldn’t be created.

(continued)

460 CHAPTER 11: Performing Classic I/O

Method Description

boolean delete() Delete the file or directory denoted by this File object’s pathname. Return
true when successful; otherwise, return false. If the pathname denotes a
directory, the directory must be empty to be deleted.

void deleteOnExit() Request that the file or directory denoted by this File object’s abstract
pathname be deleted when the virtual machine terminates. Reinvoking this
method on the same File object has no effect. Once deletion has been
requested, it’s not possible to cancel the request. Therefore, this method
should be used with care.

boolean mkdir() Create the directory named by this File object’s abstract pathname. Return
true when successful; otherwise, return false.

boolean mkdirs() Create the directory and any necessary intermediate directories named
by this File object’s abstract pathname. Return true when successful;
otherwise, return false.

boolean
renameTo(File dest)

Rename the file denoted by this File object’s abstract pathname to dest.
Return true when successful; otherwise, return false. This method throws
NullPointerException when dest is null.

Many aspects of this method’s behavior are platform dependent. For
example, the rename operation might not be able to move a file from one
filesystem to another, the operation might not be atomic, or it might not
succeed when a file with the destination pathname already exists. The return
value should always be checked to make sure that the rename operation
was successful.

boolean
setLastModified(long time)

Set the last-modified time of the file or directory named by this File object’s
abstract pathname. Return true when successful; otherwise, return false.
This method throws IllegalArgumentException when time is negative.

All platforms support file-modification times to the nearest second, but some
provide more precision. The time value will be truncated to fit the supported
precision. If the operation succeeds and no intervening operations on the file
take place, the next call to lastModified() will return the (possibly truncated)
time value passed to this method.

boolean setReadOnly() Mark the file or directory denoted by this File object’s abstract pathname
so that only read operations are allowed. After calling this method, the file
or directory is guaranteed not to change until it’s deleted or marked to allow
write access. Whether or not a read-only file or directory can be deleted
depends on the filesystem.

Suppose you’re designing a text-editor application that a user will implement to open a text file and
make changes to its content. Until the user explicitly saves these changes to the file, you want the
text file to remain unchanged.

Table 11-4 . (continued)

461CHAPTER 11: Performing Classic I/O

Because the user doesn’t want to lose these changes when the application crashes or the computer
loses power, you design the application to save these changes to a temporary file every few minutes.
This way, the user has a backup of the changes.

You can use the overloaded createTempFile() methods to create the temporary file. If you don’t
specify a directory in which to store this file, it’s created in the directory identified by the
java.io.tmpdir system property.

You probably want to remove the temporary file after the user tells the application to save or discard
the changes. The deleteOnExit() method lets you register a temporary file for deletion; it’s deleted
when the virtual machine ends without a crash/power loss.

Listing 11-5 presents a TempFileDemo application for experimenting with the createTempFile() and
deleteOnExit() methods.

Listing 11-5. Experimenting With Temporary Files

import java.io.File;
import java.io.IOException;

public class TempFileDemo
{
 public static void main(String[] args) throws IOException
 {
 System.out.println(System.getProperty("java.io.tmpdir"));
 File temp = File.createTempFile("text", ".txt");
 System.out.println(temp);
 temp.deleteOnExit();
 }
}

After outputting the location where temporary files are stored, TempFileDemo creates a temporary
file whose name begins with text and ends with the .txt extension. TempFileDemo next outputs the
temporary file’s name and registers the temporary file for deletion on the successful termination of
the application.

I observed the following output during one run of TempFileDemo (and the file disappeared on exit):

C:\Users\Owner\AppData\Local\Temp\
C:\Users\Owner\AppData\Local\Temp\text3173127870811188221.txt

Note Java 6 added to File new boolean setExecutable(boolean executable),
boolean setExecutable(boolean executable, boolean ownerOnly), boolean
setReadable(boolean readable), boolean setReadable(boolean readable,
boolean ownerOnly), boolean setWritable(boolean writable), and boolean
setWritable(boolean writable, boolean ownerOnly) methods that let you set the owner’s
or everybody’s execute, read, and write permissions for the file identified by the File object’s abstract
pathname. Android supports these additional methods.

462 CHAPTER 11: Performing Classic I/O

Finally, File implements the java.lang.Comparable interface’s compareTo() method and overrides
equals() and hashCode(). Table 11-5 describes these miscellaneous methods.

Table 11-5. File’s Miscellaneous Methods

Method Description

int compareTo(File pathname) Compare two pathnames lexicographically. The ordering defined by this
method depends on the underlying platform. On Unix/Linux platforms,
alphabetic case is significant when comparing pathnames; on Windows
platforms, alphabetic case is insignificant. Return zero when pathname’s
abstract pathname equals this File object’s abstract pathname, a
negative value when this File object’s abstract pathname is less than
pathname, and a positive value otherwise. To accurately compare two
File objects, call getCanonicalFile() on each File object and then
compare the returned File objects.

boolean equals(Object obj) Compare this File object with obj for equality. Abstract pathname
equality depends on the underlying platform. On Unix/Linux platforms,
alphabetic case is significant when comparing pathnames; on Windows
platforms, alphabetic case is insignificant. Return true if and only if obj
is not null and is a File object whose abstract pathname denotes the
same file/directory as this File object’s abstract pathname.

int hashCode() Calculate and return a hash code for this pathname. This calculation
depends on the underlying platform. On Unix/Linux platforms, a
pathname’s hash code equals the exclusive OR of its pathname string’s
hash code and decimal value 1234321. On Windows platforms, the hash
code is the exclusive OR of the lowercased pathname string’s hash code
and decimal value 1234321. The current locale (geographical, political,
or cultural region) is not taken into account when lowercasing the
pathname string.

Working with the RandomAccessFile API
Files can be created and/or opened for random access in which a mixture of write and read
operations can occur until the file is closed. Java supports this random access via its concrete
java.io.RandomAccessFile class.

RandomAccessFile declares the following constructors:

 RandomAccessFile(File file, String mode) creates and opens a new file if it
doesn’t exist or opens an existing file. The file is identified by file’s abstract
pathname and is created and/or opened according to mode.

 RandomAccessFile(String pathname, String mode) creates and opens a new
file if it doesn’t exist or opens an existing file. The file is identified by pathname
and is created and/or opened according to mode.

463CHAPTER 11: Performing Classic I/O

Either constructor’s mode argument must be one of "r", "rw", "rws", or "rwd"; otherwise, the
constructor throws IllegalArgumentException. These string literals have the following meanings:

 "r" informs the constructor to open an existing file for reading only. Any attempt
to write to the file results in a thrown instance of the IOException class.

 "rw" informs the constructor to create and open a new file when it doesn’t exist
for reading and writing or open an existing file for reading and writing.

 "rwd" informs the constructor to create and open a new file when it doesn’t
exist for reading and writing or open an existing file for reading and writing.
Furthermore, each update to the file’s content must be written synchronously to
the underlying storage device.

 "rws" informs the constructor to create and open a new file when it doesn’t
exist for reading and writing or open an existing file for reading and writing.
Furthermore, each update to the file’s content or metadata must be written
synchronously to the underlying storage device.

Note A file’s metadata is data about the file and not actual file contents. Examples of metadata
include the file’s length and the time the file was last modified.

The "rwd" and "rws" modes ensure than any writes to a file located on a local storage device
are written to the device, which guarantees that critical data isn’t lost when the operating system
crashes. No guarantee is made when the file doesn’t reside on a local device.

Note Operations on a random access file opened in "rwd" or "rws" mode are slower than these
same operations on a random access file opened in "rw" mode.

These constructors throw FileNotFoundException when mode is "r" and the file identified by
pathname cannot be opened (it might not exist or it might be a directory) or when mode is "rw" and
pathname is read-only or a directory.

The following example demonstrates the second constructor by attempting to open an existing file
for read access via the "r" mode string:

RandomAccessFile raf = new RandomAccessFile("employee.dat", "r");

A random access file is associated with a file pointer, a cursor that identifies the location of the next
byte to write or read. When an existing file is opened, the file pointer is set to its first byte at offset 0.
The file pointer is also set to 0 when the file is created.

Write or read operations start at the file pointer and advance it past the number of bytes written
or read. Operations that write past the current end of the file cause the file to be extended. These
operations continue until the file is closed.

464 CHAPTER 11: Performing Classic I/O

Table 11-6. RandomAccessFile Methods

Method Description

void close() Close the file and release any associated platform resources. Subsequent
writes or reads result in IOException. Also, the file cannot be reopened with
this RandomAccessFile object. This method throws IOException when an I/O
error occurs.

FileDescriptor getFD() Return the file’s associated file descriptor object. This method throws
IOException when an I/O error occurs.

long getFilePointer() Return the file pointer’s current zero-based byte offset into the file. This
method throws IOException when an I/O error occurs.

long length() Return the length (measured in bytes) of the file. This method throws
IOException when an I/O error occurs.

int read() Read and return (as an int in the range 0 to 255) the next byte from the file
or return −1 when the end of the file is reached. This method blocks when
no input is available and throws IOException when an I/O error occurs.

int read(byte[] b) Read up to b.length bytes of data from the file into byte array b. This
method blocks until at least 1 byte of input is available. It returns the number
of bytes read into the array, or returns −1 when the end of the file is reached.
It throws NullPointerException when b is null and IOException when an
I/O error occurs.

char readChar() Read and return a character from the file. This method reads 2 bytes from
the file starting at the current file pointer. If the bytes read, in order, are b1
and b2, where 0 <= b1, b2 <= 255, the result is equal to (char) ((b1 << 8)
| b2). This method blocks until the 2 bytes are read, the end of the file is
detected, or an exception is thrown. It throws java.io.EOFException
(a subclass of IOException) when the end of the file is reached before
reading both bytes and IOException when an I/O error occurs.

int readInt() Read and return a 32-bit integer from the file. This method reads 4 bytes
from the file starting at the current file pointer. If the bytes read, in order, are
b1, b2, b3, and b4, where 0 <= b1, b2, b3, b4 <= 255, the result is equal to
(b1 << 24) | (b2 << 16) | (b3 << 8) | b4. This method blocks until the
4 bytes are read, the end of the file is detected, or an exception is thrown. It
throws EOFException when the end of the file is reached before reading the
4 bytes and IOException when an I/O error occurs.

void seek(long pos) Set the file pointer’s current offset to pos (which is measured in bytes from
the beginning of the file). If the offset is set beyond the end of the file, the
file’s length doesn’t change. The file length will only change by writing after
the offset has been set beyond the end of the file. This method throws
IOException when the value in pos is negative or when an I/O error occurs.

(continued)

RandomAccessFile declares a wide variety of methods. I present a representative sample of these
methods in Table 11-6.

465CHAPTER 11: Performing Classic I/O

Note RandomAccessFile’s read-prefixed methods and skipBytes() originate in the
java.io.DataInput interface, which this class implements. Furthermore, RandomAccessFile’s
write-prefixed methods originate in the java.io.DataOutput interface, which this class also implements.

Method Description

void
setLength(long newLength)

Set the file’s length. If the present length as returned by length() is greater
than newLength, the file is truncated. In this case, if the file offset as returned
by getFilePointer() is greater than newLength, the offset will be equal to
newLength after setLength() returns. If the present length is smaller than
newLength, the file is extended. In this case, the contents of the extended
portion of the file are not defined. This method throws IOException when an
I/O error occurs.

int skipBytes(int n) Attempt to skip over n bytes. This method skips over a smaller number of
bytes (possibly zero) when the end of file is reached before n bytes have
been skipped. It doesn’t throw EOFException in this situation. If n is negative,
no bytes are skipped. The actual number of bytes skipped is returned. This
method throws IOException when an I/O error occurs.

void write(byte[] b) Write b.length bytes from byte array b to the file starting at the current file
pointer position. This method throws IOException when an I/O error occurs.

void write(int b) Write the lower 8 bits of b to the file at the current file pointer position. This
method throws IOException when an I/O error occurs.

void
writeChars(String s)

Write string s to the file as a sequence of characters starting at the
current file pointer position. This method throws IOException when an
I/O error occurs.

void writeInt(int i) Write 32-bit integer i to the file starting at the current file pointer position.
The 4 bytes are written with the high byte first. This method throws
IOException when an I/O error occurs.

Most of Table 11-6’s methods are fairly self-explanatory. However, the getFD() method requires
further enlightenment.

When a file is opened, the underlying platform creates a platform-dependent structure to represent
the file. A handle to this structure is stored in an instance of the java.io.FileDescriptor class,
which getFD() returns.

Note A handle is an identifier that Java passes to the underlying platform to identify, in this case,
a specific open file when it requires that the underlying platform perform a file operation.

Table 11-6 . (continued)

466 CHAPTER 11: Performing Classic I/O

FileDescriptor is a small class that declares three FileDescriptor constants named in, out, and
err. These constants let System.in, System.out, and System.err provide access to the standard
input, standard output, and standard error streams.

FileDescriptor also declares the following pair of methods:

 void sync() tells the underlying platform to flush (empty) the contents of the
open file’s output buffers to their associated local disk device. sync() returns
after all modified data and attributes have been written to the relevant device.
It throws java.io.SyncFailedException when the buffers cannot be flushed
or because the platform cannot guarantee that all the buffers have been
synchronized with physical media.

 boolean valid() determines whether or not this file descriptor object is valid.
It returns true when the file descriptor object represents an open file or other
active I/O connection; otherwise, it returns false.

Data that is written to an open file ends up being stored in the underlying platform’s output buffers.
When the buffers fill to capacity, the platform empties them to the disk. Buffers improve performance
because disk access is slow.

However, when you write data to a random access file that’s been opened via mode "rwd" or "rws",
each write operation’s data is written straight to the disk. As a result, write operations are slower
than when the random access file is opened in "rw" mode.

Suppose you have a situation that combines writing data through the output buffers and writing
data directly to the disk. The following example addresses this hybrid scenario by opening the file in
mode "rw" and selectively calling FileDescriptor’s sync() method.

RandomAccessFile raf = new RandomAccessFile("employee.dat", "rw");
FileDescriptor fd = raf.getFD();
// Perform a critical write operation.
raf.write(. . .);
// Synchronize with underlying disk by flushing platform's output buffers to disk.
fd.sync();
// Perform non-critical write operation where synchronization isn't necessary.
raf.write(. . .);
// Do other work.
// Close file, emptying output buffers to disk.
raf.close();

RandomAccessFile is useful for creating a flat file database, a single file organized into records and
fields. A record stores a single entry (e.g., a part in a parts database) and a field stores a single
attribute of the entry (e.g., a part number).

Note The term field is also used to refer to a variable declared within a class. To avoid confusion with
this overloaded terminology, think of a field variable as being analogous to a record’s field attribute.

467CHAPTER 11: Performing Classic I/O

A flat file database typically organizes its content into a sequence of fixed-length records. Each
record is further organized into one or more fixed-length fields. Figure 11-1 illustrates this concept in
the context of a parts database.

records

fields

partnum desc qty ucost

0

1

4

1-3233-44923-7j

3-1299-3299-9u

1-9009-3323-4x Wiper Blade Micro Edge

Parking Brake Cable

...

Air Pump Electric

30

5

9

24.68

14.39

202.00

Figure 11-1. A flat file database of automotive parts is divided into records and fields

According to Figure 11-1, each field has a name (partnum, desc, qty, and ucost). Also, each record
is assigned a number starting at 0. This example consists of five records, of which only three are
shown for brevity.

To show you how to implement a flat file database in terms of RandomAccessFile, I’ve created a
simple PartsDB class to model Figure 11-1. Check out Listing 11-6.

Listing 11-6. Implementing the Parts Flat File Database

import java.io.IOException;
import java.io.RandomAccessFile;

public class PartsDB
{
 public final static int PNUMLEN = 20;
 public final static int DESCLEN = 30;
 public final static int QUANLEN = 4;
 public final static int COSTLEN = 4;

 private final static int RECLEN = 2 * PNUMLEN + 2 * DESCLEN + QUANLEN + COSTLEN;
 private RandomAccessFile raf;

 public PartsDB(String pathname) throws IOException
 {
 raf = new RandomAccessFile(pathname, "rw");
 }

 public void append(String partnum, String partdesc, int qty, int ucost)
 throws IOException

468 CHAPTER 11: Performing Classic I/O

 {
 raf.seek(raf.length());
 write(partnum, partdesc, qty, ucost);
 }

 public void close()
 {
 try
 {
 raf.close();
 }
 catch (IOException ioe)
 {
 System.err.println(ioe);
 }
 }

 public int numRecs() throws IOException
 {
 return (int) raf.length() / RECLEN;
 }

 public Part select(int recno) throws IOException
 {
 if (recno < 0 || recno >= numRecs())
 throw new IllegalArgumentException(recno + " out of range");
 raf.seek(recno * RECLEN);
 return read();
 }

 public void update(int recno, String partnum, String partdesc, int qty,
 int ucost) throws IOException
 {
 if (recno < 0 || recno >= numRecs())
 throw new IllegalArgumentException(recno + " out of range");
 raf.seek(recno * RECLEN);
 write(partnum, partdesc, qty, ucost);
 }

 private Part read() throws IOException
 {
 StringBuffer sb = new StringBuffer();
 for (int i = 0; i < PNUMLEN; i++)
 sb.append(raf.readChar());
 String partnum = sb.toString().trim();
 sb.setLength(0);
 for (int i = 0; i < DESCLEN; i++)
 sb.append(raf.readChar());
 String partdesc = sb.toString().trim();
 int qty = raf.readInt();
 int ucost = raf.readInt();
 return new Part(partnum, partdesc, qty, ucost);
 }

469CHAPTER 11: Performing Classic I/O

 private void write(String partnum, String partdesc, int qty, int ucost)
 throws IOException
 {
 StringBuffer sb = new StringBuffer(partnum);
 if (sb.length() > PNUMLEN)
 sb.setLength(PNUMLEN);
 else
 if (sb.length() < PNUMLEN)
 {
 int len = PNUMLEN - sb.length();
 for (int i = 0; i < len; i++)
 sb.append(" ");
 }
 raf.writeChars(sb.toString());
 sb = new StringBuffer(partdesc);
 if (sb.length() > DESCLEN)
 sb.setLength(DESCLEN);
 else
 if (sb.length() < DESCLEN)
 {
 int len = DESCLEN - sb.length();
 for (int i = 0; i < len; i++)
 sb.append(" ");
 }
 raf.writeChars(sb.toString());
 raf.writeInt(qty);
 raf.writeInt(ucost);
 }

 public static class Part
 {
 private String partnum;
 private String desc;
 private int qty;
 private int ucost;

 public Part(String partnum, String desc, int qty, int ucost)
 {
 this.partnum = partnum;
 this.desc = desc;
 this.qty = qty;
 this.ucost = ucost;
 }

 String getDesc()
 {
 return desc;
 }

470 CHAPTER 11: Performing Classic I/O

 String getPartnum()
 {
 return partnum;
 }

 int getQty()
 {
 return qty;
 }

 int getUnitCost()
 {
 return ucost;
 }
 }
}

PartsDB first declares constants that identify the lengths of the string and 32-bit integer fields. It then
declares a constant that calculates the record length in terms of bytes. The calculation takes into
account the fact that a character occupies 2 bytes in the file.

These constants are followed by a field named raf that is of type RandomAccessFile. This field is
assigned an instance of the RandomAccessFile class in the subsequent constructor, which creates/
opens a new file or opens an existing file because of "rw".

PartsDB next declares append(), close(), numRecs(), select(), and update(). These methods
append a record to the file, close the file, return the number of records in the file, select and return a
specific record, and update a specific record:

The append() method first calls length() and seek(). Doing so ensures that the
file pointer is positioned to the end of the file before calling the private write()
method to write a record containing this method’s arguments.

 RandomAccessFile’s close() method can throw IOException. Because this is a
rare occurrence, I chose to handle this exception in PartDB’s close() method,
which keeps that method’s signature simple. However, I print a message when
IOException occurs.

The numRecs() method returns the number of records in the file. These records
are numbered starting with 0 and ending with numRecs() – 1. Each of the
select() and update() methods verifies that its recno argument lies within
this range.

The select() method calls the private read() method to return the record
identified by recno as an instance of the nested Part class. Part’s constructor
initializes a Part object to a record’s field values, and its getter methods return
these values.

The update() method is equally simple. As with select(), it first positions the
file pointer to the start of the record identified by recno. As with append(), it calls
write() to write out its arguments but replaces a record instead of adding one.

471CHAPTER 11: Performing Classic I/O

Records are written with the private write() method. Because fields must have exact sizes, write()
pads String-based values that are shorter than a field size with spaces on the right and truncates
these values to the field size when needed.

Records are read via the private read() method. read() removes the padding before saving a
String-based field value in the Part object.

By itself, PartsDB is useless. You need an application that lets you experiment with this class, and
Listing 11-7 fulfills this requirement.

Listing 11-7. Experimenting with the Parts Flat File Database

import java.io.IOException;

public class UsePartsDB
{
 public static void main(String[] args)
 {
 PartsDB pdb = null;
 try
 {
 pdb = new PartsDB("parts.db");
 if (pdb.numRecs() == 0)
 {
 // Populate the database with records.
 pdb.append("1-9009-3323-4x", "Wiper Blade Micro Edge", 30, 2468);
 pdb.append("1-3233-44923-7j", "Parking Brake Cable", 5, 1439);
 pdb.append("2-3399-6693-2m", "Halogen Bulb H4 55/60W", 22, 813);
 pdb.append("2-599-2029-6k", "Turbo Oil Line O-Ring ", 26, 155);
 pdb.append("3-1299-3299-9u", "Air Pump Electric", 9, 20200);
 }
 dumpRecords(pdb);
 pdb.update(1, "1-3233-44923-7j", "Parking Brake Cable", 5, 1995);
 dumpRecords(pdb);
 }
 catch (IOException ioe)
 {
 System.err.println(ioe);
 }
 finally
 {
 if (pdb != null)
 pdb.close();
 }
 }

 static void dumpRecords(PartsDB pdb) throws IOException
 {
 for (int i = 0; i < pdb.numRecs(); i++)
 {
 PartsDB.Part part = pdb.select(i);
 System.out.print(format(part.getPartnum(), PartsDB.PNUMLEN, true));
 System.out.print(" | ");

472 CHAPTER 11: Performing Classic I/O

 System.out.print(format(part.getDesc(), PartsDB.DESCLEN, true));
 System.out.print(" | ");
 System.out.print(format("" + part.getQty(), 10, false));
 System.out.print(" | ");
 String s = part.getUnitCost() / 100 + "." + part.getUnitCost() % 100;
 if (s.charAt(s.length() - 2) == '.') s += "0";
 System.out.println(format(s, 10, false));
 }
 System.out.println("Number of records = " + pdb.numRecs());
 System.out.println();
 }

 static String format(String value, int maxWidth, boolean leftAlign)
 {
 StringBuffer sb = new StringBuffer();
 int len = value.length();
 if (len > maxWidth)
 {
 len = maxWidth;
 value = value.substring(0, len);
 }
 if (leftAlign)
 {
 sb.append(value);
 for (int i = 0; i < maxWidth-len; i++)
 sb.append(" ");
 }
 else
 {
 for (int i = 0; i < maxWidth-len; i++)
 sb.append(" ");
 sb.append(value);
 }
 return sb.toString();
 }
}

Listing 11-7’s main() method begins by instantiating PartsDB, with parts.db as the name of the
database file. When this file has no records, numRecs() returns 0 and several records are appended
to the file via the append() method.

main() next dumps the five records stored in parts.db to the standard output stream, updates the
unit cost in the record whose number is 1, once again dumps these records to the standard output
stream to show this change, and closes the database.

Note I store unit cost values as integer-based penny amounts. For example, I specify literal 1995 to
represent 1995 pennies, or $19.95. If I were to use java.math.BigDecimal objects to store currency
values, I would have to refactor PartsDB to take advantage of object serialization, and I’m not prepared
to do that right now. (I discuss object serialization later in this chapter.)

473CHAPTER 11: Performing Classic I/O

main() relies on a dumpRecords() helper method to dump these records, and dumpRecords() relies
on a format() helper method to format field values so that they can be presented in properly aligned
columns—I could have used java.util.Formatter (see Chapter 10) instead. The following output
reveals this alignment:

1-9009-3323-4x | Wiper Blade Micro Edge | 30 | 24.68
1-3233-44923-7j | Parking Brake Cable | 5 | 14.39
2-3399-6693-2m | Halogen Bulb H4 55/60W | 22 | 8.13
2-599-2029-6k | Turbo Oil Line O-Ring | 26 | 1.55
3-1299-3299-9u | Air Pump Electric | 9 | 202.00
Number of records = 5

1-9009-3323-4x | Wiper Blade Micro Edge | 30 | 24.68
1-3233-44923-7j | Parking Brake Cable | 5 | 19.95
2-3399-6693-2m | Halogen Bulb H4 55/60W | 22 | 8.13
2-599-2029-6k | Turbo Oil Line O-Ring | 26 | 1.55
3-1299-3299-9u | Air Pump Electric | 9 | 202.00
Number of records = 5

And there you have it: a simple flat file database. Despite its lack of support for advanced database
features such as indexes and transaction management, a flat file database might be all that your
Android application requires.

write

read

output stream

input stream

application

application

destination

source

* * *

* * *

Figure 11-2. Conceptualizing output and input streams as flows of bytes

Note To learn more about flat file databases, check out Wikipedia’s “Flat file database” entry
(http://en.wikipedia.org/wiki/Flat_file_database).

Working with Streams
Along with File and RandomAccessFile, Java uses streams to perform I/O operations. A stream is an
ordered sequence of bytes of arbitrary length. Bytes flow over an output stream from an application
to a destination and flow over an input stream from a source to an application. Figure 11-2 illustrates
these flows.

Note Java’s use of the word stream is analogous to “stream of water,” “stream of electrons,” and so on.

474 CHAPTER 11: Performing Classic I/O

Java recognizes various stream destinations; for example, byte arrays, files, screens, sockets (network
endpoints), and thread pipes. Java also recognizes various stream sources. Examples include byte
arrays, files, keyboards, sockets, and thread pipes. (I will discuss sockets in Chapter 12.)

Stream Classes Overview
The java.io package provides several output stream and input stream classes that are descendents
of the abstract OutputStream and InputStream classes. Figure 11-3 reveals the hierarchy of output
stream classes.

InputStream (abstract)

ByteArrayInputStream

BufferedInputStream

LineNumberInputStream

DataInputStream

PushbackInputStream

FileInputStream

FilterInputStream

ObjectInputStream

PipedInputStream

SequenceInputStream

StringBufferInputStream

Figure 11-4. LineNumberInputStream and StringBufferInputStream are deprecated

Figure 11-4 reveals the hierarchy of input stream classes.

OutputStream (abstract)

ByteArrayOutputStream

BufferedOutputStream

DataOutputStream

PrintStream

FileOutputStream

FilterOutputStream

ObjectOutputStream

PipedOutputStream

Figure 11-3. All output stream classes except for PrintStream are denoted by their OutputStream suffixes

475CHAPTER 11: Performing Classic I/O

LineNumberInputStream and StringBufferInputStream have been deprecated because they don’t
support different character encodings, a topic I discuss later in this chapter. LineNumberReader and
StringReader are their replacements. (I discuss readers later in this chapter.)

Note PrintStream is another class that should be deprecated because it doesn’t support different
character encodings; PrintWriter is its replacement. However, it’s doubtful that Oracle (and Google)
will deprecate this class because PrintStream is the type of the java.lang.System class’s out
and err class fields, and too much legacy code depends on this fact.

Other Java packages provide additional output stream and input stream classes. For example,
java.util.zip provides four output stream classes that compress uncompressed data into various
formats and four matching input stream classes that uncompress compressed data from the
same formats:

 CheckedOutputStream

 CheckedInputStream

 DeflaterOutputStream

 GZIPOutputStream

 GZIPInputStream

 InflaterInputStream

 ZipOutputStream

 ZipInputStream

Also, the java.util.jar package provides a pair of stream classes for writing content to a JAR file
and for reading content from a JAR file:

 JarOutputStream

 JarInputStream

In the next several sections, I take you on a tour of most of java.io’s output stream and input stream
classes, beginning with OutputStream and InputStream.

OutputStream and InputStream
Java provides the OutputStream and InputStream classes for performing stream I/O. OutputStream is
the superclass of all output stream subclasses. Table 11-7 describes OutputStream’s methods.

476 CHAPTER 11: Performing Classic I/O

Table 11-7. OutputStream Methods

Method Description

void close() Close this output stream and release any platform resources
associated with the stream. This method throws IOException
when an I/O error occurs.

void flush() Flush this output stream by writing any buffered output bytes to
the destination. If the intended destination of this output stream
is an abstraction provided by the underlying platform (for
example, a file), flushing the stream only guarantees that bytes
previously written to the stream are passed to the underlying
platform for writing; it doesn’t guarantee that they’re actually
written to a physical device such as a disk drive. This method
throws IOException when an I/O error occurs.

void write(byte[] b) Write b.length bytes from byte array b to this output stream.
In general, write(b) behaves as if you specified write(b, 0,
b.length). This method throws NullPointerException when b
is null and IOException when an I/O error occurs.

void write(byte[] b, int off, int len) Write len bytes from byte array b starting at offset off to this
output stream. This method throws NullPointerException
when b is null; java.lang.IndexOutOfBoundsException when
off is negative, len is negative, or off + len is greater than
b.length; and IOException when an I/O error occurs.

void write(int b) Write byte b to this output stream. Only the 8 low-order bits are
written; the 24 high-order bits are ignored. This method throws
IOException when an I/O error occurs.

The flush() method is useful in a long-running application where you need to save changes every
so often, for example, the previously mentioned text-editor application that saves changes to a
temporary file every few minutes. Remember that flush() only flushes bytes to the platform; doing
so doesn’t necessarily result in the platform flushing these bytes to the disk.

Note The close() method automatically flushes the output stream. If an application ends before
close() is called, the output stream is automatically closed and its data is flushed.

InputStream is the superclass of all input stream subclasses. Table 11-8 describes InputStream’s
methods.

477CHAPTER 11: Performing Classic I/O

Table 11-8. InputStream Methods

Method Description

int available() Return an estimate of the number of bytes that can be read from this input stream
via the next read() method call (or skipped over via skip()) without blocking the
calling thread. This method throws IOException when an I/O error occurs.

It’s never correct to use this method’s return value to allocate a buffer for
holding all of the stream’s data because a subclass might not return the total
size of the stream.

void close() Close this input stream and release any platform resources associated with the
stream. This method throws IOException when an I/O error occurs.

void mark(int readlimit) Mark the current position in this input stream. A subsequent call to reset()
repositions this stream to the last marked position so that subsequent read
operations re-read the same bytes. The readlimit argument tells this input
stream to allow that many bytes to be read before invalidating this mark
(so that the stream cannot be reset to the marked position).

boolean markSupported() Return true when this input stream supports mark() and reset(); otherwise,
return false.

int read() Read and return (as an int in the range 0 to 255) the next byte from this input
stream, or return −1 when the end of the stream is reached. This method
blocks until input is available, the end of the stream is detected, or an
exception is thrown. It throws IOException when an I/O error occurs.

int read(byte[] b) Read some number of bytes from this input stream and store them in byte
array b. Return the number of bytes actually read (which might be less than
b’s length but is never more than this length), or return −1 when the end of the
stream is reached (no byte is available to read). This method blocks until input is
available, the end of the stream is detected, or an exception is thrown. It throws
NullPointerException when b is null and IOException when an I/O error occurs.

int read(byte[] b,
int off, int len)

Read no more than len bytes from this input stream and store them in byte
array b, starting at the offset specified by off. Return the number of bytes
actually read (which might be less than len but is never more than len), or
return −1 when the end of the stream is reached (no byte is available to read).
This method blocks until input is available, the end of the stream is detected,
or an exception is thrown. It throws NullPointerException when b is null;
IndexOutOfBoundsException when off is negative, len is negative, or len is
greater than b.length – off; and IOException when an I/O error occurs.

void reset() Reposition this input stream to the position at the time mark() was last called.
This method throws IOException when this input stream has not been marked
or the mark has been invalidated.

long skip(long n) Skip over and discard n bytes of data from this input stream. This method
might skip over some smaller number of bytes (possibly zero), for example,
when the end of the file is reached before n bytes have been skipped. The
actual number of bytes skipped is returned. When n is negative, no bytes are
skipped. This method throws IOException when this input stream doesn’t
support skipping or when some other I/O error occurs.

478 CHAPTER 11: Performing Classic I/O

ByteArrayOutputStream and ByteArrayInputStream
Byte arrays are often useful as stream destinations and sources. The ByteArrayOutputStream class
lets you write a stream of bytes to a byte array; the ByteArrayInputStream class lets you read a
stream of bytes from a byte array.

ByteArrayOutputStream declares two constructors. Each constructor creates a byte array
output stream with an internal byte array; a copy of this array can be returned by calling
ByteArrayOutputStream’s byte[] toByteArray() method:

 ByteArrayOutputStream() creates a byte array output stream with an internal
byte array whose initial size is 32 bytes. This array grows as necessary.

 ByteArrayOutputStream(int size) creates a byte array output stream with an
internal byte array whose initial size is specified by size and grows as necessary.
This constructor throws IllegalArgumentException when size is less than zero.

The following example uses ByteArrayOutputStream() to create a byte array output stream with an
internal byte array set to the default size:

ByteArrayOutputStream baos = new ByteArrayOutputStream();

ByteArrayInputStream also declares a pair of constructors. Each constructor creates a byte array
input stream based on the specified byte array and also keeps track of the next byte to read from the
array and the number of bytes to read:

 ByteArrayInputStream(byte[] ba) creates a byte array input stream that uses
ba as its byte array (ba is used directly; a copy isn’t created). The position is set
to 0 and the number of bytes to read is set to ba.length.

 ByteArrayInputStream(byte[] ba, int offset, int count) creates a byte
array input stream that uses ba as its byte array (no copy is made). The position
is set to offset and the number of bytes to read is set to count.

The following example uses ByteArrayInputStream(byte[]) to create a byte array input stream
whose source is a copy of the previous byte array output stream’s byte array:

ByteArrayInputStream bais = new ByteArrayInputStream(baos.toByteArray());

ByteArrayOutputStream and ByteArrayInputStream are useful in a scenario where you need to
convert an image to an array of bytes, process these bytes in some manner, and convert the bytes
back to the image.

For example, suppose you’re writing an Android-based image-processing application. You decode
a file containing the image into an Android-specific android.graphics.BitMap instance, compress

Caution Don’t forget to call markSupported() to find out if the subclass supports mark() and reset().

InputStream subclasses such as ByteArrayInputStream support marking the current read position in
the input stream via the mark() method and later return to that position via the reset() method.

479CHAPTER 11: Performing Classic I/O

this instance into a ByteArrayOutputStream instance, obtain a copy of the byte array output stream’s
array, process this array in some manner, convert this array to a ByteArrayInputStream instance, and
use the byte array input stream to decode these bytes into another BitMap instance, as follows:

String pathname = . . . ; // Assume a legitimate pathname to an image.
Bitmap bm = BitmapFactory.decodeFile(pathname);
ByteArrayOutputStream baos = new ByteArrayOutputStream();
if (bm.compress(Bitmap.CompressFormat.PNG, 100, baos))
{
 byte[] imageBytes = baos.toByteArray();
 // Do something with imageBytes.
 bm = BitMapFactory.decodeStream(new ByteArrayInputStream(imageBytes));
}

This example obtains an image file’s pathname and then calls the concrete
android.graphics.BitmapFactory class’s Bitmap decodeFile(String pathname) class method.
This method decodes the image file identified by pathname into a bitmap and returns a Bitmap instance
that represents this bitmap.

After creating a ByteArrayOutputStream object, the example uses the returned BitMap instance
to call BitMap’s boolean compress(Bitmap.CompressFormat format, int quality, OutputStream
stream) method to write a compressed version of the bitmap to the byte array output stream:

 format identifies the format of the compressed image. I’ve chosen to use the
popular Portable Network Graphics (PNG) format.

 quality hints to the compressor as to how much compression is required.
This value ranges from 0 through 100, where 0 means maximum compression
at the expense of quality and 100 means maximum quality at the expense
of compression. Formats such as PNG ignore quality because they employ
lossless compression.

 stream identifies the stream on which to write the compressed image data.

When compress() returns true, which means that it successfully compressed the image onto the byte
array output stream in the PNG format, the ByteArrayOutputStream object’s toByteArray() method
is called to create and return a byte array with the image’s bytes.

Continuing, the array is processed, a ByteArrayInputStream object is created with the processed bytes
serving as the source of this stream, and BitmapFactory’s BitMap decodeStream(InputStream is) class
method is called to convert the byte array input stream’s source of bytes to a BitMap instance.

FileOutputStream and FileInputStream
Files are common stream destinations and sources. The concrete FileOutputStream class lets you write a
stream of bytes to a file; the concrete FileInputStream class lets you read a stream of bytes from a file.

FileOutputStream subclasses OutputStream and declares five constructors for creating file output
streams. For example, FileOutputStream(String name) creates a file output stream to the existing
file identified by name. This constructor throws FileNotFoundException when the file doesn’t exist
and cannot be created, it is a directory rather than a normal file, or there is some other reason why
the file cannot be opened for output.

480 CHAPTER 11: Performing Classic I/O

Tip FileOutputStream(String name) overwrites an existing file. To append data instead of
overwriting existing content, call a FileOutputStream constructor that includes a boolean append
parameter and pass true to this parameter.

FileInputStream subclasses InputStream and declares three constructors for creating file input streams.
For example, FileInputStream(String name) creates a file input stream from the existing file identified
by name. This constructor throws FileNotFoundException when the file doesn’t exist, it is a directory
rather than a normal file, or there is some other reason why the file cannot be opened for input.

The following example uses FileInputStream(String name) to create a file input stream with
employee.dat as its source:

FileInputStream fis = new FileInputStream("employee.dat");

FileOutputStream and FileInputStream are useful in a file-copying context. Listing 11-8 presents the
source code to a Copy application that provides a demonstration.

Listing 11-8. Copying a Source File to a Destination File

import java.io.FileInputStream;
import java.io.FileNotFoundException;
import java.io.FileOutputStream;
import java.io.IOException;

public class Copy
{
 public static void main(String[] args)
 {
 if (args.length != 2)
 {
 System.err.println("usage: java Copy srcfile dstfile");
 return;
 }
 FileInputStream fis = null;
 FileOutputStream fos = null;
 try
 {
 fis = new FileInputStream(args[0]);
 fos = new FileOutputStream(args[1]);
 int b; // I chose b instead of byte because byte is a reserved word.
 while ((b = fis.read()) != −1)
 fos.write(b);
 }

The following example uses FileOutputStream(String pathname) to create a file output stream with
employee.dat as its destination:

FileOutputStream fos = new FileOutputStream("employee.dat");

481CHAPTER 11: Performing Classic I/O

 catch (FileNotFoundException fnfe)
 {
 System.err.println(args[0] + " could not be opened for input, or " +
 args[1] + " could not be created for output");
 }
 catch (IOException ioe)
 {
 System.err.println("I/O error: " + ioe.getMessage());
 }
 finally
 {
 if (fis != null)
 try
 {
 fis.close();
 }
 catch (IOException ioe)
 {
 assert false; // shouldn't happen in this context
 }

 if (fos != null)
 try
 {
 fos.close();
 }
 catch (IOException ioe)
 {
 assert false; // shouldn't happen in this context
 }
 }
 }
}

Listing 11-8’s main() method first verifies that two command-line arguments, identifying the names
of source and destination files, are specified. It then proceeds to instantiate FileInputStream and
FileOutputStream and enter a while loop that repeatedly reads bytes from the file input stream and
writes them to the file output stream.

Of course something might go wrong. Perhaps the source file doesn’t exist, or perhaps the
destination file cannot be created (a same-named read-only file might exist, for example). In either
scenario, FileNotFoundException is thrown and must be handled. Another possibility is that an I/O
error occurred during the copy operation. Such an error results in IOException.

Regardless of an exception being thrown or not, the input and output streams are closed via the
finally block. In a simple application like this, I could ignore the close() method calls and let the
application terminate. Although Java automatically closes open files at this point, it’s good form to
explicitly close files on exit.

Because close() is capable of throwing an instance of the checked IOException class, a call to
this method is wrapped in a try block with an appropriate catch block that catches this exception.
Notice the if statement that precedes each try block. This statement is necessary to avoid a thrown
NullPointerException instance should either fis or fos contain the null reference.

482 CHAPTER 11: Performing Classic I/O

PipedOutputStream and PipedInputStream
Threads must often communicate. One approach involves using shared variables. Another
approach involves using piped streams via the PipedOutputStream and PipedInputStream classes.
The PipedOutputStream class lets a sending thread write a stream of bytes to an instance of the
PipedInputStream class, which a receiving thread uses to subsequently read those bytes.

Caution Attempting to use a PipedOutputStream object and a PipedInputStream object from a
single thread is not recommended because it might deadlock the thread.

PipedOutputStream declares a pair of constructors for creating piped output streams:

 PipedOutputStream() creates a piped output stream that’s not yet connected to
a piped input stream. It must be connected to a piped input stream, either by
the receiver or the sender, before being used.

 PipedOutputStream(PipedInputStream dest) creates a piped output stream
that’s connected to piped input stream dest. Bytes written to the piped output
stream can be read from dest. This constructor throws IOException when an
I/O error occurs.

PipedOutputStream declares a void connect(PipedInputStream dest) method that connects this
piped output stream to dest. This method throws IOException when this piped output stream is
already connected to another piped input stream.

PipedInputStream declares four constructors for creating piped input streams:

 PipedInputStream() creates a piped input stream that’s not yet connected to
a piped output stream. It must be connected to a piped output stream before
being used.

 PipedInputStream(int pipeSize) creates a piped input stream that’s not yet
connected to a piped output stream and uses pipeSize to size the piped input
stream’s buffer. It must be connected to a piped output stream before being
used. This constructor throws IllegalArgumentException when pipeSize is less
than or equal to 0.

 PipedInputStream(PipedOutputStream src) creates a piped input stream that’s
connected to piped output stream src. Bytes written to src can be read from
this piped input stream. This constructor throws IOException when an I/O error
occurs.

 PipedInputStream(PipedOutputStream src, int pipeSize) creates a piped
input stream that’s connected to piped output stream src and uses pipeSize
to size the piped input stream’s buffer. Bytes written to src can be read from
this piped input stream. This constructor throws IOException when an I/O error
occurs and IllegalArgumentException when pipeSize is less than or equal to 0.

483CHAPTER 11: Performing Classic I/O

PipedInputStream declares a void connect(PipedOutputStream src) method that connects this
piped input stream to src. This method throws IOException when this piped input stream is already
connected to another piped output stream.

The easiest way to create a pair of piped streams is in the same thread and in either order. For
example, you can first create the piped output stream:

PipedOutputStream pos = new PipedOutputStream();
PipedInputStream pis = new PipedInputStream(pos);

Alternatively, you can first create the piped input stream:

PipedInputStream pis = new PipedInputStream();
PipedOutputStream pos = new PipedOutputStream(pis);

You can leave both streams unconnected and later connect them to each other using the
appropriate piped stream’s connect() method, as follows:

PipedOutputStream pos = new PipedOutputStream();
PipedInputStream pis = new PipedInputStream();
// . . .
pos.connect(pis);

Listing 11-9 presents a PipedStreamsDemo application whose sender thread streams a sequence of
randomly generated byte integers to a receiver thread, which outputs this sequence.

Listing 11-9. Piping Randomly Generated Bytes from a Sender Thread to a Receiver Thread

import java.io.IOException;
import java.io.PipedInputStream;
import java.io.PipedOutputStream;

public class PipedStreamsDemo
{
 public static void main(String[] args) throws IOException
 {
 final PipedOutputStream pos = new PipedOutputStream();
 final PipedInputStream pis = new PipedInputStream(pos);
 Runnable senderTask = new Runnable()
 {
 final static int LIMIT = 10;

 @Override
 public void run()
 {
 try
 {
 for (int i = 0 ; i < LIMIT; i++)
 pos.write((byte) (Math.random() * 256));
 }
 catch (IOException ioe)

484 CHAPTER 11: Performing Classic I/O

 {
 ioe.printStackTrace();
 }
 finally
 {
 try
 {
 pos.close();
 }
 catch (IOException ioe)
 {
 ioe.printStackTrace();
 }
 }
 }
 };
 Runnable receiverTask = new Runnable()
 {
 @Override
 public void run()
 {
 try
 {
 int b;
 while ((b = pis.read()) != −1)
 System.out.println(b);
 }
 catch (IOException ioe)
 {
 ioe.printStackTrace();
 }
 finally
 {
 try
 {
 pis.close();
 }
 catch (IOException ioe)
 {
 ioe.printStackTrace();
 }
 }
 }
 };
 Thread sender = new Thread(senderTask);
 Thread receiver = new Thread(receiverTask);
 sender.start();
 receiver.start();
 }
}

485CHAPTER 11: Performing Classic I/O

Listing 11-9’s main() method creates piped output and piped input streams that will be used by
the senderTask thread to communicate a sequence of randomly generated byte integers and by the
receiverTask thread to receive this sequence.

The sender task’s run() method explicitly closes its pipe stream when it finishes sending the
data. If it didn’t do this, an IOException instance with a “write end dead” message would be
thrown when the receiver thread invoked read() for the final time (which would otherwise
return −1 to indicate end of stream). For more information on this message, check out
Daniel Ferber’s “Whats this? IOException: Write end dead” blog post
(http://techtavern.wordpress.com/2008/07/16/whats-this-ioexception-write-end-dead/).

Compile Listing 11-9 (javac PipedStreamsDemo.java) and run this application (java
PipedStreamsDemo). You’ll discover output similar to the following:

93
23
125
50
126
131
210
29
150
91

FilterOutputStream and FilterInputStream
Byte array, file, and piped streams pass bytes unchanged to their destinations. Java also supports
filter streams that buffer, compress/uncompress, encrypt/decrypt, or otherwise manipulate a
stream’s byte sequence (which is input to the filter) before it reaches its destination.

A filter output stream takes the data passed to its write() methods (the input stream), filters it, and
writes the filtered data to an underlying output stream, which might be another filter output stream or
a destination output stream such as a file output stream.

Filter output streams are created from subclasses of the concrete FilterOutputStream class, an
OutputStream subclass. FilterOutputStream declares a single FilterOutputStream(OutputStream out)
constructor that creates a filter output stream built on top of out, the underlying output stream.

Listing 11-10 reveals that it’s easy to subclass FilterOutputStream. At minimum, you declare
a constructor that passes its OutputStream argument to FilterOutputStream’s constructor and
override FilterOutputStream’s write(int) method.

Listing 11-10. Scrambling a Stream of Bytes

import java.io.FilterOutputStream;
import java.io.IOException;
import java.io.OutputStream;

public class ScrambledOutputStream extends FilterOutputStream
{
 private int[] map;

486 CHAPTER 11: Performing Classic I/O

 public ScrambledOutputStream(OutputStream out, int[] map)
 {
 super(out);
 if (map == null)
 throw new NullPointerException("map is null");
 if (map.length != 256)
 throw new IllegalArgumentException("map.length != 256");
 this.map = map;
 }

 @Override
 public void write(int b) throws IOException
 {
 out.write(map[b]);
 }
}

Listing 11-10 presents a ScrambledOutputStream class that performs trivial encryption on its input
stream by scrambling the input stream’s bytes via a remapping operation. This constructor takes a
pair of arguments:

 out identifies the output stream on which to write the scrambled bytes.

 map identifies an array of 256 byte-integer values to which input stream
bytes map.

The constructor first passes its out argument to the FilterOutputStream parent via a super(out);
call. It then verifies its map argument’s integrity (map must be nonnull and have a length of 256: a byte
stream offers exactly 256 bytes to map) before saving map.

The write(int) method is trivial: it calls the underlying output stream’s write(int) method
with the byte to which argument b maps. FilterOutputStream declares out to be protected
(for performance), which is why I can directly access this field.

Note It’s only essential to override write(int) because FilterOutputStream’s other two
write() methods are implemented via this method.

Listing 11-11 presents the source code to a Scramble application for experimenting with scrambling a
source file’s bytes via ScrambledOutputStream and writing these scrambled bytes to a destination file.

Listing 11-11. Scrambling a File’s Bytes

import java.io.FileInputStream;
import java.io.FileOutputStream;
import java.io.IOException;

import java.util.Random;

487CHAPTER 11: Performing Classic I/O

public class Scramble
{
 public static void main(String[] args)
 {
 if (args.length != 2)
 {
 System.err.println("usage: java Scramble srcpath destpath");
 return;
 }
 FileInputStream fis = null;
 ScrambledOutputStream sos = null;
 try
 {
 fis = new FileInputStream(args[0]);
 FileOutputStream fos = new FileOutputStream(args[1]);
 sos = new ScrambledOutputStream(fos, makeMap());
 int b;
 while ((b = fis.read()) != −1)
 sos.write(b);
 }
 catch (IOException ioe)
 {
 ioe.printStackTrace();
 }
 finally
 {
 if (fis != null)
 try
 {
 fis.close();
 }
 catch (IOException ioe)
 {
 ioe.printStackTrace();
 }
 if (sos != null)
 try
 {
 sos.close();
 }
 catch (IOException ioe)
 {
 ioe.printStackTrace();
 }
 }
 }

 static int[] makeMap()
 {
 int[] map = new int[256];
 for (int i = 0; i < map.length; i++)
 map[i] = i;

488 CHAPTER 11: Performing Classic I/O

 // Shuffle map.
 Random r = new Random(0);
 for (int i = 0; i < map.length; i++)
 {
 int n = r.nextInt(map.length);
 int temp = map[i];
 map[i] = map[n];
 map[n] = temp;
 }
 return map;
 }
}

Scramble’s main() method first verifies the number of command-line arguments: the first argument
identifies the source path of the file with unscrambled content; the second argument identifies the
destination path of the file that stores scrambled content.

Assuming that two command-line arguments have been specified, main() instantiates
FileInputStream, creating a file input stream that’s connected to the file identified by args[0].

Continuing, main() instantiates FileOutputStream, creating a file output stream that’s connected
to the file identified by args[1]. It then instantiates ScrambledOutputStream and passes the
FileOutputStream instance to ScrambledOutputStream’s constructor.

Note When a stream instance is passed to another stream class’s constructor, the two streams are
chained together. For example, the scrambled output stream is chained to the file output stream.

main() now enters a loop, reading bytes from the file input stream and writing them to the scrambled
output stream by calling ScrambledOutputStream’s write(int) method. This loop continues until
FileInputStream’s read() method returns −1 (end of file).

The finally block closes the file input stream and scrambled output stream by calling their close()
methods. It doesn’t call the file output stream’s close() method because FilterOutputStream
automatically calls the underlying output stream’s close() method.

The makeMap() method is responsible for creating the map array that’s passed to
ScrambledOutputStream’s constructor. The idea is to populate the array with all 256 byte-integer
values, storing them in random order.

Note I pass 0 as the seed argument when creating the java.util.Random object to return a
predictable sequence of random numbers. I need to use the same sequence of random numbers when
creating the complementary map array in the Unscramble application, which I will present shortly.
Unscrambling will not work without the same sequence.

489CHAPTER 11: Performing Classic I/O

Suppose you have a simple 15-byte file named hello.txt that contains “Hello, World!” (followed
by a carriage return and a line feed). If you execute java Scramble hello.txt hello.out on a
Windows 7 platform, you’ll observe Figure 11-5’s scrambled output.

Figure 11-5. Different fonts yield different-looking scrambled output

A filter input stream takes the data obtained from its underlying input stream—which might be
another filter input stream or a source input stream such as a file input stream—filters it, and makes
this data available via its read() methods (the output stream).

Filter input streams are created from subclasses of the concrete FilterInputStream class, an
InputStream subclass. FilterInputStream declares a single FilterInputStream(InputStream in)
constructor that creates a filter input stream built on top of in, the underlying input stream.

Listing 11-12 shows that it’s easy to subclass FilterInputStream. At minimum, declare a
constructor that passes its InputStream argument to FilterInputStream’s constructor and override
FilterInputStream’s read() and read(byte[], int, int) methods.

Listing 11-12. Unscrambling a Stream of Bytes

import java.io.FilterInputStream;
import java.io.InputStream;
import java.io.IOException;

public class ScrambledInputStream extends FilterInputStream
{
 private int[] map;

 public ScrambledInputStream(InputStream in, int[] map)
 {
 super(in);
 if (map == null)
 throw new NullPointerException("map is null");

490 CHAPTER 11: Performing Classic I/O

 if (map.length != 256)
 throw new IllegalArgumentException("map.length != 256");
 this.map = map;
 }

 @Override
 public int read() throws IOException
 {
 int value = in.read();
 return (value == −1) ? -1 : map[value];
 }

 @Override
 public int read(byte[] b, int off, int len) throws IOException
 {
 int nBytes = in.read(b, off, len);
 if (nBytes <= 0)
 return nBytes;
 for (int i = 0; i < nBytes; i++)
 b[off + i] = (byte) map[off + i];
 return nBytes;
 }
}

Listing 11-12 presents a ScrambledInputStream class that performs trivial decryption on its
underlying input stream by unscrambling the underlying input stream’s scrambled bytes via a
remapping operation.

The read() method first reads the scrambled byte from its underlying input stream. If the returned
value is −1 (end of file), this value is returned to its caller. Otherwise, the byte is mapped to its
unscrambled value, which is returned.

The read(byte[], int, int) method is similar to read() but stores bytes read from the underlying
input stream in a byte array, taking an offset into this array and a length (number of bytes to read)
into account.

Once again, −1 might be returned from the underlying read() method call. If so, this value must be
returned. Otherwise, each byte in the array is mapped to its unscrambled value, and the number of
bytes read is returned.

Note It’s only essential to override read() and read(byte[], int, int) because
FilterInputStream’s read(byte[]) method is implemented via the latter method.

Listing 11-13 presents the source code to an Unscramble application for experimenting with
ScrambledInputStream by unscrambling a source file’s bytes and writing these unscrambled bytes to
a destination file.

491CHAPTER 11: Performing Classic I/O

Listing 11-13. Unscrambling a File’s Bytes

import java.io.FileInputStream;
import java.io.FileOutputStream;
import java.io.IOException;

import java.util.Random;

public class Unscramble
{
 public static void main(String[] args)
 {
 if (args.length != 2)
 {
 System.err.println("usage: java Unscramble srcpath destpath");
 return;
 }
 ScrambledInputStream sis = null;
 FileOutputStream fos = null;
 try
 {
 FileInputStream fis = new FileInputStream(args[0]);
 sis = new ScrambledInputStream(fis, makeMap());
 fos = new FileOutputStream(args[1]);
 int b;
 while ((b = sis.read()) != −1)
 fos.write(b);
 }
 catch (IOException ioe)
 {
 ioe.printStackTrace();
 }
 finally
 {
 if (sis != null)
 try
 {
 sis.close();
 }
 catch (IOException ioe)
 {
 ioe.printStackTrace();
 }
 if (fos != null)
 try
 {
 fos.close();
 }

492 CHAPTER 11: Performing Classic I/O

 catch (IOException ioe)
 {
 ioe.printStackTrace();
 }
 }
 }

 static int[] makeMap()
 {
 int[] map = new int[256];
 for (int i = 0; i < map.length; i++)
 map[i] = i;
 // Shuffle map.
 Random r = new Random(0);
 for (int i = 0; i < map.length; i++)
 {
 int n = r.nextInt(map.length);
 int temp = map[i];
 map[i] = map[n];
 map[n] = temp;
 }
 int[] temp = new int[256];
 for (int i = 0; i < temp.length; i++)
 temp[map[i]] = i;
 return temp;
 }
}

Unscramble’s main() method first verifies the number of command-line arguments: the first argument
identifies the source path of the file with scrambled content; the second argument identifies the
destination path of the file that stores unscrambled content.

Assuming that two command-line arguments have been specified, main() instantiates
FileInputStream, creating a file input stream that’s connected to the file identified by args[1].

Continuing, main() instantiates FileInputStream, creating a file input stream that’s connected to the
file identified by args[0]. It then instantiates ScrambledInputStream and passes the FileInputStream
instance to ScrambledInputStream’s constructor.

Note When a stream instance is passed to another stream class’s constructor, the two streams are
chained together. For example, the scrambled input stream is chained to the file input stream.

main() now enters a loop, reading bytes from the scrambled input stream and writing them to the file
output stream. This loop continues until ScrambledInputStream’s read() method returns −1 (end of file).

The finally block closes the scrambled input stream and file output stream by calling their close()
methods. It doesn’t call the file input stream’s close() method because FilterOutputStream
automatically calls the underlying input stream’s close() method.

493CHAPTER 11: Performing Classic I/O

The makeMap() method is responsible for creating the map array that’s passed to
ScrambledInputStream’s constructor. The idea is to duplicate Listing 11-11’s map array and then
invert it so that unscrambling can be performed.

Continuing from the previous hello.txt/hello.out example, execute java Unscramble hello.out
hello.bak and you’ll see the same unscrambled content in hello.bak that’s present in hello.txt.

Note For an additional example of a filter output stream and its complementary filter input stream, check
out the “Extending Java Streams to Support Bit Streams” article (http://drdobbs.com/184410423)
on the Dr. Dobb’s web site. This article introduces BitStreamOutputStream and
BitStreamInputStream classes that are useful for outputting and inputting bit streams. The article
then demonstrates these classes in a Java implementation of the Lempel-Zif-Welch (LZW) data
compression and decompression algorithm.

BufferedOutputStream and BufferedInputStream
FileOutputStream and FileInputStream have a performance problem. Each file output stream
write() method call and file input stream read() method call results in a call to one of the underlying
platform’s native methods, and these native calls slow down I/O.

Note A native method is an underlying platform API function that Java connects to an application via the
Java Native Interface (JNI). Java supplies reserved word native to identify a native method. For example,
the RandomAccessFile class declares a private native void open(String name, int
mode) method. When a RandomAccessFile constructor calls this method, Java asks the underlying
platform (via the JNI) to open the specified file in the specified mode on Java’s behalf.

The concrete BufferedOutputStream and BufferedInputStream filter stream classes improve
performance by minimizing underlying output stream write() and underlying input stream read()
method calls. Instead, calls to BufferedOutputStream’s write() and BufferedInputStream’s read()
methods take Java buffers into account:

When a write buffer is full, write() calls the underlying output stream write()
method to empty the buffer. Subsequent calls to BufferedOutputStream’s
write() methods store bytes in this buffer until it’s once again full.

When the read buffer is empty, read() calls the underlying input stream read()
method to fill the buffer. Subsequent calls to BufferedInputStream’s read()
methods return bytes from this buffer until it’s once again empty.

BufferedOutputStream declares the following constructors:

 BufferedOutputStream(OutputStream out) creates a buffered output stream that
streams its output to out. An internal buffer is created to store bytes written to out.

494 CHAPTER 11: Performing Classic I/O

 BufferedOutputStream(OutputStream out, int size) creates a buffered output
stream that streams its output to out. An internal buffer of length size is created
to store bytes written to out.

The following example chains a BufferedOutputStream instance to a FileOutputStream instance.
Subsequent write() method calls on the BufferedOutputStream instance buffer bytes and
occasionally results in internal write() method calls on the encapsulated FileOutputStream
instance:

FileOutputStream fos = new FileOutputStream("employee.dat");
BufferedOutputStream bos = new BufferedOutputStream(fos); // Chain bos to fos.
bos.write(0); // Write to employee.dat through the buffer.
// Additional write() method calls.
bos.close(); // This method call internally calls fos's close() method.

BufferedInputStream declares the following constructors:

 BufferedInputStream(InputStream in) creates a buffered input stream that
streams its input from in. An internal buffer is created to store bytes read
from in.

 BufferedInputStream(InputStream in, int size) creates a buffered input
stream that streams its input from in. An internal buffer of length size is created
to store bytes read from in.

The following example chains a BufferedInputStream instance to a FileInputStream instance.
Subsequent read() method calls on the BufferedInputStream instance unbuffer bytes and
occasionally result in internal read() method calls on the encapsulated FileInputStream instance:

FileInputStream fis = new FileInputStream("employee.dat");
BufferedInputStream bis = new BufferedInputStream(fis); // Chain bis to fis.
int ch = bis.read(); // Read employee.dat through the buffer.
// Additional read() method calls.
bis.close(); // This method call internally calls fis's close() method.

DataOutputStream and DataInputStream
FileOutputStream and FileInputStream are useful for writing and reading bytes and arrays of
bytes. However, they provide no support for writing and reading primitive type values (e.g., integers)
and strings.

For this reason, Java provides the concrete DataOutputStream and DataInputStream filter stream
classes. Each class overcomes this limitation by providing methods to write or read primitive type
values and strings in a platform-independent way:

Integer values are written and read in big-endian format (the most
significant byte comes first). Check out Wikipedia’s “Endianness” entry (http://
en.wikipedia.org/wiki/Endianness) to learn about the concept of endianness.

Floating-point and double precision floating-point values are written and read
according to the IEEE 754 standard, which specifies 4 bytes per floating-point
value and 8 bytes per double precision floating-point value.

495CHAPTER 11: Performing Classic I/O

Strings are written and read according to a modified version of UTF-8, a
variable-length encoding standard for efficiently storing 2-byte Unicode characters.
Check out Wikipedia’s “UTF-8” entry (http://en.wikipedia.org/wiki/Utf-8) to
learn more about UTF-8.

DataOutputStream declares a single DataOutputStream(OutputStream out) constructor. Because
this class implements the DataOutput interface, DataOutputStream also provides access to the
same-named write methods as provided by RandomAccessFile.

DataInputStream declares a single DataInputStream(InputStream in) constructor. Because
this class implements the DataInput interface, DataInputStream also provides access to the
same-named read methods as provided by RandomAccessFile.

Listing 11-14 presents the source code to a DataStreamsDemo application that uses a
DataOutputStream instance to write multibyte values to a FileOutputStream instance and uses a
DataInputStream instance to read multibyte values from a FileInputStream instance.

Listing 11-14. Outputting and Then Inputting a Stream of Multibyte Values

import java.io.DataInputStream;
import java.io.DataOutputStream;
import java.io.FileInputStream;
import java.io.FileOutputStream;
import java.io.IOException;

public class DataStreamsDemo
{
 final static String FILENAME = "values.dat";

 public static void main(String[] args)
 {
 DataOutputStream dos = null;
 DataInputStream dis = null;
 try
 {
 FileOutputStream fos = new FileOutputStream(FILENAME);
 dos = new DataOutputStream(fos);
 dos.writeInt(1995);
 dos.writeUTF("Saving this String in modified UTF-8 format!");
 dos.writeFloat(1.0F);
 dos.close(); // Close underlying file output stream.
 // The following null assignment prevents another close attempt on
 // dos (which is now closed) should IOException be thrown from
 // subsequent method calls.
 dos = null;
 FileInputStream fis = new FileInputStream(FILENAME);
 dis = new DataInputStream(fis);
 System.out.println(dis.readInt());
 System.out.println(dis.readUTF());
 System.out.println(dis.readFloat());
 }
 catch (IOException ioe)

496 CHAPTER 11: Performing Classic I/O

 {
 System.err.println("I/O error: " + ioe.getMessage());
 }
 finally
 {
 if (dos != null)
 try
 {
 dos.close();
 }
 catch (IOException ioe2) // Cannot redeclare local variable ioe.
 {
 assert false; // shouldn't happen in this context
 }
 if (dis != null)
 try
 {
 dis.close();
 }
 catch (IOException ioe2) // Cannot redeclare local variable ioe.
 {
 assert false; // shouldn't happen in this context
 }
 }
 }
}

DataStreamsDemo creates a file named values.dat; calls DataOutputStream methods to write an
integer, a string, and a floating-point value to this file; and calls DataInputStream methods to read
back these values. Unsurprisingly, it generates the following output:

1995
Saving this String in modified UTF-8 format!
1.0

Caution When reading a file of values written by a sequence of DataOutputStream method
calls, make sure to use the same method-call sequence. Otherwise, you’re bound to end up
with erroneous data and, in the case of the readUTF() methods, thrown instances of the
java.io.UTFDataFormatException class (a subclass of IOException).

Object Serialization and Deserialization
Java provides the DataOutputStream and DataInputStream classes to stream primitive type values
and String objects. However, you cannot use these classes to stream non-String objects. Instead,
you must use object serialization and deserialization to stream objects of arbitrary types.

Object serialization is a virtual machine mechanism for serializing an object state into a stream of
bytes. Its deserialization counterpart is a virtual machine mechanism for deserializing this state from
a byte stream.

497CHAPTER 11: Performing Classic I/O

Note An object’s state consists of instance fields that store primitive type values and/or references
to other objects. When an object is serialized, the objects that are part of this state are also serialized
(unless you prevent them from being serialized). Furthermore, the objects that are part of those objects’
states are serialized (unless you prevent this), and so on.

Java supports default serialization and deserialization, custom serialization and deserialization, and
externalization.

Default Serialization and Deserialization
Default serialization and deserialization is the easiest form to use but offers little control over how
objects are serialized and deserialized. Although Java handles most of the work on your behalf, there
are a couple of tasks that you must perform.

Your first task is to have the class of the object that is to be serialized implement the
java.io.Serializable interface, either directly or indirectly via the class’s superclass.
The rationale for implementing Serializable is to avoid unlimited serialization.

Note Serializable is an empty marker interface (there are no methods to implement) that a
class implements to tell the virtual machine that it’s okay to serialize the class’s objects. When the
serialization mechanism encounters an object whose class doesn’t implement Serializable, it
throws an instance of the java.io.NotSerializableException class (an indirect subclass of
IOException).

Unlimited serialization is the process of serializing an entire object graph (all objects that are
reachable from a starting object). Java doesn’t support unlimited serialization for the following
reasons:

 Security: If Java automatically serialized an object containing sensitive
information (e.g., a password or a credit card number), it would be easy for
a hacker to discover this information and wreak havoc. It’s better to give the
developer a choice to prevent this from happening.

 Performance: Serialization leverages the Reflection API, which tends to slow
down application performance. Unlimited serialization could really hurt an
application’s performance.

 Objects not amenable to serialization: Some objects exist only in the context of
a running application and it’s meaningless to serialize them. For example, a file
stream object that’s deserialized no longer represents a connection to a file.

Listing 11-15 declares an Employee class that implements the Serializable interface to tell the
virtual machine that it’s okay to serialize Employee objects.

498 CHAPTER 11: Performing Classic I/O

Listing 11-15. Implementing Serializable

import java.io.Serializable;

public class Employee implements Serializable
{
 private String name;
 private int age;

 public Employee(String name, int age)
 {
 this.name = name;
 this.age = age;
 }

 public String getName() { return name; }

 public int getAge() { return age; }
}

Because Employee implements Serializable, the serialization mechanism will not throw a
NotSerializableException instance when serializing an Employee object. Not only does Employee
implement Serializable, the String class also implements this interface.

Your second task is to work with the ObjectOutputStream class and its writeObject() method to serialize
an object and the OutputInputStream class and its readObject() method to deserialize the object.

Note Although ObjectOutputStream extends OutputStream instead of FilterOutputStream,
and although ObjectInputStream extends InputStream instead of FilterInputStream, these
classes behave as filter streams.

Java provides the concrete ObjectOutputStream class to initiate the serialization of an object’s
state to an object output stream. This class declares an ObjectOutputStream(OutputStream out)
constructor that chains the object output stream to the output stream specified by out.

When you pass an output stream reference to out, this constructor attempts to write a serialization
header to that output stream. It throws NullPointerException when out is null and IOException
when an I/O error prevents it from writing this header.

ObjectOutputStream serializes an object via its void writeObject(Object obj) method. This method
attempts to write information about obj’s class followed by the values of obj’s instance fields to the
underlying output stream.

writeObject() doesn’t serialize the contents of static fields. In contrast, it serializes the contents
of all instance fields that are not explicitly prefixed with the transient reserved word. For example,
consider the following field declaration:

public transient char[] password;

499CHAPTER 11: Performing Classic I/O

This declaration specifies transient to avoid serializing a password for some hacker to encounter.
The virtual machine’s serialization mechanism ignores any instance field that’s marked transient.

writeObject() throws IOException or an instance of an IOException subclass when something goes
wrong. For example, this method throws NotSerializableException when it encounters an object
whose class doesn’t implement Serializable.

Note Because ObjectOutputStream implements DataOutput, it also declares methods for
writing primitive-type values and strings to an object output stream.

Java provides the concrete ObjectInputStream class to initiate the deserialization of an object’s state
from an object input stream. This class declares an ObjectInputStream(InputStream in) constructor
that chains the object input stream to the input stream specified by in.

When you pass an input stream reference to in, this constructor attempts to read a serialization
header from that input stream. It throws NullPointerException when in is null, IOException when
an I/O error prevents it from reading this header, and java.io.StreamCorruptedException (an indirect
subclass of IOException) when the stream header is incorrect.

ObjectInputStream deserializes an object via its Object readObject() method. This method
attempts to read information about obj’s class followed by the values of obj’s instance fields from
the underlying input stream.

readObject() throws java.lang.ClassNotFoundException, IOException, or an instance of an
IOException subclass when something goes wrong. For example, this method throws
java.io.OptionalDataException when it encounters primitive-type values instead of objects.

Note Because ObjectInputStream implements DataInput, it also declares methods for reading
primitive-type values and strings from an object input stream.

Listing 11-16 presents an application that uses these classes to serialize and deserialize an instance
of Listing 11-15’s Employee class to and from an employee.dat file.

Listing 11-16. Serializing and Deserializing an Employee Object

import java.io.FileInputStream;
import java.io.FileOutputStream;
import java.io.IOException;
import java.io.ObjectInputStream;
import java.io.ObjectOutputStream;

public class SerializationDemo
{
 final static String FILENAME = "employee.dat";

500 CHAPTER 11: Performing Classic I/O

 public static void main(String[] args)
 {
 ObjectOutputStream oos = null;
 ObjectInputStream ois = null;
 try
 {
 FileOutputStream fos = new FileOutputStream(FILENAME);
 oos = new ObjectOutputStream(fos);
 Employee emp = new Employee("John Doe", 36);
 oos.writeObject(emp);
 oos.close();
 oos = null;
 FileInputStream fis = new FileInputStream(FILENAME);
 ois = new ObjectInputStream(fis);
 emp = (Employee) ois.readObject(); // (Employee) cast is necessary.
 ois.close();
 System.out.println(emp.getName());
 System.out.println(emp.getAge());
 }
 catch (ClassNotFoundException cnfe)
 {
 System.err.println(cnfe.getMessage());
 }
 catch (IOException ioe)
 {
 System.err.println(ioe.getMessage());
 }
 finally
 {
 if (oos != null)
 try
 {
 oos.close();
 }
 catch (IOException ioe)
 {
 assert false; // shouldn't happen in this context
 }

 if (ois != null)
 try
 {
 ois.close();
 }
 catch (IOException ioe)
 {
 assert false; // shouldn't happen in this context
 }
 }
 }
}

501CHAPTER 11: Performing Classic I/O

Listing 11-16’s main() method first instantiates Employee and serializes this instance via
writeObject() to employee.dat. It then deserializes this instance from this file via readObject() and
invokes the instance’s getName() and getAge() methods. Along with employee.dat, you’ll discover
the following output when you run this application:

John Doe
36

There’s no guarantee that the same class will exist when a serialized object is deserialized (perhaps
an instance field has been deleted). During deserialization, this mechanism causes readObject()
to throw java.io.InvalidClassException—an indirect subclass of the IOException class—when it
detects a difference between the deserialized object and its class.

Every serialized object has an identifier. The deserialization mechanism compares the identifier of
the object being deserialized with the serialized identifier of its class (all serializable classes are
automatically given unique identifiers unless they explicitly specify their own identifiers) and causes
InvalidClassException to be thrown when it detects a mismatch.

Perhaps you’ve added an instance field to a class, and you want the deserialization
mechanism to set the instance field to a default value rather than have readObject() throw an
InvalidClassException instance. (The next time you serialize the object, the new field’s value will be
written out.)

You can avoid the thrown InvalidClassException instance by adding a static final long
serialVersionUID = long integer value; declaration to the class. The long integer value must be
unique and is known as a stream unique identifier (SUID).

During deserialization, the virtual machine will compare the deserialized object’s SUID to its class’s
SUID. If they match, readObject() will not throw InvalidClassException when it encounters a
compatible class change (e.g., adding an instance field). However, it will still throw this exception
when it encounters an incompatible class change (e.g., changing an instance field’s name or type).

Note Whenever you change a class in some fashion, you must calculate a new SUID and assign it to
serialVersionUID.

The JDK provides a serialver tool for calculating the SUID. For example, to generate an SUID for
Listing 11-15’s Employee class, change to the directory containing Employee.class and execute
serialver Employee. In response, serialver generates the following output, which you paste
(except for Employee:) into Employee.java:

Employee: static final long serialVersionUID = 1517331364702470316L;

The Windows version of serialver also provides a graphical user interface that you might find
more convenient to use. To access this interface, specify serialver -show. When the serialver
window appears, enter Employee into the Full Class Name textfield and click the Show button, as
demonstrated in Figure 11-6.

502 CHAPTER 11: Performing Classic I/O

Custom Serialization and Deserialization
My previous discussion focused on default serialization and deserialization (with the exception of
marking an instance field transient to prevent it from being included during serialization). However,
situations arise in which you need to customize these tasks.

For example, suppose you want to serialize instances of a class that doesn’t implement
Serializable. As a workaround, you subclass this other class, have the subclass implement
Serializable, and forward subclass constructor calls to the superclass.

Although this workaround lets you serialize subclass objects, you cannot deserialize these serialized
objects when the superclass doesn’t declare a noargument constructor, which is required by the
deserialization mechanism. Listing 11-17 demonstrates this problem.

Listing 11-17. Problematic Deserialization

import java.io.FileInputStream;
import java.io.FileOutputStream;
import java.io.IOException;
import java.io.ObjectInputStream;
import java.io.ObjectOutputStream;
import java.io.Serializable;

class Employee
{
 private String name;

 Employee(String name)
 {
 this.name = name;
 }

 @Override
 public String toString()
 {
 return name;
 }
}

Figure 11-6. The serialver user interface reveals Employee’s SUID

503CHAPTER 11: Performing Classic I/O

class SerEmployee extends Employee implements Serializable
{
 SerEmployee(String name)
 {
 super(name);
 }
}

public class SerializationDemo
{
 public static void main(String[] args)
 {
 ObjectOutputStream oos = null;
 ObjectInputStream ois = null;
 try
 {
 oos = new ObjectOutputStream(new FileOutputStream("employee.dat"));
 SerEmployee se = new SerEmployee("John Doe");
 System.out.println(se);
 oos.writeObject(se);
 oos.close();
 oos = null;
 System.out.println("se object written to file");
 ois = new ObjectInputStream(new FileInputStream("employee.dat"));
 se = (SerEmployee) ois.readObject();
 System.out.println("se object read from file");
 System.out.println(se);
 }
 catch (ClassNotFoundException cnfe)
 {
 cnfe.printStackTrace();
 }
 catch (IOException ioe)
 {
 ioe.printStackTrace();
 }
 finally
 {
 if (oos != null)
 try
 {
 oos.close();
 }
 catch (IOException ioe)
 {
 assert false; // shouldn't happen in this context
 }
 if (ois != null)
 try
 {
 ois.close();
 }

504 CHAPTER 11: Performing Classic I/O

 catch (IOException ioe)
 {
 assert false; // shouldn't happen in this context
 }
 }
 }
}

Listing 11-17’s main() method instantiates SerEmployee with an employee name. This class’s
SerEmployee(String) constructor passes this argument to its Employee counterpart.

main() next calls Employee’s toString() method indirectly via System.out.println(), to obtain this
name, which is then output.

Continuing, main() serializes the SerEmployee instance to an employee.dat file via writeObject().
It then attempts to deserialize this object via readObject(), and this is where the trouble occurs as
revealed by the following output:

John Doe
se object written to file
java.io.InvalidClassException: SerEmployee; no valid constructor
 at java.io.ObjectStreamClass$ExceptionInfo.newInvalidClassException(Unknown Source)
 at java.io.ObjectStreamClass.checkDeserialize(Unknown Source)
 at java.io.ObjectInputStream.readOrdinaryObject(Unknown Source)
 at java.io.ObjectInputStream.readObject0(Unknown Source)
 at java.io.ObjectInputStream.readObject(Unknown Source)
 at SerializationDemo.main(SerializationDemo.java:48)

This output reveals a thrown instance of the InvalidClassException class. This exception object
was thrown during deserialization because Employee doesn’t possess a noargument constructor.

You can overcome this problem by taking advantage of the wrapper class pattern that I presented in
Chapter 4. Furthermore, you declare a pair of private methods in the subclass that the serialization
and deserialization mechanisms look for and call.

Normally, the serialization mechanism writes out a class’s instance fields to the underlying
output stream. However, you can prevent this from happening by declaring a private void
writeObject(ObjectOutputStream oos) method in that class.

When the serialization mechanism discovers this method, it calls the method instead of automatically
outputting instance field values. The only values that are output are those explicitly output via
the method.

Conversely, the deserialization mechanism assigns values to a class’s instance fields that it reads
from the underlying input stream. However, you can prevent this from happening by declaring a
private void readObject(ObjectInputStream ois) method.

When the deserialization mechanism discovers this method, it calls the method instead of
automatically assigning values to instance fields. The only values that are assigned to instance fields
are those explicitly assigned via the method.

505CHAPTER 11: Performing Classic I/O

Because SerEmployee doesn’t introduce any fields, and because Employee doesn’t offer access to
its internal fields (assume you don’t have the source code for this class), what would a serialized
SerEmployee object include?

Although you cannot serialize Employee’s internal state, you can serialize the argument(s) passed to
its constructors, such as the employee name.

Listing 11-18 reveals the refactored SerEmployee and SerializationDemo classes.

Listing 11-18. Solving Problematic Deserialization

import java.io.FileInputStream;
import java.io.FileOutputStream;
import java.io.IOException;
import java.io.ObjectInputStream;
import java.io.ObjectOutputStream;
import java.io.Serializable;

class Employee
{
 private String name;

 Employee(String name)
 {
 this.name = name;
 }

 @Override
 public String toString()
 {
 return name;
 }
}

class SerEmployee implements Serializable
{
 private Employee emp;
 private String name;

 SerEmployee(String name)
 {
 this.name = name;
 emp = new Employee(name);
 }

 private void writeObject(ObjectOutputStream oos) throws IOException
 {
 oos.writeUTF(name);
 }

 private void readObject(ObjectInputStream ois)
 throws ClassNotFoundException, IOException

506 CHAPTER 11: Performing Classic I/O

 {
 name = ois.readUTF();
 emp = new Employee(name);
 }

 @Override
 public String toString()
 {
 return name;
 }
}

public class SerializationDemo
{
 public static void main(String[] args)
 {
 ObjectOutputStream oos = null;
 ObjectInputStream ois = null;
 try
 {
 oos = new ObjectOutputStream(new FileOutputStream("employee.dat"));
 SerEmployee se = new SerEmployee("John Doe");
 System.out.println(se);
 oos.writeObject(se);
 oos.close();
 oos = null;
 System.out.println("se object written to file");
 ois = new ObjectInputStream(new FileInputStream("employee.dat"));
 se = (SerEmployee) ois.readObject();
 System.out.println("se object read from file");
 System.out.println(se);
 }
 catch (ClassNotFoundException cnfe)
 {
 cnfe.printStackTrace();
 }
 catch (IOException ioe)
 {
 ioe.printStackTrace();
 }
 finally
 {
 if (oos != null)
 try
 {
 oos.close();
 }
 catch (IOException ioe)
 {
 assert false; // shouldn't happen in this context
 }

507CHAPTER 11: Performing Classic I/O

 if (ois != null)
 try
 {
 ois.close();
 }
 catch (IOException ioe)
 {
 assert false; // shouldn't happen in this context
 }
 }
 }
}

SerEmployee’s writeObject() and readObject() methods rely on DataOutput and DataInput
methods: they don’t need to call writeObject() and readObject() to perform their tasks.

When you run this application, it generates the following output:

John Doe
se object written to file
se object read from file
John Doe

The writeObject() and readObject() methods can be used to serialize/deserialize data items
beyond the normal state (non-transient instance fields), for example, serializing/deserializing the
contents of a static field.

However, before serializing or deserializing the additional data items, you must tell the serialization
and deserialization mechanisms to serialize or deserialize the object’s normal state. The following
methods help you accomplish this task:

 ObjectOutputStream’s defaultWriteObject() method outputs the object’s
normal state. Your writeObject() method first calls this method to output that
state and then outputs additional data items via ObjectOutputStream methods
such as writeUTF().

 ObjectInputStream’s defaultReadObject() method inputs the object’s normal
state. Your readObject() method first calls this method to input that state and then
inputs additional data items via ObjectInputStream methods such as readUTF().

Externalization
Along with default serialization/deserialization and custom serialization/deserialization, Java supports
externalization. Unlike default/custom serialization/deserialization, externalization offers complete
control over the serialization and deserialization tasks.

Note Externalization helps you improve the performance of the reflection-based serialization
and deserialization mechanisms by giving you complete control over what fields are serialized and
deserialized.

508 CHAPTER 11: Performing Classic I/O

Java supports externalization via java.io.Externalizable. This interface declares the following pair
of public methods:

 void writeExternal(ObjectOutput out) saves the calling object’s contents by
calling various methods on the out object. This method throws IOException
when an I/O error occurs. (java.io.ObjectOutput is a subinterface of DataOutput
and is implemented by ObjectOutputStream.)

 void readExternal(ObjectInput in) restores the calling object’s contents by
calling various methods on the in object. This method throws IOException when
an I/O error occurs and ClassNotFoundException when the class of the object
being restored cannot be found. (java.io.ObjectInput is a subinterface of
DataInput and is implemented by ObjectInputStream.)

If a class implements Externalizable, its writeExternal() method is responsible for saving all field
values that are to be saved. Also, its readExternal() method is responsible for restoring all saved
field values and in the order they were saved.

Listing 11-19 presents a refactored version of Listing 11-15’s Employee class to show you how to
take advantage of externalization.

Listing 11-19. Refactoring Listing 11-15’s Employee Class to Support Externalization

import java.io.Externalizable;
import java.io.IOException;
import java.io.ObjectInput;
import java.io.ObjectOutput;

public class Employee implements Externalizable
{
 private String name;
 private int age;

 public Employee()
 {
 System.out.println("Employee() called");
 }

 public Employee(String name, int age)
 {
 this.name = name;
 this.age = age;
 }

 public String getName() { return name; }

 public int getAge() { return age; }

 @Override
 public void writeExternal(ObjectOutput out) throws IOException

509CHAPTER 11: Performing Classic I/O

 {
 System.out.println("writeExternal() called");
 out.writeUTF(name);
 out.writeInt(age);
 }

 @Override
 public void readExternal(ObjectInput in)
 throws IOException, ClassNotFoundException
 {
 System.out.println("readExternal() called");
 name = in.readUTF();
 age = in.readInt();
 }
}

Employee declares a public Employee() constructor because each class that participates in
externalization must declare a public noargument constructor. The deserialization mechanism calls
this constructor to instantiate the object.

Caution The deserialization mechanism throws InvalidClassException with a “no valid
constructor” message when it doesn’t detect a public noargument constructor.

Initiate externalization by instantiating ObjectOutputStream and calling its writeObject(Object)
method, or by instantiating ObjectInputStream and calling its readObject() method.

Note When passing an object whose class (directly/indirectly) implements Externalizable to
writeObject(), the writeObject()-initiated serialization mechanism writes only the identity of the
object’s class to the object output stream.

Suppose you compiled Listing 11-16’s SerializationDemo.java source code and Listing 11-19’s
Employee.java source code in the same directory. Now suppose you executed java
SerializationDemo. In response, you would observe the following output:

writeExternal() called
Employee() called
readExternal() called
John Doe
36

Before serializing an object, the serialization mechanism checks the object’s class to see if it
implements Externalizable. If so, the mechanism calls writeExternal(). Otherwise, it looks for
a private writeObject(ObjectOutputStream) method and calls this method when present. When
this method isn’t present, this mechanism performs default serialization, which includes only
nontransient instance fields.

510 CHAPTER 11: Performing Classic I/O

Before deserializing an object, the deserialization mechanism checks the object’s class to see if it
implements Externalizable. If so, the mechanism attempts to instantiate the class via the public
noargument constructor. Assuming success, it calls readExternal().

When the object’s class doesn’t implement Externalizable, the deserialization mechanism looks for
a private readObject(ObjectInputStream) method. When this method isn’t present, this mechanism
performs default deserialization, which includes only nontransient instance fields.

PrintStream
Of all the stream classes, PrintStream is an oddball: it should have been named PrintOutputStream
for consistency with the naming convention. This filter output stream class writes string
representations of input data items to the underlying output stream.

Note PrintStream uses the default character encoding to convert a string’s characters to bytes.
(I’ll discuss character encodings when I introduce you to writers and readers in the next section.)
Because PrintStream doesn’t support different character encodings, you should use the equivalent
PrintWriter class instead of PrintStream. However, you need to know about PrintStream when
working with System.out and System.err because these class fields are of type PrintStream.

PrintStream instances are print streams whose various print() and println() methods print string
representations of integers, floating-point values, and other data items to the underlying output
stream. Unlike the print() methods, println() methods append a line terminator to their output.

Note The line terminator (also known as line separator) isn’t necessarily the newline (also
commonly referred to as line feed). Instead, to promote portability, the line separator is the sequence
of characters defined by system property line.separator. On Windows platforms,
System.getProperty("line.separator") returns the actual carriage return code (13), which
is symbolically represented by \r, followed by the actual newline/line feed code (10), which is
symbolically represented by \n. In contrast, System.getProperty("line.separator") returns
only the actual newline/line feed code on Unix and Linux platforms.

The println() methods call their corresponding print() methods followed by the equivalent of
the void println() method, which evenutally results in line.separator’s value being output. For
example, void println(int x) outputs x’s string representation and calls this method to output the
line separator.

511CHAPTER 11: Performing Classic I/O

Caution Never hard-code the \n escape sequence in a string literal that you are going to output
via a print() or println() method. Doing so isn’t portable. For example, when Java executes
System.out.print("first line\n"); followed by System.out.println("second
line");, you will see first line on one line followed by second line on a subsequent line when
this output is viewed at the Windows command line. In contrast, you’ll see first linesecond line
when this output is viewed in the Windows Notepad application (which requires a carriage return/line
feed sequence to terminate lines). When you need to output a blank line, the easiest way to do this is
to call System.out.println();, which is why you find this method call used elsewhere in my book.
I confess that I don’t always follow my own advice, so you might find instances of \n in literal strings
being passed to System.out.print() or System.out.println() elsewhere in this book.

PrintStream offers three other features that you’ll find useful:

Unlike other output streams, a print stream never rethrows an IOException
instance thrown from the underlying output stream. Instead, exceptional
situations set an internal flag that can be tested by calling PrintStream’s boolean
checkError() method, which returns true to indicate a problem.

 PrintStream objects can be created to automatically flush their output to the
underlying output stream. In other words, the flush() method is automatically
called after a byte array is written, one of the println() methods is called, or
a newline is written. The PrintStream instances assigned to System.out and
System.err automatically flush their output to the underlying output stream.

 PrintStream declares a PrintStream format(String format, Object... args)
method for achieving formatted output. Behind the scene, this method works
with the Formatter class that I introduced in Chapter 10. PrintStream also
declares a printf(String format, Object... args) convenience method that
delegates to the format() method. For example, invoking printf() via
out.printf(format, args) is identical to invoking out.format(format, args).

Working with Writers and Readers
Java’s stream classes are good for streaming sequences of bytes, but they’re not good for streaming
sequences of characters because bytes and characters are two different things: a byte represents
an 8-bit data item and a character represents a 16-bit data item. Also, Java’s char and String types
naturally handle characters instead of bytes.

More important, byte streams have no knowledge of character sets (sets of mappings between
integer values, known as code points, and symbols, such as Unicode) and their character encodings
(mappings between the members of a character set and sequences of bytes that encode these
characters for efficiency, such as UTF-8).

If you need to stream characters, you should take advantage of Java’s writer and reader classes,
which were designed to support character I/O (they work with char instead of byte). Furthermore,
the writer and reader classes take character encodings into account.

512 CHAPTER 11: Performing Classic I/O

A BRIEF HISTORY OF CHARACTER SETS AND CHARACTER ENCODINGS

Early computers and programming languages were created mainly by English-speaking programmers in countries
where English was the native language. They developed a standard mapping between code points 0 through 127 and
the 128 commonly used characters in the English language (e.g., A–Z). The resulting character set/encoding was named
American Standard Code for Information Interchange (ASCII).

The problem with ASCII is that it’s inadequate for most non-English languages. For example, ASCII doesn’t support
diacritical marks such as the cedilla used in the French language. Because a byte can represent a maximum of 256
different characters, developers around the world started creating different character sets/encodings that encoded
the 128 ASCII characters but also encoded extra characters to meet the needs of languages such as French, Greek, or
Russian. Over the years, many legacy (and still important) data files have been created whose bytes represent characters
defined by specific character sets/encodings.

The International Organization for Standardization (ISO) and the International Electrotechnical Commission (IEC) have
worked to standardize these 8-bit character sets/encodings under a joint umbrella standard called ISO/IEC 8859. The
result is a series of substandards named ISO/IEC 8859-1, ISO/IEC 8859-2, and so on. For example, ISO/IEC 8859–1 (also
known as Latin-1) defines a character set/encoding that consists of ASCII plus the characters covering most Western
European countries. Also, ISO/IEC 8859-2 (also known as Latin-2) defines a similar character set/encoding covering
Central and Eastern European countries.

Despite ISO’s/IEC’s best efforts, a plethora of character sets/encodings is still inadequate. For example, most character
sets/encodings only allow you to create documents in a combination of English and one other language (or a small
number of other languages). You cannot, for example, use an ISO/IEC character set/encoding to create a document using
a combination of English, French, Turkish, Russian, and Greek characters.

This and other problems are being addressed by an international effort that has created and is continuing to develop
Unicode, a single universal character set. Because Unicode characters are bigger than ISO/IEC characters, Unicode uses
one of several variable-length encoding schemes known as Unicode Transformation Format (UTF) to encode Unicode
characters for efficiency. For example, UTF-8 encodes every character in the Unicode character set in 1 to 4 bytes (and is
backward compatible with ASCII).

The terms character set and character encoding are often used interchangeably. They mean the same thing in the
context of ISO/IEC character sets in which a code point is the encoding. However, these terms are different in the context
of Unicode in which Unicode is the character set and UTF-8 is one of several possible character encodings for Unicode
characters.

Writer and Reader Classes Overview
The java.io package provides several writer and reader classes that are descendents of the
abstract Writer and Reader classes. Figure 11-7 reveals the hierarchy of writer classes.

513CHAPTER 11: Performing Classic I/O

BufferedWriter

CharArrayWriter

OutputStreamWriter

PipedWriter

PrintWriter

StringWriter

FileWriter

FilterWriter (abstract)

Writer (abstract)

Figure 11-7. Unlike FilterOutputStream, FilterWriter is abstract

BufferedReader

CharArrayReader

InputStreamReader

PipedReader

PushbackReader

FileReader

StringReader

LineNumberReader

FilterReader (abstract)

Reader (abstract)

Figure 11-8. Unlike FilterInputStream, FilterReader is abstract

Figure 11-8 reveals the hierarchy of reader classes.

Although the writer and reader class hierarchies are similar to their output stream and input stream
counterparts, there are differences. For example, FilterWriter and FilterReader are abstract,
whereas their FilterOutputStream and FilterInputStream equivalents are not abstract. Also,
BufferedWriter and BufferedReader don’t extend FilterWriter and FilterReader, whereas
BufferedOutputStream and BufferedInputStream extend FilterOutputStream and FilterInputStream.

The output stream and input stream classes were introduced in Java 1.0. After their release, design
issues emerged. For example, FilterOutputStream and FilterInputStream should have been
abstract. However, it was too late to make these changes because the classes were already being
used; making these changes would have resulted in broken code. The designers of Java 1.1’s writer
and reader classes took the time to correct these mistakes.

514 CHAPTER 11: Performing Classic I/O

Note Regarding BufferedWriter and BufferedReader directly subclassing Writer and Reader
instead of FilterWriter and FilterReader, I believe that this change has to do with performance.
Calls to BufferedOutputStream’s write() methods and BufferedInputStream’s read() methods
result in calls to FilterOutputStream’s write() methods and FilterInputStream’s read()
methods. Because a file I/O activity such as copying one file to another can involve many write()/read()
method calls, you want the best performance possible. By not subclassing FilterWriter and
FilterReader, BufferedWriter and BufferedReader achieve better performance.

For brevity, I focus only on the Writer, Reader, OutputStreamWriter, OutputStreamReader,
FileWriter, and FileReader classes in this chapter.

Writer and Reader
Java provides the Writer and Reader classes for performing character I/O. Writer is the superclass
of all writer subclasses. The following list identifies differences between Writer and OutputStream:

 Writer declares several append() methods for appending characters to this
writer. These methods exist because Writer implements the
java.lang.Appendable interface, which is used in partnership with the
Formatter class (discussed in Chapter 10) to output formatted strings.

 Writer declares additional write() methods, including a convenient void
write(String str) method for writing a String object’s characters to this writer.

Reader is the superclass of all reader subclasses. The following list identifies differences between
Reader and InputStream:

 Reader declares read(char[]) and read(char[], int, int) methods instead of
read(byte[]) and read(byte[], int, int) methods.

 Reader doesn’t declare an available() method.

 Reader declares a boolean ready() method that returns true when the next
read() call is guaranteed not to block for input.

 Reader declares an int read(CharBuffer target) method for reading characters
from a character buffer. (I discuss CharBuffer in Chapter 13.)

OutputStreamWriter and InputStreamReader
The concrete OutputStreamWriter class (a Writer subclass) is a bridge between an incoming
sequence of characters and an outgoing stream of bytes. Characters written to this writer are
encoded into bytes according to the default or specified character encoding.

Note The default character encoding is accessible via the file.encoding system property.

515CHAPTER 11: Performing Classic I/O

Each call to one of OutputStreamWriter’s write() methods causes an encoder to be called on
the given character(s). The resulting bytes are accumulated in a buffer before being written to the
underlying output stream. The characters passed to the write() methods are not buffered.

OutputStreamWriter declares four constructors, including the following pair:

 OutputStreamWriter(OutputStream out) creates a bridge between an incoming
sequence of characters (passed to OutputStreamWriter via its append() and
write() methods) and the underlying output stream out. The default character
encoding is used to encode characters into bytes.

 OutputStreamWriter(OutputStream out, String charsetName) creates a bridge
between an incoming sequence of characters (passed to OutputStreamWriter
via its append() and write() methods) and underlying output stream out.
charsetName identifies the character encoding used to encode characters into
bytes. This constructor throws java.io.UnsupportedEncodingException when
the named character encoding isn’t supported.

Note OutputStreamWriter depends on the abstract java.nio.charset.Charset and
java.nio.charset.CharsetEncoder classes to perform character encoding.

The following example uses the second constructor to create a bridge to an underlying file output
stream so that Polish text can be written to an ISO/IEC 8859-2-encoded file.

FileOutputStream fos = new FileOutputStream("polish.txt");
OutputStreamWriter osw = new OutputStreamWriter(fos, "8859_2");
char ch = '\u0323'; // Accented N.
osw.write(ch);

The concrete InputStreamReader class (a Reader subclass) is a bridge between an incoming stream
of bytes and an outgoing sequence of characters. Characters read from this reader are decoded
from bytes according to the default or specified character encoding.

Each call to one of InputStreamReader’s read() methods may cause one or more bytes to be read
from the underlying input stream. To enable the efficient conversion of bytes to characters, more
bytes may be read ahead from the underlying stream than are necessary to satisfy the current read
operation.

InputStreamReader declares four constructors, including the following pair:

 InputStreamReader(InputStream in) creates a bridge between underlying
input stream in and an outgoing sequence of characters (returned from
InputStreamReader via its read() methods). The default character encoding is
used to decode bytes into characters.

 InputStreamReader(InputStream in, String charsetName) creates a bridge
between underlying input stream in and an outgoing sequence of characters
(returned from InputStreamReader via its read() methods). charsetName identifies

516 CHAPTER 11: Performing Classic I/O

the character encoding used to decode bytes into characters. This constructor
throws UnsupportedEncodingException when the named character encoding is
not supported.

Note InputStreamReader depends on the abstract Charset and java.nio.charset.
CharsetDecoder classes to perform character decoding.

The following example uses the second constructor to create a bridge to an underlying file input
stream so that Polish text can be read from an ISO/IEC 8859-2-encoded file.

FileInputStream fis = new FileInputStream("polish.txt");
InputStreamReader isr = new InputStreamReader(fis, "8859_2");
char ch = isr.read(ch);

Note OutputStreamWriter and InputStreamReader declare a String getEncoding()
method that returns the name of the character encoding in use. If the encoding has a historical name,
that name is returned; otherwise, the encoding’s canonical name is returned.

FileWriter and FileReader
FileWriter is a convenience class for writing characters to files. It subclasses OutputStreamWriter,
and its constructors call OutputStreamWriter(OutputStream). An instance of this class is equivalent
to the following code fragment:

FileOutputStream fos = new FileOutputStream(pathname);
OutputStreamWriter osw;
osw = new OutputStreamWriter(fos, System.getProperty("file.encoding"));

In Chapter 5, I presented a logging library with a File class that didn’t incorporate file-writing code.
Listing 11-20 addresses this situation by presenting a revised File class that uses FileWriter to log
messages to a file.

Listing 11-20. Logging Messages to an Actual File

package logging;

import java.io.FileWriter;
import java.io.IOException;

class File implements Logger
{
 private final static String LINE_SEPARATOR = System.getProperty("line.separator");

517CHAPTER 11: Performing Classic I/O

 private String dstName;
 private FileWriter fw;

 File(String dstName)
 {
 this.dstName = dstName;
 }

 public boolean connect()
 {
 if (dstName == null)
 return false;
 try
 {
 fw = new FileWriter(dstName);
 }
 catch (IOException ioe)
 {
 return false;
 }
 return true;
 }

 public boolean disconnect()
 {
 if (fw == null)
 return false;
 try
 {
 fw.close();
 }
 catch (IOException ioe)
 {
 return false;
 }
 return true;
 }

 public boolean log(String msg)
 {
 if (fw == null)
 return false;
 try
 {
 fw.write(msg + LINE_SEPARATOR);
 }
 catch (IOException ioe)
 {
 return false;
 }
 return true;
 }
}

518 CHAPTER 11: Performing Classic I/O

Listing 11-20 refactors Chapter 5’s File class to support FileWriter by making changes to each of
the connect(), disconnect(), and log() methods:

 connect() attempts to instantiate FileWriter, whose instance is saved in fw on
success; otherwise, fw continues to store its default null reference.

 disconnect() attempts to close the file by calling FileWriter’s close() method,
but only when fw doesn’t contain its default null reference.

 log() attempts to write its String argument to the file by calling FileWriter’s
void write(String str) method, but only when fw doesn’t contain its default
null reference.

connect()’s catch block specifies IOException instead of FileNotFoundException because
FileWriter’s constructors throw IOException when they cannot connect to existing normal files;
FileOutputStream’s constructors throw FileNotFoundException.

log()’s write(String) method appends the line.separator value (which I assigned to a constant
for convenience) to the string being output instead of appending \n, which would violate portability.

FileReader is a convenience class for reading characters from files. It subclasses
InputStreamReader, and its constructors call InputStreamReader(InputStream). An instance of this
class is equivalent to the following code fragment:

FileInputStream fis = new FileInputStream(pathname);
InputStreamReader isr;
isr = new InputStreamReader(fis, System.getProperty("file.encoding"));

It’s often necessary to search text files for occurrences of specific strings. Although regular
expressions (discussed in Chapter 13) are ideal for this task, I have yet to discuss them. As a result,
Listing 11-21 presents the more verbose alternative to regular expressions.

Listing 11-21. Finding All Files That Contain Content Matching a Search String

import java.io.BufferedReader;
import java.io.File;
import java.io.FileReader;
import java.io.IOException;

public class FindAll
{
 public static void main(String[] args)
 {
 if (args.length != 2)
 {
 System.err.println("usage: java FindAll start search-string");
 return;
 }
 if (!findAll(new File(args[0]), args[1]))
 System.err.println("not a directory");
 }

519CHAPTER 11: Performing Classic I/O

 static boolean findAll(File file, String srchText)
 {
 File[] files = file.listFiles();
 if (files == null)
 return false;
 for (int i = 0; i < files.length; i++)
 if (files[i].isDirectory())
 findAll(files[i], srchText);
 else
 if (find(files[i].getPath(), srchText))
 System.out.println(files[i].getPath());
 return true;
 }

 static boolean find(String filename, String srchText)
 {
 BufferedReader br = null;
 try
 {
 br = new BufferedReader(new FileReader(filename));
 int ch;
 outer_loop:
 do
 {
 if ((ch = br.read()) == −1)
 return false;
 if (ch == srchText.charAt(0))
 {
 for (int i = 1; i < srchText.length(); i++)
 {
 if ((ch = br.read()) == −1)
 return false;
 if (ch != srchText.charAt(i))
 continue outer_loop;
 }
 return true;
 }
 }
 while (true);
 }
 catch (IOException ioe)
 {
 System.err.println("I/O error: " + ioe.getMessage());
 }
 finally
 {
 if (br != null)
 try
 {
 br.close();
 }

520 CHAPTER 11: Performing Classic I/O

 catch (IOException ioe)
 {
 assert false; // shouldn't happen in this context
 }
 }
 return false;
 }
}

Listing 11-21’s FindAll class declares main(), findAll(), and find() class methods.

main() validates the number of command-line arguments, which must be two. The first argument
identifies the starting location within the filesystem for the search and is used to construct a File
object. The second argument specifies search text. main() then passes the File object and the
search text to findAll() to perform a search for all files containing this text.

The recursive findAll() method first invokes listFiles() on the File object passed to this method
to obtain the names of all files in the current directory. If listFiles() returns null, meaning that
the File object doesn’t refer to an existing directory, findAll() returns false and a suitable error
message is output.

For each name in the returned list, findAll() either recursively invokes itself when the name
represents a directory, or invokes the find() method to search the file for the text; the file’s
pathname string is output when the file contains this text.

The find() method first opens the file identified by its first argument via the FileReader class and then
passes the FileReader instance to a BufferedReader instance to improve file-reading performance. It
then enters a loop that continues to read characters from the file until the end of the file is reached.

If the currently read character matches the first character in the search text, an inner loop is entered to
read subsequent characters from the file and compare them with subsequent characters in the search
text. When all characters match, find() returns true. Otherwise, the labeled continue statement is
used to skip the remaining iterations of the inner loop and transfer execution to the labeled outer loop.
After the last character has been read and there’s still no match, find() returns false.

Now that you know how FindAll works, you’ll probably want to try it out. The following examples
show you how I might use this application on my Windows 7 platform:

java FindAll \prj\dev RenderScript

This example searches the \prj\dev directory on my default drive (C:) for all files that contain the
word RenderScript (case is significant) and generates the following output:

\prj\dev\ar2\appb\ar\1-4302-4614-5_Friesen_AppB_Android_Tools_Overview.doc
\prj\dev\ar2\appb\ce\1-4302-4614-5_Friesen_AppB_Android_Tools_Overview.doc
\prj\dev\ar2\ch08\1-4302-4614-5_Friesen_Ch08_Working_with_Android_NDK_and_Renderscript.doc
\prj\dev\ar2\ch08\ar\1-4302-4614-5_Friesen_Ch08_Working_with_Android_NDK_and_Renderscript.doc
\prj\dev\ar2\ch08\ce\1-4302-4614-5_Friesen_Ch08_Working_with_Android_NDK_and_Renderscript.doc
\prj\dev\ar2\ch08\code\GrayScale\GrayScale.java
\prj\dev\ar2\ch08\code\WavyImage\WavyImage.java
\prj\dev\ar2\code\ch08\GrayScale\GrayScale.java
\prj\dev\ar2\code\ch08\WavyImage\WavyImage.java
\prj\dev\ar2\xtra\ndkrs.txt

521CHAPTER 11: Performing Classic I/O

\prj\dev\EmbossImage\src\ca\tutortutor\embossimage\EmbossImage.java
\prj\dev\GrayScale\src\ca\tutortutor\grayscale\GrayScale.java
\prj\dev\WavyImage\src\ca\tutortutor\wavyimage\WavyImage.java

If I now specify java FindAll \prj\dev "Jelly Bean", I observe the following abbreviated output:

\prj\dev\ar2\ch01\1-4302-4614-5_Friesen_Ch01_Getting_Started_with_Android.doc
\prj\dev\ar2\ch01\ar\1-4302-4614-5_Friesen_Ch01_Getting_Started_with_Android.doc
\prj\dev\ar2\ch01\ce\1-4302-4614-5_Friesen_Ch01_Getting_Started_with_Android.doc

EXERCISES

The following exercises are designed to test your understanding of Chapter 11’s content:

What is the purpose of the 1. File class?

What do instances of the 2. File class contain?

What does 3. File’s listRoots() method accomplish?

What is a path and what is a pathname?4.

What is the difference between an absolute pathname and a relative pathname?5.

How do you obtain the current user (also known as working) directory?6.

Define parent pathname.7.

8. File’s constructors normalize their pathname arguments. What does normalize mean?

How do you obtain the default name-separator character?9.

What is a canonical pathname?10.

What is the difference between 11. File’s getParent() and getName() methods?

True or false: 12. File’s exists() method only determines whether or not a file exists.

What is a normal file?13.

What does 14. File’s lastModified() method return?

True or false: 15. File’s list() method returns an array of Strings in which each entry is a filename
rather than a complete path.

What is the difference between the 16. FilenameFilter and FileFilter interfaces?

True or false: 17. File’s createNewFile() method doesn’t check for file existence and creates the file
when it doesn’t exist in a single operation that’s atomic with respect to all other filesystem activities
that might affect the file.

18. File’s createTempFile(String, String) method creates a temporary file in the default
temporary directory. How can you locate this directory?

Temporary files should be removed when no longer needed after an application exits (to avoid 19.
cluttering the filesystem). How do you ensure that a temporary file is removed when the virtual
machine ends normally (it doesn’t crash and the power isn’t lost)?

522 CHAPTER 11: Performing Classic I/O

How would you accurately compare two 20. File objects?

What is the purpose of the 21. RandomAccessFile class?

What is the purpose of the 22. "rwd" and "rws" mode arguments?

What is a file pointer?23.

True or false: When you call 24. RandomAccessFile’s seek(long) method to set the file pointer’s
value, and when this value is greater than the length of the file, the file’s length changes.

Define flat file database.25.

What is a stream?26.

What is the purpose of 27. OutputStream’s flush() method?

True or false: 28. OutputStream’s close() method automatically flushes the output stream.

What is the purpose of 29. InputStream’s mark(int) and reset() methods?

How would you access a copy of a 30. ByteArrayOutputStream instance’s internal byte array?

True or false: 31. FileOutputStream and FileInputStream provide internal buffers to improve the
performance of write and read operations.

Why would you use 32. PipedOutputStream and PipedInputStream?

Define filter stream.33.

What does it mean for two streams to be chained together?34.

How do you improve the performance of a file output stream or a file input stream?35.

How do 36. DataOutputStream and DataInputStream support FileOutputStream and
FileInputStream?

What is object serialization and deserialization?37.

What three forms of serialization and deserialization does Java support?38.

What is the purpose of the 39. Serializable interface?

What does the serialization mechanism do when it encounters an object whose class doesn’t 40.
implement Serializable?

Identify the three stated reasons for Java not supporting unlimited serialization.41.

How do you initiate serialization? How do you initiate deserialization?42.

True or false: Class fields are automatically serialized.43.

What is the purpose of the 44. transient reserved word?

What does the deserialization mechanism do when it attempts to deserialize an object whose class 45.
has changed?

How does the deserialization mechanism detect that a serialized object’s class has changed?46.

How can you add an instance field to a class and avoid trouble when deserializing an object that was 47.
serialized before the instance field was added? What JDK tool can you use to help with this task?

523CHAPTER 11: Performing Classic I/O

How do you customize the default serialization and deserialization mechanisms without using 48.
externalization?

How do you tell the serialization and deserialization mechanisms to serialize or deserialize the 49.
object’s normal state before serializing or deserializing additional data items?

How does externalization differ from default and custom serialization and deserialization?50.

How does a class indicate that it supports externalization?51.

True or false: During externalization, the deserialization mechanism throws 52.
InvalidClassException with a “no valid constructor” message when it doesn’t detect a public
noargument constructor.

What is the difference between 53. PrintStream’s print() and println() methods?

What does 54. PrintStream’s noargument void println() method accomplish?

Why are Java’s stream classes not good at streaming characters?55.

What does Java provide as the preferred alternative to stream classes when it comes to 56.
character I/O?

True or false: 57. Reader declares an available() method.

What is the purpose of the 58. OutputStreamWriter class? What is the purpose of the
InputStreamReader class?

How do you identify the default character encoding?59.

What is the purpose of the 60. FileWriter class? What is the purpose of the FileReader class?

Create a Java application named 61. Touch for setting a file’s or directory’s timestamp to the current
time. This application has the following usage syntax: java Touch pathname.

Improve Listing 11-8’s 62. Copy application (performance wise) by using BufferedInputStream and
BufferedOutputStream. Copy should read the bytes to be copied from the buffered input stream
and write these bytes to the buffered output stream.

Create a Java application named 63. Split for splitting a large file into a number of smaller partx
files (where x starts at 0 and increments; for example, part0, part1, part2, and so on). Each
partx file (except possibly the last partx file, which holds the remaining bytes) will have the
same size. This application has the following usage syntax: java Split pathname. Furthermore,
your implementation must use the BufferedInputStream, BufferedOutputStream, File,
FileInputStream, and FileOutputStream classes.

It’s often convenient to read lines of text from standard input, and the 64. InputStreamReader and
BufferedReader classes make this task possible. Create a Java application named CircleInfo
that, after obtaining a BufferedReader instance that is chained to standard input, presents a loop
that prompts the user to enter a radius, parses the entered radius into a double value, and outputs a
pair of messages that report the circle’s circumference and area based on this radius.

524 CHAPTER 11: Performing Classic I/O

Summary
Applications often input data for processing and output processing results. Data is input from a file
or some other source and is output to a file or some other destination. Java supports I/O via the
classic I/O APIs located in the java.io package.

File I/O activities often interact with a filesystem. Java offers access to the underlying platform’s
available filesystem(s) via its concrete File class. File instances contain the pathnames of files and
directories that may or may not exist in their filesystems.

Files can be opened for random access in which a mixture of write and read operations can
occur until the file is closed. Java supports this random access by providing the concrete
RandomAccessFile class.

Java uses streams to perform I/O operations. A stream is an ordered sequence of bytes of arbitrary
length. Bytes flow over an output stream from an application to a destination and flow over an input
stream from a source to an application.

The java.io package provides several output stream and input stream classes that are descendents
of the abstract OutputStream and InputStream classes. BufferedOutputStream and FileInputStream
are examples.

Java’s stream classes are good for streaming sequences of bytes but are not good for streaming
sequences of characters because bytes and characters are two different things, and because byte
streams have no knowledge of character sets and encodings.

If you need to stream characters, you should take advantage of Java’s writer and reader classes,
which were designed to support character I/O (they work with char instead of byte). Furthermore,
the writer and reader classes take character encodings into account.

The java.io package provides several writer and reader classes that are descendents of the
abstract Writer and Reader classes. FileWriter and FileReader are examples. These convenience
classes are based on file output/input streams and OutputStreamWriter/InputStreamReader.

This chapter focused on I/O in the context of a filesystem. However, you can also perform I/O in the
context of a network. Chapter 12 introduces you to several of Java’s network-oriented APIs.

525

Chapter 12
Accessing Networks

Applications often need to access networks to acquire resources (e.g., images) or to communicate
with remote executable entities (e.g., web services). A network is a group of interconnected nodes
(computing devices such as tablets and peripherals such as scanners or laser printers) that can be
shared among the network’s users.

Note An intranet is a network located within an organization and an internet is a network connecting
organizations to each other. The Internet is the global network of networks.

Intranets and internets often use TC P/IP (http://en.wikipedia.org/wiki/TCP/IP_model)
to communicate between nodes. TCP/IP includes Transmission Control Protocol (TCP), which is a
connection-oriented protocol; User Datagram Protocol (UDP), which is a connectionless protocol; and
Internet Protocol (IP), which is the basic protocol over which TCP and UDP perform their tasks.

The java.net package provides types that support TCP/IP between processes (executing
applications) running on the same or different hosts (computer-based TCP/IP nodes). In this chapter,
I first present the types for performing socket-based and URL-based communication. I then present
the low-level network interface and interface address types and cookie-oriented types.

Note Android apps must have permission to access the network. Permission can be obtained by
including <uses-permission android:name="android.permission.INTERNET" /> in the
manifest file.

Network-oriented applications often have to deal with the topic of endianness
(http://en.wikipedia.org/wiki/Endianness), which refers to the ordering of individually
addressable subcomponents within the representation of a larger data item. For example, given a 16-bit
short integer, do you first transmit the most significant byte or the least significant byte?

526 CHAPTER 12: Accessing Networks

Accessing Networks via Sockets
Two processes communicate by way of sockets, which are endpoints in a communications link
between these processes. Each endpoint is identified by an IP address that identifies the host and
by a port number that identifies the process running on that host.

IP ADDRESSES AND PORT NUMBERS

An IP address is a 32-bit or 128-bit unsigned integer that uniquely identifies a network host or some other network node
(e.g., a router).

It is common to specify a 32-bit IP address as four 8-bit integer components in a period-separated decimal notation,
where each component is a decimal integer ranging from 0 through 255 and is separated from the next component via a
period (e.g., 127.0.0.1). A 32-bit IP address is often referred to as an Internet Protocol Version 4 (IPv4) address
(see http://en.wikipedia.org/wiki/IPv4).

It’s common to specify a 128-bit IP address as eight 16-bit integer components in colon-separated hexadecimal notation,
where each component is a hexadecimal integer ranging from 0 through FFFF and is separated from the next component
via a colon (e.g., 1080:0:0:0:8:800:200C:417A). A 128-bit IP address is often referred to as an Internet Protocol Version 6
(IPv6) address (see http://en.wikipedia.org/wiki/IPv6).

A port number is a16-bit integer that uniquely identifies a process, which is the ultimate source or recipient of a message.
Port numbers that are less than 1024 are reserved for standard processes. For example, port number 25 has traditionally
identified the Simple Mail Transfer Protocol (SMTP) process for sending email, although port number 587 has largely
obsoleted this older port number (see http://en.wikipedia.org/wiki/Smtp).

One process writes a message (a sequence of bytes) to its socket. The network management
software portion of the underlying platform breaks the message into a sequence of packets
(addressable message chunks that are often referred to as IP datagrams), and forwards them to the
other process’s socket where they are recombined into the original message for processing.

Figure 12-1 shows how two sockets communicate in a TCP/IP context.

527CHAPTER 12: Accessing Networks

In the context of Figure 12-1, suppose that Process A wants to send a message to Process B.
Process A sends that message to its socket with the destination socket address of Process B. Host
A’s network management software (often referred to as a protocol stack) obtains this message and
reduces it to a sequence of packets, with each packet including the destination host’s IP address
and port number. The network management software then sends these packets through Host A’s
Network Interface Card (NIC) to Host B.

Process A

Process B

HOST A

HOST B

messages

packetssockets

messages

Network
Management

Software

Network
Management

Software

Network
Interface

Cards

Figure 12-1. Two processes use sockets to communicate

Note The NIC’s various network interfaces are connections between a computer and a network.

Host B’s protocol stack receives packets through the NIC and reassembles them into the original
message (packets may be received out of order), which it then makes available to Process B via its
socket. This scenario reverses when Process B communicates with Process A.

The network management software uses TCP to create an ongoing conversation between two
hosts in which messages are sent back and forth. Before this conversation occurs, a connection is
established between these hosts. After the connection has been established, TCP enters a pattern
where it sends message packets and waits for a reply that they arrived correctly (or for a timeout
to expire when the reply doesn’t arrive because of some network problem). This pattern
repeats and guarantees a reliable connection. For detailed information on this pattern, check out
http://en.wikipedia.org/wiki/Tcp_receive_window#Flow_control.

528 CHAPTER 12: Accessing Networks

Because it can take time to establish a connection, and it also takes time to send packets (as it is
necessary to receive reply acknowledgments and also because of timeouts), TCP is slow. On the
other hand, UDP, which doesn’t require connections and packet acknowledgment, is much faster.
The downside is that UDP isn’t as reliable (there’s no guarantee of packet delivery, ordering, or
protection against duplicate packets, although UDP uses checksums to verify that data is correct)
because there’s no acknowledgment. Furthermore, UDP is limited to single-packet conversations.

The java.net package provides Socket, ServerSocket, and other Socket-suffixed classes for
performing TCP-based or UDP-based communications. Before investigating these classes, you
need to understand socket addresses and socket options.

Socket Addresses
An instance of a Socket-suffixed class is associated with a socket address comprised of an IP
address and a port number. These classes often rely on the InetAddress class to represent the IPv4
or IPv6 address portion of the socket address and represent the port number separately.

Note InetAddress relies on its Inet4Address subclass to represent an IPv4 address and on its
Inet6Address subclass to represent an IPv6 address.

InetAddress declares several class methods for obtaining an InetAddress instance. These methods
include the following:

 InetAddress[] getAllByName(String host) returns an array of InetAddresses
that store the IP addresses associated with host. You can pass either a domain
name (e.g., “tutortutor.ca”) or an IP address (e.g., “70.33.247.10”) argument to
this parameter. (To learn about domain names, check out Wikipedia’s “Domain
name” entry [http://en.wikipedia.org/wiki/Domain_name]). Pass null to obtain
an InetAddress instance that stores the IP address of the loopback interface
(a software-based network interface where outgoing data loops back as
incoming data). This method throws UnknownHostException when no IP address
for the specified host can be found or when a scope identifier is specified for a
global IPv6 address.

 InetAddress getByAddress(byte[] addr) returns an InetAddress object for the
given raw IP address. The argument passed to addr is in network byte order
(most significant byte comes first), where the highest order byte is stored in
addr[0]. The addr array’s length must be 4 bytes for an IPv4 address and 16
bytes for an IPv6 address. This method throws UnknownHostException when the
array has another length.

 InetAddress getByAddress(String hostName, byte[] ipAddress) returns an
InetAddress instance based on the host name and IP address arguments. This
method throws UnknownHostException when the array’s length is neither 4 nor 16.

 InetAddress getByName(String host) returns an InetAddress instance based
on the host argument, which can be a machine name (e.g., "tutortutor.ca")

529CHAPTER 12: Accessing Networks

or a textual representation of its IP address. Passing null to host results in an
InetAddress instance representing an address of the loopback interface being
returned.

 InetAddress getLocalHost() returns the address of the local host (the current
host), which is represented by hostname localhost or by an IP address that’s
commonly expressed as 127.0.0.1 (IPv4) or ::1 (IPv6). This method throws
UnknownHostException when the local host couldn’t be resolved into an address.

After you obtain an InetAddress instance, you can interrogate it by invoking instance methods
such as byte[] getAddress(), which returns the raw IP address (in network byte order) of this
InetAddress object, and boolean isLoopbackAddress(), which determines whether or not this
InetAddress instance represents a loopback address.

Java 1.4 introduced the abstract SocketAddress class to represent a socket address “with no
protocol attachment.” (This class’s creator might have anticipated that Java would eventually
support low-level communication protocols other than the widely popular Internet Protocol.)

SocketAddress is subclassed by the concrete InetSocketAddress class, which represents a socket
address as an IP address and a port number. It can also represent a hostname and a port number
and will make an attempt to resolve the hostname.

InetSocketAddress instances are created by invoking InetSocketAddress(InetAddress addr, int
port) and other constructors. After an instance has been created, you can call methods such as
InetAddress getAddress() and int getPort() to return socket address components.

Socket Options
An instance of a Socket-suffixed class shares the concept of socket options, which are parameters
for configuring socket behavior. Socket options are described by constants that are declared in the
SocketOptions interface:

 IP_MULTICAST_IF: Specify the outgoing network interface for multicast packets
(on multihomed [multiple NIC] hosts). This option isn’t implemented by Android.

 IP_MULTICAST_IF2: Specify the outgoing network interface for multicast packets
using an interface index.

 IP_MULTICAST_LOOP: Enable or disable local loopback of multicast datagrams.

 IP_TOS: Set the type-of-service (IPv4) or traffic class (IPv6) field in the IP header
for a TCP or UDP socket.

 SO_BINDADDR: Fetch the socket’s local address binding. This option isn’t
implemented by Android.

 SO_BROADCAST: Enable a socket to send broadcast messages.

 SO_KEEPALIVE: Turn on socket keepalive.

 SO_LINGER: Specify the number of seconds to wait when closing a socket when
there is still some buffered data to be sent.

 SO_OOBINLINE: Enable inline reception of TCP urgent data.

530 CHAPTER 12: Accessing Networks

 SO_RCVBUF: Set or get the maximum socket receive buffer size (in bytes).

 SO_REUSEADDR: Enable a socket’s reuse address.

 SO_SNDBUF: Set or get the maximum socket send buffer size (in bytes).

 SO_TIMEOUT: Specify a timeout (in milliseconds) on blocking accept or read/
receive (but not write/send) socket operations. (Don’t block forever!)

 TCP_NODELAY: Disable Nagle’s algorithm
(http://en.wikipedia.org/wiki/Nagle's_algorithm). In other words, this option
lets you send data immediately (but perhaps as efficiently) on this socket.

SocketOptions also declares the following methods for setting and getting these options:

 void setOption(int optID, Object value)

 Object getOption(int optID)

optID is one of the aforementioned constants and value is an object of a suitable class
(e.g., java.lang.Boolean).

SocketOptions is implemented by the abstract SocketImpl and DatagramSocketImpl classes.
Concrete instances of these classes are wrapped by the various Socket-suffixed classes. As a result,
you cannot invoke these methods. Instead, you work with the type-safe setter and getter methods
provided by the Socket-suffixed classes for setting and getting these options.

For example, Socket declares void setKeepAlive(boolean keepAlive) for setting the SO_KEEPALIVE
option, and ServerSocket declares void setSoTimeout(int timeout) for setting the SO_TIMEOUT
option. Check the documentation on the Socket-suffixed classes to learn about these and other
socket option methods.

Note Socket option methods that apply to DatagramSocket also apply to its MulticastSocket
subclass.

Socket and ServerSocket
The Socket and ServerSocket classes support TCP-based communications between client
processes (e.g., an application running on a tablet) and server processes (e.g., an application
running on one of your Internet Service Provider’s computers that provides access to the World
Wide Web). Because Socket is associated with the java.io.InputStream and java.io.OutputStream
classes, sockets based on the Socket class are commonly referred to as stream sockets.

Socket supports the creation of client-side sockets. It declares several constructors for this purpose,
including the following pair:

 Socket(InetAddress dstAddress, int dstPort) creates a stream socket and
connects it to the specified port number (described by dstPort) at the specified
IP address (described by dstAddress). This constructor throws
java.io.IOException when an I/O error occurs while creating the socket;
java.lang.IllegalArgumentException when the argument passed to dstPort

531CHAPTER 12: Accessing Networks

is outside the valid range of port values, which is 0 through 65535; and
java.lang.NullPointerException when dstAddress is null.

 Socket(String dstName, int dstPort) creates a stream socket and
connects it to the port identified by dstPort on the host identified by
dstName. When dstName is null, this constructor is equivalent to invoking
Socket(InetAddress.getByName(null), port). It throws the same IOException
and IllegalArgumentException instances as the previous constructor. However,
instead of throwing NullPointerException, it throws UnknownHostException
when the host’s IP address cannot be determined.

After a Socket instance is created via these constructors, it’s bound to an arbitrary local host socket
address before a connection is made to the remote host socket address. Binding makes a client
socket address available to a server socket so that a server process can communicate with the
client process via the server socket.

Socket offers additional constructors. For example, Socket() and Socket(Proxy proxy) create
unbound and unconnected sockets. Before using these sockets, they must be bound to local socket
addresses by calling void bind(SocketAddress localAddr), and then connections must be made by
calling Socket’s connect() methods (e.g., void connect(SocketAddress remoteAddr)).

Note A proxy is a host that sits between an intranet and the Internet for security purposes.
Proxy settings are represented via instances of the Proxy class and help sockets communicate
through proxies.

Another constructor is Socket(InetAddress dstAddress, int dstPort, InetAddress localAddr,
int localPort), which lets you specify your own local host socket address via localAddr and
localPort. This constructor automatically binds to the local socket address and then attempts a
connection to the remote dstPort on dstAddress.

After creating a Socket instance, and possibly invoking bind() and connect() on that instance, an
application invokes Socket’s InputStream getInputStream() and OutputStream getOutputStream()
methods to acquire an input stream for reading bytes from the socket and an output stream for
writing bytes to the socket. Also, the application often calls Socket’s void close() method to close
the socket when no longer needed for I/O.

The following example demonstrates how to create a socket that’s bound to port number 9999 on
the local host and then access its input and output streams—exceptions are ignored for brevity:

Socket socket = new Socket("localhost", 9999);
InputStream is = socket.getInputStream();
OutputStream os = socket.getOutputStream();
// Do some work with the socket.
socket.close();

532 CHAPTER 12: Accessing Networks

ServerSocket supports the creation of server-side sockets. It declares the following four constructors
for this purpose:

 ServerSocket() creates an unbound server socket. You can bind this socket to
a specific socket address (to which client sockets communicate) by invoking
either of ServerSocket’s two bind() methods. Binding makes the server socket
address available to a client socket so that a client process can communicate
with the server process via the client socket. This constructor throws
IOException when an I/O error occurs while attempting to open the socket.

 ServerSocket(int port) creates a server socket bound to the specified port
value and an IP address associated with one of the host’s NICs. When you
pass 0 to port, an arbitrary port number is chosen. The port number can
be retrieved by calling int getLocalPort(). The maximum queue length for
incoming connection requests from clients is set to 50. If a connection request
arrives when the queue is full, the connection is refused. This constructor throws
IOException when an I/O error occurs while attempting to open the socket and
IllegalArgumentException when port’s value lies outside the specified range of
valid port values, which is between 0 and 65535, inclusive.

 ServerSocket(int port, int backlog) is equivalent to the previous constructor,
but it also lets you specify the maximum queue length for incoming connections
by passing a positive integer to backlog.

 ServerSocket(int port, int backlog, InetAddress localAddress) is
equivalent to the previous constructor, but it also lets you specify a different IP
address to which the server socket binds. (Any address is chosen when null is
passed.) This constructor is useful for machines that have multiple NICs and you
want to listen for connection requests on a specific NIC.

After a server socket is created via these constructors, a server application enters a loop that first
invokes ServerSocket’s Socket accept() method to listen for a connection request and return a
Socket instance that lets it communicate with the associated client socket. It then communicates
with the client socket to perform some kind of processing. When processing finishes, the server
socket calls the client socket’s close() method to terminate its connection with the client.

Note ServerSocket declares a void close() method for closing a server socket before terminating
the server application. An unclosed socket is automatically closed when an application terminates.

The following example demonstrates how to create a server socket that’s bound to port 9999 on the
current host, listen for incoming connection requests, return their sockets, perform work on those
sockets, and close the sockets—exceptions are ignored for brevity:

ServerSocket ss = new ServerSocket(9999);
while (true)
{
 Socket socket = ss.accept();

533CHAPTER 12: Accessing Networks

 // obtain socket input/output streams and communicate with socket
 socket.close();
}

The accept() method call blocks until a connection request is available and then returns a Socket
object so that the server application can communicate with its associated client. The socket is
closed after this communication takes place. The server socket is automatically closed when the
application exits.

This example assumes that socket communication takes place on the server application’s main
thread, which is a problem when processing takes time to perform because server response time
to incoming connection requests decreases. To speed up response time, it’s often necessary to
communicate with the socket on a worker thread, as demonstrated in the following example:

ServerSocket ss = new ServerSocket(9999);
while (true)
{
 final Socket s = ss.accept();
 new Thread(new Runnable()
 {
 @Override
 public void run()
 {
 // obtain socket input/output streams and communicate with socket
 try { s.close(); } catch (IOException ioe) {}
 }
 }).start();
}

Each time a connection request arrives, accept() returns a Socket instance, and then a
java.lang.Thread object is created whose runnable accesses that socket for communicating
with the socket on a worker thread.

Tip Although this example uses the Thread class, you could use an executor (see Chapter 10) instead.

I’ve created EchoClient and EchoServer applications that demonstrate Socket and ServerSocket.
Listing 12-1 presents EchoClient’s source code.

Listing 12-1. Echoing Data to and Receiving It Back from a Server

import java.io.BufferedReader;
import java.io.InputStream;
import java.io.InputStreamReader;
import java.io.IOException;
import java.io.OutputStream;
import java.io.OutputStreamWriter;
import java.io.PrintWriter;

534 CHAPTER 12: Accessing Networks

import java.net.Socket;
import java.net.UnknownHostException;

public class EchoClient
{
 public static void main(String[] args)
 {
 if (args.length != 1)
 {
 System.err.println("usage : java EchoClient message");
 System.err.println("example: java EchoClient \"This is a test.\"");
 return;
 }
 try
 {
 Socket socket = new Socket("localhost", 9999);
 OutputStream os = socket.getOutputStream();
 OutputStreamWriter osw = new OutputStreamWriter(os);
 PrintWriter pw = new PrintWriter(osw);
 pw.println(args[0]);
 pw.flush();
 InputStream is = socket.getInputStream();
 InputStreamReader isr = new InputStreamReader(is);
 BufferedReader br = new BufferedReader(isr);
 System.out.println(br.readLine());
 }
 catch (UnknownHostException uhe)
 {
 System.err.println("unknown host: " + uhe.getMessage());
 }
 catch (IOException ioe)
 {
 System.err.println("I/O error: " + ioe.getMessage());
 }
 }
}

EchoClient first verifies that it has received a single command-line argument and then creates a
socket that will connect to a process running on port 9999 of the local host.

After creating the socket, EchoClient obtains an output stream for writing a string to the socket.
Because the output stream can only handle a sequence of bytes, the java.io.OutputStreamWriter
and java.io.PrintWriter classes (see Chapter 11) are used to connect the writer that outputs
characters to the byte-oriented output stream.

After instantiating PrintWriter, EchoClient invokes its void println(String str) method to write
the string followed by a newline character. The void flush() method is subsequently called to
ensure that all pending data is written to the server.

EchoClient now obtains an input stream for reading the string as a sequence of bytes. It then
connects the reader (that inputs characters) to the byte-oriented input stream by instantiating
java.io.InputStreamReader and java.io.BufferedReader (see Chapter 11).

535CHAPTER 12: Accessing Networks

Finally, EchoClient invokes BufferedReader’s String readLine() method to read the characters
followed by a newline from the socket. (readLine() doesn’t include the newline character in the
returned string.) These characters followed by a newline are then written to standard output.

Note In a long-running application, you would explicitly close the socket instance by invoking its
void close() method when the socket is no longer needed. For brevity, I’ve chosen not to do so in
this and most of the remaining Socket-suffixed class examples.

Listing 12-2 presents EchoServer’s source code.

Listing 12-2. Receiving Data from and Echoing It Back to a Client

import java.io.BufferedReader;
import java.io.InputStream;
import java.io.InputStreamReader;
import java.io.IOException;
import java.io.OutputStream;
import java.io.OutputStreamWriter;
import java.io.PrintWriter;

import java.net.ServerSocket;
import java.net.Socket;

public class EchoServer
{
 public static void main(String[] args) throws IOException
 {
 System.out.println("Starting echo server. . .");
 ServerSocket ss = new ServerSocket(9999);
 while (true)
 {
 Socket s = ss.accept();
 try
 {
 InputStream is = s.getInputStream();
 InputStreamReader isr = new InputStreamReader(is);
 BufferedReader br = new BufferedReader(isr);
 String msg = br.readLine();
 System.out.println(msg);
 OutputStream os = s.getOutputStream();
 OutputStreamWriter osw = new OutputStreamWriter(os);
 PrintWriter pw = new PrintWriter(osw);
 pw.println(msg);
 pw.flush();
 }
 catch (IOException ioe)
 {
 System.err.println("I/O error: " + ioe.getMessage());
 }

536 CHAPTER 12: Accessing Networks

 finally
 {
 try
 {
 s.close();
 }
 catch (IOException ioe)
 {
 assert false; // shouldn't happen in this context
 }
 }
 }
 }
}

EchoServer first outputs an introductory message to standard output and then creates a server
socket that listens for connections on port 9999. It then enters an infinite loop, where each iteration
invokes ServerSocket’s Socket accept() method to block until a connection is received and then
return a Socket object representing this connection.

After obtaining the socket, EchoServer obtains an input stream for reading from the socket. Because
the input stream can only handle a sequence of bytes, the InputStreamReader and BufferedReader
classes are used to connect the reader that inputs characters to the byte-oriented input stream.

EchoServer now obtains an output stream for writing the string as a sequence of bytes. It then
connects the writer that outputs characters to the byte-oriented output stream by instantiating
OutputStreamWriter and PrintWriter.

After outputting the message to standard output, EchoServer calls flush() to flush the output to the
client. The client socket is then closed.

To experiment with these applications, copy EchoClient.java and EchoServer.java to the same directory
and open two console windows with this directory being current. Compile each source file and execute
java EchoServer in one window—you should observe an introductory message, although you might first
need to enable port 9999 on the firewall (http://en.wikipedia.org/wiki/Firewall_(computing)). Having
started the server, echo the following command to echo text to both windows:

java EchoClient "This is a test."

You should observe “This is a test.” in both windows.

DatagramSocket and MulticastSocket
The DatagramSocket and MulticastSocket classes let you perform UDP-based communications
between a pair of hosts (DatagramSocket) or between many hosts (MulticastSocket). With either
class, you communicate one-way messages via datagram packets, which are arrays of bytes
associated with instances of the DatagramPacket class.

537CHAPTER 12: Accessing Networks

Note Although you might think that Socket and ServerSocket are all that you need,
DatagramSocket (and its MulticastSocket subclass) have their uses. For example, consider a
scenario in which a group of machines need to occasionally tell a server that they’re alive. It shouldn’t
matter when the occasional message is lost or even when the message doesn’t arrive on time. Another
example is a low-priority stock ticker that periodically broadcasts stock prices. When a packet doesn’t
arrive, odds are that the next packet will arrive and you’ll then receive notification of the latest prices.
Timely rather than reliable or orderly delivery is more important in realtime applications.

DatagramPacket declares several constructors with DatagramPacket(byte[] buf, int length) being
the simplest. This constructor requires you to pass byte array and integer arguments to buf and
length, where buf is a data buffer that stores data to be sent or received, and length (which must be
less than or equal to buf.length) specifies the number of bytes (starting at buf[0]) to send/receive.

The following example demonstrates this constructor:

byte[] buffer = new byte[100];
DatagramPacket dgp = new DatagramPacket(buffer, buffer.length);

Note Additional constructors let you specify an offset into buf that identifies the storage location of
the first outgoing or incoming byte and/or let you specify a destination socket address.

DatagramSocket describes a socket for the client or server side of the UDP-communication link.
Although this class declares several constructors, I find it convenient in this chapter to use the
DatagramSocket() constructor for the client side and the DatagramSocket(int port) constructor
for the server side. Either constructor throws SocketException when it cannot create the datagram
socket or bind the datagram socket to a local port.

After an application instantiates DatagramSocket, it calls void send(DatagramPacket dgp) and void
receive(DatagramPacket dgp) to send and receive datagram packets.

Listing 12-3 demonstrates DatagramPacket and DatagramSocket in a server context.

Listing 12-3. Receiving Datagram Packets from and Echoing Them Back to Clients

import java.io.IOException;

import java.net.DatagramPacket;
import java.net.DatagramSocket;
import java.net.SocketException;

public class DGServer
{
 final static int PORT = 10000;

538 CHAPTER 12: Accessing Networks

 public static void main(String[] args) throws SocketException
 {
 System.out.println("Server is starting");
 DatagramSocket dgs = new DatagramSocket(PORT);
 try
 {
 System.out.println("Send buffer size = " + dgs.getSendBufferSize());
 System.out.println("Receive buffer size = " +
 dgs.getReceiveBufferSize());
 byte[] data = new byte[100];
 DatagramPacket dgp = new DatagramPacket(data, data.length);
 while (true)
 {
 dgs.receive(dgp);
 System.out.println(new String(data));
 dgs.send(dgp);
 }
 }
 catch (IOException ioe)
 {
 System.err.println("I/O error: " + ioe.getMessage());
 }
 }
}

Listing 12-3’s main() method first creates a DatagramSocket object and binds the socket to port
10000 on the local host. It then invokes DatagramSocket’s int getSendBufferSize() and int
getReceiveBufferSize() methods to get the values of the SO_SNDBUF and SO_RCVBUF socket options,
which are then output.

Note Sockets are associated with underlying platform send and receive buffers, and their sizes
are accessed by calling getSendBufferSize() and getReceiveBufferSize(). Similarly, their
sizes can be set by calling DatagramSocket’s void setReceiveBufferSize(int size) and
void setSendBufferSize(int size) methods. Although you can adjust these buffer sizes to
improve performance, there’s a practical limit with regard to UDP. The maximum size of a UDP packet
that can be sent or received is 65,507 bytes under IPv4—it’s derived from subtracting the 8-byte UDP
header and 20-byte IP header values from 65,535. Although you can specify a send/receive buffer
with a greater value, doing so is wasteful because the largest packet is restricted to 65,507 bytes.
Also, attempting to send or receive a packet with a buffer length that exceeds 65,507 bytes results in
IOException.

main() next instantiates DatagramPacket in preparation for receiving a datagram packet from a
client and then echoing the packet back to the client. It assumes that packets will be 100 bytes or
less in size.

Finally, main() enters an infinite loop that receives a packet, outputs packet content, and sends the
packet back to the client—the client’s addressing information is stored in DatagramPacket.

539CHAPTER 12: Accessing Networks

Compile Listing 12-3 (javac DGServer.java) and run the application (java DGServer). You should
observe output that’s the same as or similar to that shown following:

Server is starting
Send buffer size = 8192
Receive buffer size = 8192

Listing 12-4 demonstrates DatagramPacket and DatagramSocket in a client context.

Listing 12-4. Sending a Datagram Packet to and Receiving It Back from a Server

import java.io.IOException;

import java.net.DatagramPacket;
import java.net.DatagramSocket;
import java.net.InetAddress;
import java.net.SocketException;

public class DGClient
{
 final static int PORT = 10000;
 final static String ADDR = "localhost";

 public static void main(String[] args) throws SocketException
 {
 System.out.println("client is starting");
 DatagramSocket dgs = new DatagramSocket();
 try
 {
 byte[] buffer;
 buffer = "Send me a datagram".getBytes();
 InetAddress ia = InetAddress.getByName(ADDR);
 DatagramPacket dgp = new DatagramPacket(buffer, buffer.length, ia,
 PORT);
 dgs.send(dgp);
 byte[] buffer2 = new byte[100];
 dgp = new DatagramPacket(buffer2, buffer.length, ia, PORT);
 dgs.receive(dgp);
 System.out.println(new String(dgp.getData()));
 }
 catch (IOException ioe)
 {
 System.err.println("I/O error: " + ioe.getMessage());
 }
 }
}

Listing 12-4 is similar to Listing 12-3, but there’s one big difference. I use the DatagramPacket(byte[]
buf, int length, InetAddress address, int port) constructor to specify the server’s destination,
which happens to be port 10000 on the local host, in the datagram packet. The send() method call
routes the packet to this destination.

540 CHAPTER 12: Accessing Networks

Compile Listing 12-4 (javac DGClient.java) and run the application (java DGClient). Assuming that
DGServer is also running, you should observe the following output in DGClient’s command window
(and the last line of this output in DGServer’s command window):

client is starting
Send me a datagram

MulticastSocket describes a socket for the client or server side of a UDP-based multicasting
session. Two commonly used constructors are MulticastSocket() (create a multicast socket not
bound to a port) and MulticastSocket(int port) (create a multicast socket bound to the specified
port). Either constructor throws IOException when an I/O error occurs.

WHAT IS MULTICASTING?

Previous examples have demonstrated unicasting, which occurs when a server sends a message to a single client.
However, it’s also possible to broadcast the same message to multiple clients (e.g., transmit a “school closed due to bad
weather” announcement to all members of a group of parents who have registered with an online program to receive this
announcement); this activity is known as multicasting.

A server multicasts by sending a sequence of datagram packets to a special IP address, which is known as a multicast
group address, and a specific port (as specified by a port number). Clients wanting to receive those datagram packets
create a multicast socket that uses that port number. They request to join the group through a join group operation that
specifies the special IP address. At this point, the client can receive datagram packets sent to the group and can even
send datagram packets to other group members. After the client has read all datagram packets that it wants to read, it
removes itself from the group by applying a leave group operation that specifies the special IP address.

IPv4 addresses 224.0.0.1 to 239.255.255.255 (inclusive) are reserved for use as multicast group addresses.

Listing 12-5 presents a multicasting server.

Listing 12-5. Multicasting Datagram Packets

import java.io.IOException;

import java.net.DatagramPacket;
import java.net.InetAddress;
import java.net.MulticastSocket;

public class MCServer
{
 final static int PORT = 10000;

 public static void main(String[] args)
 {
 try
 {
 MulticastSocket mcs = new MulticastSocket();
 InetAddress group = InetAddress.getByName("231.0.0.1");
 byte[] dummy = new byte[0];

541CHAPTER 12: Accessing Networks

 DatagramPacket dgp = new DatagramPacket(dummy, 0, group, PORT);
 int i = 0;
 while (true)
 {
 byte[] buffer = ("line " + i).getBytes();
 dgp.setData(buffer);
 dgp.setLength(buffer.length);
 mcs.send(dgp);
 i++;
 }
 }
 catch (IOException ioe)
 {
 System.err.println("I/O error: " + ioe.getMessage());
 }
 }
}

Listing 12-5’s main() method first creates a MulticastSocket instance via the MulticastSocket()
constructor. The multicast socket doesn’t need to bind to a port number because the port number
is specified along with the multicast group’s IP address (231.0.0.1) as part of the DatagramPacket
instance that’s subsequently created. (The dummy array is present to prevent a NullPointerException
object from being thrown from the DatagramPacket constructor—this array isn’t used to store data to
be broadcasted.)

At this point, main() enters an infinite loop that first creates an array of bytes from a java.lang.String
instance and uses the platform’s default character encoding (see Chapter 11) to convert from Unicode
characters to bytes. (Although extraneous java.lang.StringBuilder and String objects are created
via expression "line" + i in each loop iteration, I’m not worried about their impact on garbage
collection in this short throwaway application.)

This data buffer is subsequently assigned to the DatagramPacket instance by calling its void
setData(byte[] buf) method, and then the datagram packet is broadcast to all members of the
group associated with port 10000 and multicast IP address 231.0.0.1.

Compile Listing 12-5 (javac MCServer.java) and run this application (java MCServer). You shouldn’t
observe any output.

Listing 12-6 presents a multicasting client.

Listing 12-6. Receiving Multicasted Datagram Packets

import java.io.IOException;

import java.net.DatagramPacket;
import java.net.InetAddress;
import java.net.MulticastSocket;

public class MCClient
{
 final static int PORT = 10000;

542 CHAPTER 12: Accessing Networks

 public static void main(String[] args)
 {
 try
 {
 MulticastSocket mcs = new MulticastSocket(PORT);
 InetAddress group = InetAddress.getByName("231.0.0.1");
 mcs.joinGroup(group);
 for (int i = 0; i < 10; i++)
 {
 byte[] buffer = new byte[256];
 DatagramPacket dgp = new DatagramPacket(buffer, buffer.length);
 mcs.receive(dgp);
 byte[] buffer2 = new byte[dgp.getLength()];
 System.arraycopy(dgp.getData(), 0, buffer2, 0, dgp.getLength());
 System.out.println(new String(buffer2));
 }
 mcs.leaveGroup(group);
 }
 catch (IOException ioe)
 {
 System.err.println("I/O error: " + ioe.getMessage());
 }
 }
}

Listing 12-6’s main() method first creates a MulticastSocket instance bound to port 10000 via the
MulticastSocket(int port) constructor.

It then obtains an InetAddress object that contains multicast group IP address 231.0.0.1 and uses
this object to join the group at this address by calling MulticastSocket’s void joinGroup(InetAddress
mcastaddr) method.

main() next receives 10 datagram packets, prints their contents, and leaves the group by calling
MulticastSocket’s void leaveGroup(InetAddress mcastaddr) method with the same multicast IP
address as its argument.

Note joinGroup() and leaveGroup() throw IOException when an I/O error occurs while
attempting to join or leave the group or when the IP address is not a multicast IP address.

Because the client doesn’t know exactly how long the arrays of bytes will be, it assumes 256 bytes
to ensure that the data buffer will hold the entire array. If it tried to print out the returned array, you
would see a lot of empty space after the actual data had been printed.

To eliminate this space, the client invokes DatagramPacket’s int getLength() method to obtain the
actual length of the array, creates a second byte array (buffer2) with this length, and uses
System.arraycopy()—discussed in Chapter 8—to copy this many bytes to buffer2. After converting
this byte array to a String object (via the String(byte[] bytes) constructor, which uses the
platform’s default character set—see Chapter 11 to learn about character sets), it prints the resulting
characters to the standard output stream.

543CHAPTER 12: Accessing Networks

Compile Listing 12-6 (javac MCClient.java) and run this application (java MCClient). You should
observe output similar to the following:

line 462615
line 462616
line 462617
line 462618
line 462619
line 462620
line 462621
line 462622
line 462623
line 462624

Accessing Networks via URLs
A Uniform Resource Locator (URL) is a character string that specifies where a resource (e.g., a
web page) is located on a TCP/IP-based network (e.g., the Internet). Also, it provides the means to
retrieve that resource. For example, http://tutortutor.ca is a URL that locates my web site’s main
page. The http:// prefix specifies that HyperText Transfer Protocol (HTTP), which is a high-level
protocol on top of TCP/IP for locating HTTP resources (e.g., web pages), must be used to retrieve
the web page located at tutortutor.ca.

URNS AND URIS

A Uniform Resource Name (URN) is a character string that names a resource and doesn’t provide a way to access that
resource (the resource might not be available). For example, urn:isbn:9781430231561 identifies an Apress book
named Learn Java for Android Development and that’s all.

URNs and URLs are examples of Uniform Resource Identifiers (URIs), which are character strings for identifying names
(URNs) and resources (URLs). Every URN and URL is also a URI.

The java.net package provides URL and URLConnection classes for accessing URL-based resources.
It also provides URLEncoder and URLDecoder classes for encoding and decoding URLs as well as
the URI class for performing URI-based operations (e.g., relativization) and returning URL instances
containing the results. For brevity, I don’t discuss URI in this chapter.

URL and URLConnection
The URL class represents URLs and provides access to the resources to which they refer. Each URL
instance unambiguously identifies an Internet resource.

URL declares several constructors with URL(String s) being the simplest. This constructor creates a
URL instance from the String argument passed to s and is demonstrated as follows:

try
{
 URL url = new URL("http://tutortutor.ca");
}

544 CHAPTER 12: Accessing Networks

catch (MalformedURLException murle)
{
 // handle the exception
}

This example creates a URL object that uses HTTP to access the web page at http://tutortutor.ca.
If I specified an illegal URL (e.g., foo) the constructor would throw MalformedURLException
(an IOException subclass).

Although you’ll commonly specify http:// as the protocol prefix, this isn’t your only choice. For
example, you can also specify file:/// when the resource is located on the local host. Furthermore,
you can prepend jar: to either http:// or file:/// when the resource is stored in a JAR file, as
demonstrated here:

jar:file:///C:./rt.jar!/java/util/Timer.class

The jar: prefix indicates that you want to access a JAR file resource (e.g., a stored classfile). The
file:/// prefix identifies the local host’s resource location, which happens to be rt.jar (Java 5’s
runtime JAR file) in the current directory on the Windows C: hard drive in this example.

The path to the JAR file is followed by an exclamation mark (!) to separate the JAR file path from the
JAR resource path, which happens to be the /java/util/Timer.class classfile entry in this JAR file
(the leading / character is required).

Note The URL class in Oracle’s Java reference implementation supports additional protocols,
including ftp.

After creating a URL object, you can invoke various URL methods to access portions of the URL. For
example, String getProtocol() returns the protocol portion of the URL (e.g., http). You can also
retrieve the resource by calling the InputStream openStream() method.

openStream() creates a connection to the resource and returns an InputStream instance for reading
resource data from that connection, as demonstrated here:

InputStream is = url.openStream();
int ch;
while ((ch = is.read()) != −1)
 System.out.print((char) ch);

Note For an HTTP connection, an internal socket is created that connects to HTTP port 80 on the
server identified via the URL’s domain name/IP address, unless you append a different port number to
the domain name/IP address (e.g., http://tutortutor.ca:8080).

I’ve created a ListResource application that demonstrates URL by using this class to fetch a resource
and list its contents. Listing 12-7 presents ListResource’s source code.

545CHAPTER 12: Accessing Networks

Listing 12-7. Listing the Contents of the Resource Identified via a URL Command-Line Argument

import java.io.InputStream;
import java.io.IOException;

import java.net.MalformedURLException;
import java.net.URL;

public class ListResource
{
 public static void main(String[] args)
 {
 if (args.length != 1)
 {
 System.err.println("usage: java ListResource url");
 return;
 }
 try
 {
 URL url = new URL(args[0]);
 InputStream is = url.openStream();
 try
 {
 int ch;
 while ((ch = is.read()) != −1)
 System.out.print((char) ch);
 }
 catch (IOException ioe)
 {
 is.close();
 }
 }
 catch (MalformedURLException murle)
 {
 System.err.println("invalid URL");
 }
 catch (IOException ioe)
 {
 System.err.println("I/O error: " + ioe.getMessage());
 }
 }
}

ListResource first verifies that it has received a single command-line argument and then
attempts to instantiate URL with this argument. Assuming that the URL is valid, which means that
MalformedURLException isn’t thrown, ListResource calls openStream() on the URL instance and
proceeds to list the resource contents to standard output.

546 CHAPTER 12: Accessing Networks

Compile this source code (javac ListResource.java) and execute java ListResource
http://tutortutor.ca. The following output presents a short prefix of the returned web page:

<!DOCTYPE html PUBLIC "-//W3C//DTD HTML 4.01//EN" "http://www.w3.org/TR/html4/strict.dtd">

<html>
 <head>
 <title>
 TutorTutor -- /main
 </title>

 <link rel="stylesheet" href="/shared/styles.css" media="screen">
. . .

openStream() is a convenience method for invoking openConnection().getInputStream(). Each of
URL’s URLConnection openConnection() and URLConnection openConnection(Proxy proxy) methods
returns an instance of the URLConnection class, which represents a communications link between the
application and a URL.

URLConnection gives you additional control over client/server communication. For example, you can
use this class to output content to various resources that accept content. In contrast, URL only lets
you input content via openStream().

URLConnection declares various methods, including the following:

 InputStream getInputStream() returns an input stream that reads from this
open connection.

 OutputStream getOutputStream() returns an output stream that writes to this
open connection.

 void setDoInput(boolean doInput) specifies that this URLConnection object
supports (pass true to doInput) or doesn’t support (pass false to doInput)
input. Because true is the default, you would only pass true to this method to
document your intention to perform input.

 void setDoOutput(boolean doOutput) specifies that this URLConnection object
supports (pass true to doOutput) or doesn’t support (pass false to doOutput)
output. Because false is the default, you must call this method before you can
perform output.

 void setRequestProperty(String field, String newValue) sets a request
property (such as HTTP’s accept property). When a field already exists, its value
is overwritten with the specified value.

The following example shows you how to obtain an URLConnection object from a URL object
referenced by the precreated url variable, enable its dooutput property, and obtain an output stream
for writing to the resource:

URLConnection urlc = url.openConnection();
urlc.setDoOutput(true);
OutputStream os = urlc.getOutputStream();

547CHAPTER 12: Accessing Networks

URLConnection is subclassed by HttpURLConnection and JarURLConnection. These classes declare
constants and/or methods that are specific to working with the HTTP protocol or interacting with
JAR-based resources.

Note For brevity, I refer you to the Java documentation on URLConnection, HttpURLConnection,
and JarURLConnection to learn more about these classes.

URLEncoder and URLDecoder
HyperText Markup Language (HTML) lets you introduce forms into web pages that solicit information
from page visitors. After filling out a form’s fields, the visitor clicks the form’s Submit button (which
may specify something other than Submit) and the form content (field names and values) is sent to
a server program. Before sending the form content, a web browser encodes this data by replacing
spaces and other URL-illegal characters, and sets the content’s Internet media type (also known as
Multipurpose Internet Mail Extensions [MIME] type) to application/x-www-form-urlencoded.

Note The data is encoded for HTTP POST and HTTP GET operations. Unlike POST, GET requires
a query string (a ?-prefixed string containing the encoded content) to be appended to the server
program’s URL.

The java.net package provides URLEncoder and URLDecoder classes to assist you with the tasks of
encoding and decoding form content.

URLEncoder applies the following encoding rules:

Alphanumeric characters “a” through “z”, “A” through “Z”, and “0” through “9”
remain the same.

Special characters “.”, “-”, “*”, and “_” remain the same.

The space character “ ” is converted into a plus sign “+”.

All other characters are unsafe and are first converted into 1 or more bytes using
some encoding scheme. Each byte is then represented by the three-character
string %xy, where xy is the 2-digit hexadecimal representation of that byte. The
recommended encoding scheme to use is UTF-8. However, for compatibility
reasons, the platform’s default encoding is used when an encoding isn’t
specified.

For example, using UTF-8 as the encoding scheme, the string "string ü@foo-bar" is converted to
"string+%C3%BC%40foo-bar". In UTF-8, character ü is encoded as 2 bytes C3 (hex) and BC (hex); and
character @ is encoded as 1 byte 40 (hex).

URLEncoder declares the following class method for encoding a string:

String encode(String s, String enc)

548 CHAPTER 12: Accessing Networks

This method translates the String argument passed to s into application/x-www-form-urlencoded
format using the encoding scheme specified by enc. It uses the supplied encoding scheme to obtain
the bytes for unsafe characters, and throws java.io.UnsupportedEncodingException when enc’s
value isn’t supported.

URLDecoder applies the following decoding rules:

Alphanumeric characters “a” through “z”, “A” through “Z”, and “0” through “9”
remain the same.

Special characters “.”, “-”, “*”, and “_” remain the same.

The plus sign “+” is converted into a space character “ ”.

A sequence of the form % xy will be treated as representing a byte, where xy
is the 2-digit hexadecimal representation of the 8 bits. Then, all substrings
containing one or more of these byte sequences consecutively will be replaced
by the character(s) whose encoding would result in those consecutive bytes.
The encoding scheme used to decode these characters may be specified; when
unspecified, the platform’s default encoding is used.

URLDecoder declares the following class method for decoding an encoded string:

String decode(String s, String enc)

This method decodes an application/x-www-form-urlencoded string using the encoding scheme
specified by enc. The supplied encoding is used to determine what characters are represented by
any consecutive sequences of the form %xy. UnsupportedEncodingException is thrown when enc’s
value isn’t supported.

There are two possible ways in which the decoder could deal with illegally encoded strings. It could
either leave illegal characters alone or it could throw IllegalArgumentException. Which approach
the decoder takes is left to the implementation.

Note The World Wide Web Consortium recommends
(www.w3.org/TR/html40/appendix/notes.html#non-ascii-chars) that UTF-8 be used as the
encoding scheme for encode() and decode(). Not doing so may introduce incompatibilities.

I’ve created an ED (Encode/Decode) application that demonstrates URLEncoder and URLDecoder in the
context of the previous "string ü@foo-bar" and "string+%C3%BC%40foo-bar" example. Listing 12-8
presents the application’s source code.

Listing 12-8. Encoding and Decoding an Encoded String

import java.io.UnsupportedEncodingException;

import java.net.URLDecoder;
import java.net.URLEncoder;

549CHAPTER 12: Accessing Networks

public class ED
{
 public static void main(String[] args) throws UnsupportedEncodingException
 {
 String encodedData = URLEncoder.encode("string ü@foo-bar", "UTF-8");
 System.out.println(encodedData);
 System.out.println(URLDecoder.decode(encodedData, "UTF-8"));
 }
}

When you run this application, it generates the following output:

string+%C3%BC%40foo-bar
string ü@foo-bar

Note Check out Wikipedia’s “Percent-encoding” topic (http://en.wikipedia.org/wiki/
Percent-encoding) to learn more about URL encoding (and the more accurate percent-encoding term).

Accessing Network Interfaces and Interface Addresses
The NetworkInterface class represents a network interface in terms of a name (e.g., le0) and a list
of IP addresses assigned to this interface. Although a network interface is often implemented on a
physical NIC, it also can be implemented in software; for example, the loopback interface (which is
useful for testing a client).

Table 12-1 presents NetworkInterface’s methods.

Table 12-1. NetworkInterface Methods

Method Description

boolean equals(Object obj) Compare this NetworkInterface object with obj. The result
is true if and only if obj isn’t null and represents the same
network interface as this object. (Two NetworkInterface
objects represent the same network interface when their names
and addresses are the same.)

static NetworkInterface
getByInetAddress(InetAddress address)

Return the NetworkInterface corresponding to the given
address or null when no interface has this address. This
method throws SocketException when an I/O error occurs and
NullPointerException when address is null.

static NetworkInterface
getByName(String interfaceName)

Return the NetworkInterface with the specified name, or
return null when there’s no such network interface. This
method throws SocketException on an I/O error and
NullPointerException when interfaceName is null.

(continued)

550 CHAPTER 12: Accessing Networks

Method Description

String getDisplayName() Return this network interface’s display name (a human-readable
string describing the network device). On Android, this is the
same string as returned by getName().

byte[] getHardwareAddress() Return an array of bytes containing this network interface’s
hardware address, which is often referred to as the media
access control (MAC) address. When the interface doesn’t
have a MAC address, or when the address cannot be accessed
(perhaps the user doesn’t have sufficient privileges), the
method returns null. This method throws SocketException
when an I/O error occurs.

Enumeration<InetAddress>
getInetAddresses()

Return an enumeration (the results of an iteration) with all or a
subset of the addresses bound to this network interface.

List<InterfaceAddress>
getInterfaceAddresses()

Return a java.util.List containing this network interface’s
InterfaceAddresses.

int getMTU() Return this network interface’s maximum transmission unit
(MTU). This method throws SocketException when an I/O error
occurs.

String getName() Return this network interface’s name (e.g., eth0 or lo).

static Enumeration<NetworkInterface>
getNetworkInterfaces()

Return all of the network interfaces on this machine, or return
null when no network interfaces could be found. This method
throws SocketException when an I/O error occurs.

NetworkInterface getParent() Return this network interface’s parent NetworkInterface when
this network interface is a subinterface. When this network
interface has no parent, or when it’s a physical (nonvirtual)
interface, this method returns null. (A physical network interface
can be logically divided into multiple virtual subinterfaces, which
are commonly used in routing and switching. These subinterfaces
can be organized into a hierarchy where the physical network
interface serves as the root.)

Enumeration<NetworkInterface>
getSubInterfaces()

Return an enumeration containing the virtual subinterfaces that
are attached to this network interface. For example, eth0:1 is a
subinterface of eth0.

int hashCode() This method is overridden because equals() is overridden.

boolean isLoopback() Return true when this network interface reflects outgoing
data back to itself as incoming data. This method throws
SocketException when an I/O error occurs.

boolean isPointToPoint() Return true when this network interface is point-to-point (e.g.,
a PPP connection through a modem). This method throws
SocketException when an I/O error occurs.

Table 12-1. (continued)

(continued)

551CHAPTER 12: Accessing Networks

Method Description

boolean isUp() Return true when this network interface is up (routing entries
have been established) and running (platform resources have
been allocated). This method throws SocketException when an
I/O error occurs.

boolean isVirtual() Return true when this network interface is a virtual
subinterface. On some platforms, virtual subinterfaces are
network interfaces created as children of a physical network
interface and given different settings (e.g., address or MTU).
Usually, the name of the interface will be the name of the
parent followed by a colon (:) and a number identifying the child
because there can be several virtual subinterfaces attached to
a single physical network interface.

boolean supportsMulticast() Return true when this network interface supports multicasting.
This method throws SocketException when an I/O error occurs.

String toString() Return a string representation of this network interface.

Table 12-1. (continued)

You can use these methods to gather useful information about your platform’s network interfaces.
For example, Listing 12-9 presents an application that iterates over all network interfaces, invoking
the methods listed in Table 12-1 that obtain the network interface’s name and display name,
determine if the network interface is a loopback interface, determine if the network interface is
up and running, obtain the MTU, determine if the network interface supports multicasting, and
enumerate all of the network interface’s virtual subinterfaces.

Listing 12-9. Enumerating All Network Interfaces

import java.net.NetworkInterface;
import java.net.SocketException;

import java.util.Collections;
import java.util.Enumeration;

public class NetInfo
{
 public static void main(String[] args) throws SocketException
 {
 Enumeration<NetworkInterface> eni;
 eni = NetworkInterface.getNetworkInterfaces();
 for (NetworkInterface ni: Collections.list(eni))
 {
 System.out.println("Name = " + ni.getName());
 System.out.println("Display Name = " + ni.getDisplayName());
 System.out.println("Loopback = " + ni.isLoopback());
 System.out.println("Up and running = " + ni.isUp());

552 CHAPTER 12: Accessing Networks

 System.out.println("MTU = " + ni.getMTU());
 System.out.println("Supports multicast = " + ni.supportsMulticast());
 System.out.println("Sub-interfaces");
 Enumeration<NetworkInterface> eni2;
 eni2 = ni.getSubInterfaces();
 for (NetworkInterface ni2: Collections.list(eni2))
 System.out.println(" " + ni2);
 System.out.println();
 }
 }
}

Tip The java.util.Collections class’s ArrayList<T> list(Enumeration<T>
enumeration) method is useful for converting a legacy enumeration to a modern array list.

Compile Listing 12-9 (javac NetInfo.java) and execute this application (java NetInfo). When I run
NetInfo on my Windows 7 platform, I observe information that begins with the following output:

Name = lo
Display Name = Software Loopback Interface 1
Loopback = true
Up and running = true
MTU = −1
Supports multicast = true
Sub-interfaces

Name = net0
Display Name = WAN Miniport (SSTP)
Loopback = false
Up and running = false
MTU = −1
Supports multicast = true
Sub-interfaces

The complete output reveals a different MTU size for a few network interfaces. Each size represents
the maximum length of a message that can fit into an IP datagram without needing to fragment the
message into multiple IP datagrams. This fragmentation has performance implications, especially in
the context of networked games. For this reason alone, the getMTU() method is a valuable member
of NetworkInterface.

The getInterfaceAddresses() method returns a list of InterfaceAddress objects, with each object
containing a network interface’s IP address along with broadcast address and subnet mask (IPv4) or
network prefix length (IPv6).

Table 12-2 presents InterfaceAddress’s methods.

553CHAPTER 12: Accessing Networks

Table 12-2. InterfaceAddress Methods

Method Description

boolean equals(Object obj) Compare this InterfaceAddress object with obj. Return true when obj
is also an InterfaceAddress and when both objects contain the same
InetAddress, the same subnet masks/network prefix lengths (depending
on IPv4 or IPv6), and the same broadcast addresses.

InetAddress getAddress() Return this InterfaceAddress’s IP address, as an InetAddress object.

InetAddress getBroadcast() Return this InterfaceAddress’s broadcast address (IPv4) or null (IPv6);
IPv6 doesn’t support broadcast addresses.

short getNetworkPrefixLength() Return this InterfaceAddress’s network prefix length (IPv6) or subnet
mask (IPv4). Oracle’s Java documentation shows 128 (::1/128) and 10
(fe80::203:baff:fe27:1243/10) as typical IPv6 values. Typical IPv4 values
are 8 (255.0.0.0), 16 (255.255.0.0), and 24 (255.255.255.0).

int hashCode() Return this InterfaceAddress’s hash code. The hash code is a
combination of the InetAddress’s hash code, the broadcast address
(when present) hash code, and the network prefix length.

String toString() Return a string representation of this InterfaceAddress. This
representation has the form InetAddress / network prefix length
[broadcast address].

Listing 12-10, which extends Listing 12-9 (with a few lines removed), enumerates all network
interfaces, outputting their display names, and enumerates each network interface’s interface
addresses, outputting interface address information.

Listing 12-10. Enumerating All Network Interfaces and Interface Addresses

import java.net.InterfaceAddress;
import java.net.NetworkInterface;
import java.net.SocketException;

import java.util.Collections;
import java.util.Enumeration;
import java.util.Iterator;
import java.util.List;

public class NetInfo
{
 public static void main(String[] args) throws SocketException
 {
 Enumeration<NetworkInterface> eni;
 eni = NetworkInterface.getNetworkInterfaces();
 for (NetworkInterface ni: Collections.list(eni))
 {
 System.out.println("Name = " + ni.getName());
 List<InterfaceAddress> ias = ni.getInterfaceAddresses();
 Iterator<InterfaceAddress> iter = ias.iterator();

554 CHAPTER 12: Accessing Networks

 while (iter.hasNext())
 System.out.println(iter.next());
 System.out.println();
 }
 }
}

Compile Listing 12-10 (javac NetInfo.java) and execute this application (java NetInfo). When I run
NetInfo on my Windows 7 platform, I observe the following information:

Name = lo
/127.0.0.1/8 [/127.255.255.255]
/0:0:0:0:0:0:0:1/128 [null]

Name = net0

Name = net1

Name = net2

Name = ppp0

Name = eth0

Name = eth1

Name = eth2

Name = ppp1

Name = net3

Name = eth3
/192.xxx.xxx.xxx/xx [/192.xxx.xxx.xxx]
/fe80:0:0:0:xxxx:xxxx:xxxx:xxxx%xx/xx [null]

Name = net4
/fe80:0:0:0:0:xxxx:xxxx:xxxx%xx/xxx [null]

Name = net5
/2001:0:xxxx:xxxx:xxxx:xxxx:xxxx:xxxx/x [null]
/fe80:0:0:0:xxxx:xxxx:xxxx:xxxx%xx/xx [null]

Name = eth4

Name = eth5

Name = eth6

Name = eth7

Name = eth8

555CHAPTER 12: Accessing Networks

Managing Cookies
Server applications commonly use HTTP cookies (state objects)—cookies for short—to persist
small amounts of information on clients. For example, the identifiers of currently selected items in
a shopping cart can be stored as cookies. It’s preferable to store cookies on the client rather than
on the server because of the potential for millions of cookies (depending on a web site’s popularity).
In that case, not only would a server require a massive amount of storage just for cookies, but also
searching for and maintaining cookies would be time consuming.

Note Check out Wikipedia’s “HTTP cookie” entry (http://en.wikipedia.org/wiki/HTTP_cookie)
for a quick refresher on cookies.

A server application sends a cookie to a client as part of an HTTP response. A client (e.g., a web
browser) sends a cookie to the server as part of an HTTP request. Before Java 5, applications
worked with the URLConnection class (and its HttpURLConnection subclass) to get an HTTP
response’s cookies and to set an HTTP request’s cookies. The String getHeaderFieldKey(int n)
and String getHeaderField(int n) methods were used to access a response’s Set-Cookie headers,
and the void setRequestProperty(String key, String value) method was used to create a
request’s Cookie header.

Note RFC 2109: HTTP State Management Mechanism (www.ietf.org/rfc/rfc2109.txt)
describes the Set-Cookie and Cookie headers.

Java 5 introduced the abstract CookieHandler class as a callback mechanism that connects HTTP
state management to an HTTP protocol handler (think concrete HttpURLConnection subclass). An
application installs a concrete CookieHandler subclass as the system-wide cookie handler via the
CookieHandler class’s void setDefault(CookieHandler cHandler) class method. A companion
CookieHandler getDefault() class method returns this cookie handler, which is null when a
system-wide cookie handler hasn’t been installed.

An HTTP protocol handler accesses response and request headers. This handler invokes the
system-wide cookie handler’s void put(URI uri, Map<String, List<String>> responseHeaders)
method to store response cookies in a cookie cache and invokes the Map<String, List<String>>
get(URI uri, Map<String, List<String>> requestHeaders) method to fetch request cookies from
this cache. Unlike Java 5, Java 6 introduced a concrete implementation of CookieHandler so that
HTTP protocol handlers and applications can work with cookies.

556 CHAPTER 12: Accessing Networks

The concrete CookieManager class extends CookieHandler to manage cookies. A CookieManager
object is initialized as follows:

With a cookie store for storing cookies. The cookie store is based on the
CookieStore interface.

With a cookie policy for determining which cookies to accept for storage. The
cookie policy is based on the CookiePolicy interface.

Create a cookie manager by calling either the CookieManager() constructor or the
CookieManager(CookieStore store, CookiePolicy policy) constructor. The CookieManager()
constructor invokes the latter constructor with null arguments, using the default in-memory cookie
store and the default accept-cookies-from-the-original-server-only cookie policy. Unless you plan
to create your own CookieStore and CookiePolicy implementations, you’ll most likely work with the
default constructor. The following example creates and establishes a new CookieManager object as
the system-wide cookie handler:

CookieHandler.setDefault(new CookieManager());

Along with the aforementioned constructors, CookieManager declares the following methods:

 Map<String, List<String>> get(URI uri, Map<String, List<String>>
requestHeaders) returns an immutable map of Cookie and Cookie2 request
headers for cookies obtained from the cookie store whose path matches uri’s
path. Although requestHeaders isn’t used by the default implementation of this
method, it can be used by subclasses. IOException is thrown when an I/O error
occurs.

 CookieStore getCookieStore() returns the cookie manager’s cookie store.

 void put(URI uri, Map<String, List<String>> responseHeaders) stores
all applicable cookies whose Set-Cookie and Set-Cookie2 response headers
were retrieved from the specified uri value and placed (with all other
response headers) in the immutable responseHeaders map in the cookie store.
IOException is thrown when an I/O error occurs.

 void setCookiePolicy(CookiePolicy cookiePolicy) sets the cookie
manager’s cookie policy to one of CookiePolicy.ACCEPT_ALL (accept all
cookies), CookiePolicy.ACCEPT_NONE (accept no cookies), or
CookiePolicy.ACCEPT_ORIGINAL_SERVER (accept cookies from original server
only—this is the default). Passing null to this method has no effect on the
current policy.

In contrast to the get() and put() methods, which are called by HTTP protocol handlers, an application
works with the getCookieStore() and setCookiePolicy() methods. Consider Listing 12-11.

Listing 12-11. Listing All Cookies for a Specific Domain

import java.io.IOException;

import java.net.CookieHandler;
import java.net.CookieManager;
import java.net.CookiePolicy;

557CHAPTER 12: Accessing Networks

import java.net.HttpCookie;
import java.net.URL;

import java.util.List;

public class ListAllCookies
{
 public static void main(String[] args) throws IOException
 {
 if (args.length != 1)
 {
 System.err.println("usage: java ListAllCookies url");
 return;
 }
 CookieManager cm = new CookieManager();
 cm.setCookiePolicy(CookiePolicy.ACCEPT_ALL);
 CookieHandler.setDefault(cm);
 new URL(args[0]).openConnection().getContent();
 List<HttpCookie> cookies = cm.getCookieStore().getCookies();
 for (HttpCookie cookie: cookies)
 {
 System.out.println("Name = " + cookie.getName());
 System.out.println("Value = " + cookie.getValue());
 System.out.println("Lifetime (seconds) = " + cookie.getMaxAge());
 System.out.println("Path = " + cookie.getPath());
 System.out.println();
 }
 }
}

Listing 12-11 describes a command-line application that obtains and lists all cookies from its single
domain name argument.

After creating a cookie manager and invoking setCookiePolicy() to set the cookie manager’s
policy to accept all cookies, ListAllCookies installs the cookie manager as the system-wide cookie
handler. It next connects to the domain identified by the command-line argument and reads the
content (via URL’s Object getContent() method).

The cookie store is obtained via getCookieStore() and used to retrieve all nonexpired cookies via its
List<HttpCookie> getCookies() method. For each of these HttpCookies, String getName(), String
getValue(), and other HttpCookie methods are invoked to return cookie-specific information.

The following output resulted from invoking java ListAllCookies http://java.net:

Name = SESSe2db433431725a35762565c526a602d3
Value = 29va73kqorof3k2tmchn1fka11
Lifetime (seconds) = 3971
Path = /

558 CHAPTER 12: Accessing Networks

The following exercises are designed to test your understanding of Chapter 12’s content:

1. Define network.

2. What is an intranet and what is an internet?

3. What do intranets and internets often use to communicate between nodes?

4. Define host.

5. What is a socket?

6. How is a socket identified?

7. Define IP address.

8. What is a packet?

9. A socket address is comprised of what elements?

10. Identify the InetAddress subclasses that are used to represent IPv4 and IPv6 addresses.

11. What is the loopback interface?

12. True or false: In network byte order, the least significant byte comes first.

13. How is the local host represented?

14. Define socket option.

15. How are socket options described?

16. True or false: You set a socket option by calling the void setOption(int optID,
Object value) method.

17. Why are sockets based on the Socket class commonly referred to as stream sockets?

18. What does binding accomplish in the context of a Socket instance?

19. Define proxy. How does Java represent proxy settings?

20. True or false: The ServerSocket() constructor creates a bound sever socket.

21. What is the difference between the DatagramSocket and MulticastSocket classes?

22. What is a datagram packet?

23. What is the difference between unicasting and multicasting?

EXERCISES

Note For more information about cookie management, including examples that show you
how to create your own CookiePolicy and CookieStore implementations, check out
The Java Tutorial’s “Working With Cookies” lesson
(http://docs.oracle.com/javase/tutorial/networking/cookies/index.html).

559CHAPTER 12: Accessing Networks

24. What is a URL?

25. What is a URN?

26. True or false: URLs and URNs are also URIs.

27. What does the URL(String s) constructor do when you pass null to s?

28. What is the equivalent of openStream()?

29. True or false: You need to invoke URLConnection’s void setDoInput(boolean doInput)
method with true as the argument before you can input content from a web resource.

30. What does URLEncoder do when it encounters a space character?

31. What does the NetworkInterface class accomplish?

32. What is a MAC address?

33. What does MTU stand for and what is its purpose?

34. True or false: NetworkInterface’s getName() method returns a human-readable name.

35. What does InterfaceAddress’s getNetworkPrefixLength() method return under IPv4?

36. Define HTTP Cookie.

37. Why is it preferable to store cookies on the client rather than on the server?

38. Identify the four java.net types that are used to work with cookies.

39. Modify Listing 12-1’s EchoClient source code to explicitly close the socket.

40. Modify Listing 12-2’s EchoServer source code to exit the while loop and explicitly close the server
socket when a file named kill appears in the directory from which the server was started. After
this file appears, the server will probably not die immediately because it’s most likely waiting (via
the accept() call) for an incoming client connection. However, it should die after servicing the next
incoming connection.

Summary
A network is a group of interconnected nodes that can be shared among the network’s users.
An intranet is a network located within an organization and an internet is a network connecting
organizations to each other. The Internet is the global network of networks.

The java.net package provides types that support TCP/IP between processes running on the
same or different hosts. Two processes communicate by way of sockets, which are endpoints in a
communications link between these processes. Each endpoint is identified by an IP address that
identifies a host and by a port number that identifies the process running on that host.

One process writes a message to its socket, the network management software portion of the
underlying operating system breaks the message into a sequence of packets that it forwards to
the other process’s socket, and the other process recombines received packets into the original
message for its own processing.

560 CHAPTER 12: Accessing Networks

The network management software uses TCP to create an ongoing conversation between two
hosts in which messages are sent back and forth. Before this conversation occurs, a connection is
established between these hosts. After the connection has been established, TCP enters a pattern
where it sends message packets and waits for a reply that they arrived correctly (or for a timeout to
expire when the reply doesn’t arrive because of some network problem). This pattern repeats and
guarantees a reliable connection.

Because it can take time to establish a connection, and it also takes time to send packets (as it is
necessary to receive reply acknowledgments and also because of timeouts), TCP is slow. On the
other hand, UDP, which doesn’t require connections and packet acknowledgment, is much faster.
The downside is that UDP isn’t as reliable (there’s no guarantee of packet delivery, ordering, or
protection against duplicate packets, although UDP uses checksums to verify that data is correct)
because there’s no acknowledgment. Furthermore, UDP is limited to single-packet conversations.

An instance of a Socket-suffixed class is associated with a socket address comprised of an IP
address and a port number. These classes often rely on the InetAddress class to represent the IPv4
or IPv6 address portion of the socket address and represent the port number separately.

An instance of a Socket-suffixed class shares the concept of socket options, which are parameters
for configuring socket behavior. Socket options are described by constants that are declared in the
SocketOptions interface.

The Socket and ServerSocket classes support TCP-based communications between client
processes and server processes. Socket supports the creation of client-side sockets, whereas
ServerSocket supports the creation of server-side sockets.

The DatagramSocket and MulticastSocket classes let you perform UDP-based communications
between a pair of hosts (DatagramSocket) or between as many hosts as necessary (MulticastSocket).
With either class, you communicate one-way messages via datagram packets.

Two processes communicating via sockets demonstrate low-level network access. Java also
supports high-level access via URLs that identify resources and specify where they are located on
TCP/IP-based networks.

URLs are represented by the URL class, which provides access to the resources to which they refer.
URLConnection gives you additional control over client/server communication. For example, you can
use this class to output content to various resources that accept content. In contrast, URL only lets
you input content via openStream().

HTML lets you introduce forms into web pages that solicit information from page visitors. The
java.net package provides URLEncoder and URLDecoder classes to assist you with the tasks of
encoding and decoding form content.

The NetworkInterface class represents a network interface in terms of a name (e.g., le0) and a list
of IP addresses assigned to this interface. NetworkInterface’s getInterfaceAddresses() method
returns a list of InterfaceAddress objects, with each object containing a network interface’s IP
address along with broadcast address and subnet mask (IPv4) or network prefix length (IPv6).

Server applications commonly use HTTP cookies (state objects)—cookies for short—to persist small
amounts of information on clients. Java provides the CookieHandler and CookieManager classes and
the CookiePolicy and CookieStore interfaces for working with cookies.

This chapter focused on I/O in a network context. New I/O lets you perform file-based and
network-based I/O in a more performant manner. Chapter 13 introduces you to Java’s New I/O APIs.

561

Chapter 13
Migrating to New I/O

Chapters 11 and 12 introduced you to Java’s classic I/O APIs. Chapter 11 presented classic I/O in
terms of the java.io.RandomAccessFile class, streams, and writers/readers. Chapter 12 presented
classic I/O in terms of sockets and URLs.

Modern operating systems offer powerful I/O features that are not supported by Java’s classic I/O
APIs. Features include memory-mapped file I/O (the ability to map part of a process’s virtual memory
[see http://en.wikipedia.org/wiki/Virtual_memory] to some portion of a file so that writes to or
reads from that portion of the process’s memory space actually write/read the associated portion
of the file), readiness selection (a step above nonblocking I/O that offloads to the operating system
the work involved in checking for I/O stream readiness to perform write and read operations), and
file locking (the ability for one process to prevent other processes from accessing a file or to limit the
access in some way).

Java 1.4 introduced a more powerful I/O architecture that supports memory-mapped file I/O,
readiness selection, file locking, and more. This architecture consists of buffers, channels, selectors,
regular expressions, and charsets and is commonly known as New I/O (NIO).

Note Regular expressions were included as part of NIO (see JSR 51—http://jcp.org/en/jsr/

detail?id=51) because NIO is all about performance, and regular expressions are useful for scanning
text (read from an I/O source) in a highly performant manner. (A simple printf-style formatting facility
based on the java.util.Formatter class [see Chapter 10] was also included in NIO.)

Chapter 13 introduces you to NIO in terms of buffers, channels, and regular expressions. (I don’t
discuss selectors and charsets for brevity.)

Note NIO is a huge architecture; a comprehensive discussion could occupy an entire book. For
brevity, I omit many details in this chapter.

562 CHAPTER 13: Migrating to New I/O

Working with Buffers
NIO is based on buffers. A buffer is an object that stores a fixed amount of data to be sent to or
received from an I/O service (a means for performing input/output). It sits between an application
and a channel that writes the buffered data to the service or reads the data from the service and
deposits it into the buffer.

Buffers possess four properties:

 Capacity: The total number of data items that can be stored in the buffer. The
capacity is specified when the buffer is created and cannot be changed later.

 Limit: The number of “live” data items in the buffer. No items starting from the
zero-based limit should be written or read.

 Position: The zero-based index of the next data item that can be read or the
location where the data item can be written.

 Mark: A zero-based position that can be recalled. The mark is initially undefined.

These four properties are related as follows: 0 <= mark <= position <= limit <= capacity.

Figure 13-1 reveals a newly created and byte-oriented buffer.

Figure 13-1’s buffer can store a maximum of seven elements. The mark is initially undefined, the
position is initially set to 0, and the limit is initially set to the capacity, which specifies the maximum
number of bytes that can be stored in the buffer. You can only access positions 0 through 6.

Buffer and Its Children
Buffers are implemented by classes that derive from the abstract java.nio.Buffer class. Table 13-1
describes Buffer’s methods.

Figure 13-1. The logical layout of a byte-oriented buffer includes an undefined mark, a current position, a limit, and a capacity

563CHAPTER 13: Migrating to New I/O

Table 13-1. Buffer Methods

Method Description

Object array() Return the array that backs this buffer. This method is intended to allow
array-backed buffers to be passed to native code more efficiently. Concrete
subclasses override this method and provide more strongly typed return values
via covariant return types (discussed in Chapter 4). This method throws
java.nio.ReadOnlyBufferException when this buffer is backed by an array but is
read only and throws java.lang.UnsupportedOperationException when this buffer
isn’t backed by an accessible array.

int arrayOffset() Return the offset of the first buffer element within this buffer’s backing array.
When this buffer is backed by an array, buffer position p corresponds to array
index p + arrayOffset(). Invoke hasArray() before invoking this method to
ensure that this buffer has an accessible backing array. This method throws
ReadOnlyBufferException when this buffer is backed by an array but is read only
and throws UnsupportedOperationException when this buffer isn’t backed by an
accessible array.

int capacity() Return this buffer’s capacity.

Buffer clear() Clear this buffer. The position is set to zero, the limit is set to the capacity, and the
mark is discarded. This method doesn’t erase the data in the buffer but is named
as if it did because it will most often be used in situations in which that might as
well be the case.

Buffer flip() Flip this buffer. The limit is set to the current position and then the position is set
to zero. When the mark is defined, it’s discarded.

boolean hasArray() Return true when this buffer is backed by an array and isn’t read-only; otherwise,
return false. When this method returns true, array() and arrayOffset() may be
invoked safely.

boolean hasRemaining() Return true when at least one element remains in this buffer (i.e., between the
current position and the limit); otherwise, return false.

boolean isDirect() Return true when this buffer is a direct byte buffer (discussed later in this section);
otherwise, return false.

boolean isReadOnly() Return true when this buffer is read-only; otherwise, return false.

int limit() Return this buffer’s limit.

Buffer limit(int
newLimit)

Set this buffer’s limit to newLimit. When the position is larger than newLimit, the
position is set to newLimit. When the mark is defined and is larger than newLimit,
the mark is discarded. This method throws java.lang.IllegalArgumentException
when newLimit is negative or larger than this buffer’s capacity; otherwise, it
returns this buffer.

Buffer mark() Set this buffer’s mark at its position and return this buffer.

int position() Return this buffer’s position.

(continued)

564 CHAPTER 13: Migrating to New I/O

Table 13-1 shows that many of Buffer’s methods return Buffer references so that you can chain
instance method calls together (Chapter 3 discusses method call chaining). For example, instead of
specifying the following three lines.

buf.mark();
buf.position(2);
buf.reset();

you can more conveniently specify the following line:

buf.mark().position(2).reset();

Table 13-1 also shows that all buffers can be read, but not all buffers can be written—for example,
a buffer backed by a memory-mapped file that’s read-only. You must not write to a read-only buffer;
otherwise, ReadOnlyBufferException is thrown. Call isReadOnly() when you’re unsure that a buffer is
writable before attempting to write to that buffer.

Method Description

Buffer position
(int newPosition)

Set this buffer’s position to newPosition. When the mark is defined and
is larger than newPosition, the mark is discarded. This method throws
IllegalArgumentException when newPosition is negative or larger than this
buffer’s current limit; otherwise, it returns this buffer.

int remaining() Return the number of elements between the current position and the limit.

Buffer reset() Reset this buffer’s position to the previously marked position. Invoking this
method neither changes nor discards the mark’s value. This method throws
java.nio.InvalidMarkException when the mark hasn’t been set; otherwise, it
returns this buffer.

Buffer rewind() Rewind and then return this buffer. The position is set to zero and the mark is
discarded.

Table 13-1. (continued)

Note Buffers are not thread safe. You must employ synchronization when you want to access a buffer
from multiple threads.

The java.nio package includes several abstract classes that extend Buffer, one for each
primitive type except for Boolean: ByteBuffer, CharBuffer, DoubleBuffer, FloatBuffer, IntBuffer,
LongBuffer, and ShortBuffer. Furthermore, this package includes MappedByteBuffer as an abstract
ByteBuffer subclass.

565CHAPTER 13: Migrating to New I/O

Listing 13-1 demonstrates the Buffer class in terms of ByteBuffer, capacity, limit, position, and
remaining elements.

Listing 13-1. Demonstrating a Byte-Oriented Buffer

import java.nio.Buffer;
import java.nio.ByteBuffer;

public class BufferDemo
{
 public static void main(String[] args)
 {
 Buffer buffer = ByteBuffer.allocate(7);
 System.out.println("Capacity: " + buffer.capacity());
 System.out.println("Limit: " + buffer.limit());
 System.out.println("Position: " + buffer.position());
 System.out.println("Remaining: " + buffer.remaining());
 System.out.println("Changing buffer limit to 5");
 buffer.limit(5);
 System.out.println("Limit: " + buffer.limit());
 System.out.println("Position: " + buffer.position());
 System.out.println("Remaining: " + buffer.remaining());
 System.out.println("Changing buffer position to 3");
 buffer.position(3);
 System.out.println("Position: " + buffer.position());
 System.out.println("Remaining: " + buffer.remaining());
 System.out.println(buffer);
 }
}

Listing 13-1’s main() method first needs to obtain a buffer. It cannot instantiate the Buffer class
because that class is abstract. Instead, it uses the ByteBuffer class and its allocate() class method
to allocate the 7-byte buffer shown in Figure 13-1. main() then calls assorted Buffer methods to
demonstrate capacity, limit, position, and remaining elements.

Compile Listing 13-1 (javac BufferDemo.java) and run this application (java BufferDemo). You
should observe the following output:

Capacity: 7
Limit: 7
Position: 0
Remaining: 7

Note Operating systems perform byte-oriented I/O and you use ByteBuffer to create byte-oriented
buffers that store the bytes to write to a destination or that are read from a source. The other primitive-type
buffer classes let you create multibyte view buffers (discussed later) so that you can conceptually
perform I/O in terms of characters, double precision floating-point values, 32-bit integers, and so on.
However, the I/O operation is really being carried out as a flow of bytes.

566 CHAPTER 13: Migrating to New I/O

Changing buffer limit to 5
Limit: 5
Position: 0
Remaining: 5
Changing buffer position to 3
Position: 3
Remaining: 2
java.nio.HeapByteBuffer[pos=3 lim=5 cap=7]

The final output line reveals that the ByteBuffer instance assigned to buffer is actually an instance
of the package-private java.nio.HeapByteBuffer class.

Buffers in Depth
The previous discussion of the Buffer class has given you some insight into NIO buffers. However,
there is much more to explore. This section takes you deeper into buffers by exploring buffer
creation, writing and reading buffers, buffer flipping, buffer marking, Buffer subclass operations,
byte ordering, and direct buffers.

Note Although the primitive-type buffer classes have similar capabilities, ByteBuffer is the largest
and most versatile. After all, bytes are the basic unit used by operating systems to transfer data items. I’ll
therefore use ByteBuffer to demonstrate most buffer operations. I’ll also use CharBuffer to add variety.

Buffer Creation
ByteBuffer and the other primitive-type buffer classes declare various class methods for creating
a buffer of that type. For example, ByteBuffer declares the following class methods for creating
ByteBuffer instances:

 ByteBuffer allocate(int capacity) allocates a new byte buffer with the
specified capacity value. Its position is 0, its limit is its capacity, its mark is
undefined, and each element is initialized to 0. It has a backing array, and its
array offset is 0. This method throws IllegalArgumentException when capacity
is negative.

 ByteBuffer allocateDirect(int capacity) allocates a new direct byte buffer
with the specified capacity value. Its position is 0, its limit is its capacity, its
mark is undefined, and each element is initialized to 0. Whether or not it has a
backing array is unspecified. This method throws IllegalArgumentException
when capacity is negative.

 ByteBuffer wrap(byte[] array) wraps a byte array into a buffer. The new buffer
is backed by array; that is, modifications to the buffer will cause the array to be
modified and vice versa. The new buffer’s capacity and limit are set to
array.length, its position is set to 0, and its mark is undefined. Its array offset is 0.

567CHAPTER 13: Migrating to New I/O

 ByteBuffer wrap(byte[] array, int offset, int length) wraps a byte array
into a buffer. The new buffer is backed by array. The new buffer’s capacity is set
to array.length, its position is set to offset, its limit is set to offset + length,
and its mark is undefined. Its array offset is 0. This method throws java.lang.
IndexOutOfBoundsException when offset is negative or greater than array.
length or when length is negative or greater than array.length - offset.

These methods show two ways to create a byte buffer: create the ByteBuffer object and allocate an
internal array that stores capacity bytes or create the ByteBuffer object and use the specified array
to store these bytes. Consider these examples:

ByteBuffer buffer = ByteBuffer.allocate(10);
byte[] bytes = new byte[200];
ByteBuffer buffer2 = ByteBuffer.wrap(bytes);

The first line creates a byte buffer with an internal byte array that stores a maximum of 10 bytes,
and the second and third lines create a byte array and a byte buffer that uses this array to store a
maximum of 200 bytes.

Now, consider the following example, which extends the previous example:

buffer = ByteBuffer.wrap(bytes, 10, 50);

This example creates a byte buffer with a position of 10, a limit of 50, and a capacity of bytes.length
(which happens to be 200). Although it appears that the buffer can only access a subrange of this
array, it actually has access to the entire array: the values of 10 and 50 are only the starting values for
the position and limit.

ByteBuffers (and other primitive type buffers) created via allocate() or wrap() are nondirect byte
buffers—you’ll learn about direct byte buffers later. Nondirect byte buffers have backing arrays, and
you can access these backing arrays via the array() method (which happens to be declared as
byte[] array() in the ByteArray class) as long as hasArray() returns true. (When hasArray() returns
true, you’ll need to call arrayOffset() to obtain the location of the first data item in the array.)

Listing 13-2 demonstrates buffer allocation and wrapping.

Listing 13-2. Creating Byte-Oriented Buffers via Allocation and Wrapping

import java.nio.ByteBuffer;

public class BufferDemo
{
 public static void main(String[] args)
 {
 ByteBuffer buffer1 = ByteBuffer.allocate(10);
 if (buffer1.hasArray())
 {
 System.out.println("buffer1 array: " + buffer1.array());
 System.out.println("Buffer1 array offset: " + buffer1.arrayOffset());
 System.out.println("Capacity: " + buffer1.capacity());

568 CHAPTER 13: Migrating to New I/O

 System.out.println("Limit: " + buffer1.limit());
 System.out.println("Position: " + buffer1.position());
 System.out.println("Remaining: " + buffer1.remaining());
 System.out.println();
 }

 byte[] bytes = new byte[200];
 ByteBuffer buffer2 = ByteBuffer.wrap(bytes);
 buffer2 = ByteBuffer.wrap(bytes, 10, 50);
 if (buffer2.hasArray())
 {
 System.out.println("buffer2 array: " + buffer2.array());
 System.out.println("Buffer2 array offset: " + buffer2.arrayOffset());
 System.out.println("Capacity: " + buffer2.capacity());
 System.out.println("Limit: " + buffer2.limit());
 System.out.println("Position: " + buffer2.position());
 System.out.println("Remaining: " + buffer2.remaining());
 }
 }
}

Compile Listing 13-2 (javac BufferDemo.java) and run this application (java BufferDemo).
You should observe the following output:

buffer1 array: [B@15e565bd
Buffer1 array offset: 0
Capacity: 10
Limit: 10
Position: 0
Remaining: 10

buffer2 array: [B@77a6686
Buffer2 array offset: 0
Capacity: 200
Limit: 60
Position: 10
Remaining: 50

As well as managing data elements stored in external arrays (via the wrap() methods), buffers can
manage data stored in other buffers. When you create a buffer that manages another buffer’s data,
the created buffer is known as a view buffer. Changes made in either buffer are reflected in the other.

View buffers are created by calling a Buffer subclass’s duplicate() method. The resulting view
buffer is equivalent to the original buffer; both buffers share the same data items and have equivalent
capacities. However, each buffer has its own position, limit, and mark. When the buffer being
duplicated is read-only or direct, the view buffer is also read-only or direct.

Consider the following example:

ByteBuffer buffer = ByteBuffer.allocate(10);
ByteBuffer bufferView = buffer.duplicate();

569CHAPTER 13: Migrating to New I/O

The ByteBuffer instance identified by bufferView shares the same internal array of 10 elements as
buffer. At the moment, these buffers have the same position, limit, and (undefined) mark. However,
these properties in one buffer can be changed independently of the properties in the other buffer.

View buffers are also created by calling one of ByteBuffer’s asxBuffer() methods. For example,
LongBuffer asLongBuffer() returns a view buffer that conceptualizes the byte buffer as a buffer of
long integers.

Note Read-only view buffers can be created by calling a method such as ByteBuffer
asReadOnlyBuffer(). Any attempt to change a read-only view buffer’s content results in
ReadOnlyBufferException. However, the original buffer content (provided that it isn’t read-only)
can be changed, and the read-only view buffer will reflect these changes.

Writing and Reading Buffers
ByteBuffer and the other primitive-type buffer classes declare several overloaded put() and get()
methods for writing data items to and reading data items from a buffer. These methods are absolute
when they require an index argument or relative when they don’t require an index.

For example, ByteBuffer declares the absolute ByteBuffer put(int index, byte b) method to
store byte b in the buffer at the index value and the absolute byte get(int index) method to fetch
the byte located at position index. This class also declares the relative ByteBuffer put(byte b)
method to store byte b in the buffer at the current position and then increment the current position,
and the relative byte get() method to fetch the byte located at the buffer’s current position and
increment the current position.

The absolute put() and get() methods throw IndexOutOfBoundsException when index is
negative or greater than or equal to the buffer’s limit. The relative put() method throws
java.nio.BufferOverflowException when the current position is greater than or equal to the
limit, and the relative get() method throws java.nio.BufferUnderflowException when the
current position is greater than or equal to the limit. Furthermore, the absolute and relative put()
methods throw ReadOnlyBufferException when the buffer is read-only.

Listing 13-3 demonstrates the relative put() method and the absolute get() method.

Listing 13-3. Writing Bytes to and Reading Them From a Buffer

import java.nio.ByteBuffer;

public class BufferDemo
{
 public static void main(String[] args)
 {
 ByteBuffer buffer = ByteBuffer.allocate(7);
 System.out.println("Capacity = " + buffer.capacity());
 System.out.println("Limit = " + buffer.limit());
 System.out.println("Position = " + buffer.position());
 System.out.println("Remaining = " + buffer.remaining());

570 CHAPTER 13: Migrating to New I/O

 buffer.put((byte) 10).put((byte) 20).put((byte) 30);

 System.out.println("Capacity = " + buffer.capacity());
 System.out.println("Limit = " + buffer.limit());
 System.out.println("Position = " + buffer.position());
 System.out.println("Remaining = " + buffer.remaining());

 for (int i = 0; i < buffer.position(); i++)
 System.out.println(buffer.get(i));
 }
}

Compile Listing 13-3 (javac BufferDemo.java) and run this application (java BufferDemo).
You should observe the following output:

Capacity = 7
Limit = 7
Position = 0
Remaining = 7
Capacity = 7
Limit = 7
Position = 3
Remaining = 4
10
20
30

Tip For maximum efficiency, you can perform bulk data transfers by using the ByteBuffer
put(byte[] src), ByteBuffer put(byte[] src, int offset, int length), ByteBuffer
get(byte[] dst), and ByteBuffer get(byte[] dst, int offset, int length) methods
to write and read an array of bytes.

Flipping Buffers
After filling a buffer, you must prepare it for draining by a channel. When you pass the buffer as is,
the channel accesses undefined data beyond the current position.

To solve this problem, you could reset the position to 0, but how would the channel know when the
end of the inserted data had been reached? The solution is to work with the limit property, which
indicates the end of the active portion of the buffer. Basically, you set the limit to the current position
and then reset the current position to 0.

You could accomplish this task by executing the following code, which also clears any defined mark:

buffer.limit(buffer.position()).position(0);

571CHAPTER 13: Migrating to New I/O

However, there’s an easier way to accomplish the same task, as shown here:

buffer.flip();

In either case, the buffer is ready to be drained.

Listing 13-4 demonstrates buffer flipping in the context of a character buffer.

Listing 13-4. Writing Characters to and Reading Them From a Character Buffer

import java.nio.CharBuffer;

public class BufferDemo
{
 public static void main(String[] args)
 {
 String[] poem =
 {
 "Roses are red",
 "Violets are blue",
 "Sugar is sweet",
 "And so are you."
 };

 CharBuffer buffer = CharBuffer.allocate(50);

 for (int i = 0; i < poem.length; i++)
 {
 // Fill the buffer.
 for (int j = 0; j < poem[i].length(); j++)
 buffer.put(poem[i].charAt(j));

 // Flip the buffer so that its contents can be read.
 buffer.flip();

 // Drain the buffer.
 while (buffer.hasRemaining())
 System.out.print(buffer.get());

 // Empty the buffer to prevent BufferOverflowException.
 buffer.clear();

 System.out.println();
 }
 }
}

572 CHAPTER 13: Migrating to New I/O

Compile Listing 13-4 (javac BufferDemo.java) and run this application (java BufferDemo).
You should observe the following output:

Roses are red
Violets are blue
Sugar is sweet
And so are you.

Note rewind() is similar to flip() but ignores the limit. Also, calling flip() twice doesn’t
return you to the original state. Instead, the buffer has a zero size. Calling a put() method results in
BufferOverflowException, and calling a get() method results in BufferUnderflowException
or (in the case of get(int)), IndexOutOfBoundsException.

Marking Buffers
You can mark a buffer by invoking the mark() method and later return to the marked position by
invoking reset(). For example, suppose you’ve executed ByteBuffer buffer = ByteBuffer.
allocate(7);, followed by buffer.put((byte) 10).put((byte) 20).put((byte) 30).put((byte) 40);,
followed by buffer.limit(4);. The current position and limit are set to 4.

Continuing, suppose you execute buffer.position(1).mark().position(3);. If you sent this buffer
to a channel, byte 40 would be sent (the current position is 3 because of position(3)) and the
position would advance to 4. If you subsequently executed buffer.reset(); and sent this buffer to
the channel, the position would be set to the mark (1); and bytes 20, 30, and 40 (all bytes from the
current position to one position below the limit) would be sent to the channel (and in that order).

Listing 13-5 demonstrates this mark/reset scenario.

Listing 13-5. Marking the Current Buffer Position and Resetting the Current Position to the Marked Position

import java.nio.ByteBuffer;

public class BufferDemo
{
 public static void main(String[] args)
 {
 ByteBuffer buffer = ByteBuffer.allocate(7);
 buffer.put((byte) 10).put((byte) 20).put((byte) 30).put((byte) 40);
 buffer.limit(4);
 buffer.position(1).mark().position(3);
 System.out.println(buffer.get());
 System.out.println();
 buffer.reset();
 while (buffer.hasRemaining())
 System.out.println(buffer.get());
 }
}

573CHAPTER 13: Migrating to New I/O

Compile Listing 13-5 (javac BufferDemo.java) and run this application (java BufferDemo).
You should observe the following output:

40

20
30
40

Caution Don’t confuse reset() with clear(). The clear() method marks a buffer as empty,
whereas reset() changes the buffer’s current position to the previously set mark, or throws
InvalidMarkException when there’s no previously set mark.

Buffer Subclass Operations
ByteBuffer and the other primitive-type buffer classes declare a compact() method that’s useful for
compacting a buffer by copying all bytes between the current position and the limit to the beginning
of the buffer. The byte at index p = position() is copied to index 0, the byte at index p + 1 is
copied to index 1, and so on until the byte at index limit() – 1 is copied to index n = limit() – 1 – p.
The buffer’s current position is then set to n + 1, and its limit is set to its capacity. The mark, when
defined, is discarded.

You invoke compact() after writing data from a buffer to handle situations where not all of the buffer’s
content is written. Consider the following example that copies content from an in channel to an out
channel via buffer buf:

buf.clear(); // Prepare buffer for use
while (in.read(buf) != −1)
{
 buf.flip(); // Prepare buffer for draining.
 out.write(buf); // Write the buffer.
 buf.compact(); // Do this in case of a partial write.
}

The compact() method call moves unwritten buffer data to the beginning of the buffer so that the
next read() method call appends read data to the buffer’s data instead of overwriting that data when
compact() isn’t specified.

You may occasionally need to compare buffers for equality or order. All Buffer subclasses except for
ByteBuffer’s MappedByteBuffer subclass override the equals() and compareTo() methods to perform
these comparisons—MappedByteBuffer inherits these methods from its ByteBuffer superclass.
The following example shows you how to compare byte buffers bytBuf1 and bytBuf2 for equality
and ordering:

System.out.println(bytBuf1.equals(bytBuf2));
System.out.println(bytBuf1.compareTo(bytBuf2));

574 CHAPTER 13: Migrating to New I/O

The equals() contract for ByteBuffer states that 2 byte buffers are equal if and only if they have the
same element type; they have the same number of remaining elements; and the two sequences of
remaining elements, considered independently of their starting positions, are individually equal. This
contract is the same for the other Buffer subclasses.

The compareTo() method for ByteBuffer states that 2 byte buffers are compared for order by
comparing their sequences of remaining elements lexicographically, without regard to the starting
position of each sequence within its corresponding buffer. Pairs of byte elements are compared as if
by invoking Byte.compare(byte, byte). Similar descriptions apply to the other Buffer subclasses.

Byte Ordering
Nonbyte primitive types except for Boolean (which might be represented by a bit or by a byte) are
composed of several bytes: a character or a short integer occupies 2 bytes, a 32-bit integer or a
floating-point value occupies 4 bytes, and a long integer or a double precision floating-point value
occupies 8 bytes. Each value of one of these multibyte types is stored in a sequence of contiguous
memory locations. However, the order of these bytes can differ from platform to platform.

For example, consider 32-bit long integer 0x10203040. This value’s 4 bytes could be stored in
memory (from low address to high address) as 10, 20, 30, 40; this arrangement is known as
big-endian order (the most significant byte, the “big” end, is stored at the lowest address).
Alternatively, these bytes could be stored as 40, 30, 20, 10; this arrangement is known as
little-endian order (the least significant byte, the “little” end, is stored at the lowest address).

Java provides the java.nio.ByteOrder class to help you deal with byte-order issues when writing/
reading multibyte values to/from a multibyte buffer. ByteOrder declares a ByteOrder nativeOrder()
method that returns the platform’s byte order as a ByteOrder instance. Because this instance is one
of ByteOrder’s BIG_ENDIAN and LITTLE_ENDIAN constants, and because no other ByteOrder instances
can be created, you can compare nativeOrder()’s return value to one of these constants via the ==
or != operator.

Also, each multibyte class (e.g., FloatBuffer) declares a ByteOrder order() method that returns the
byte order of that buffer. This method returns ByteOrder.BIG_ENDIAN or ByteOrder.LITTLE_ENDIAN.

The ByteOrder value returned from order() can take on a different value based on how the buffer
was created. If a multibyte buffer (e.g., a float buffer) was created by allocation or by wrapping an
existing array, the buffer’s byte order is the native order of the underlying platform. However, if a
multibyte buffer was created as a view of a byte buffer, the view buffer’s byte order is that of the byte
buffer when the view was created. The view buffer’s byte order cannot be subsequently changed.

ByteBuffer differs from the multibyte classes when it comes to byte order. Its default byte order
is always big endian, even when the underlying platform’s byte order is little endian. ByteBuffer
defaults to big endian because Java’s default byte order is also big endian, which lets classfiles and
serialized objects store data consistently across virtual machines.

Because this big endian default can impact performance on little-endian platforms, ByteBuffer also
declares a ByteBuffer order(ByteOrder bo) method to change the byte buffer’s byte order.

Although it may seem unusual to change the byte order of a byte buffer (where only single-byte data
items are accessed), this method is useful because ByteBuffer also declares several convenience
methods for writing and reading multibyte values (e.g., ByteBuffer putInt(int value) and

575CHAPTER 13: Migrating to New I/O

int getInt()). These convenience methods write these values according to the byte buffer’s current
byte order. Furthermore, you can subsequently call ByteBuffer’s LongBuffer asLongBuffer()
or another asxBuffer() method to return a view buffer whose order will reflect the byte buffer’s
changed byte order.

Direct Byte Buffers
Unlike multibyte buffers, byte buffers can serve as the sources and/or targets of channel-based I/O.
This shouldn’t come as a surprise because operating systems perform I/O on memory areas that are
contiguous sequences of 8-bit bytes (not floating-point values, not 32-bit integers, and so on).

Operating systems can directly access the address space of a process. For example, an operating
system could directly access a virtual machine process’s address space to perform a data transfer
operation based on a byte array. However, a virtual machine might not store the array of bytes
contiguously or its garbage collector might move the byte array to another location. Because of
these limitations, direct byte buffers were created.

A direct byte buffer is a byte buffer that interacts with channels and native code to perform I/O.
The direct byte buffer attempts to store byte elements in a memory area that a channel uses to
perform direct (raw) access via native code that tells the operating system to drain or fill the memory
area directly.

Direct byte buffers are the most efficient means for performing I/O on the virtual machine. Although
you can also pass nondirect byte buffers to channels, a performance problem might arise because
nondirect byte buffers are not always able to serve as the target of native I/O operations.

When a channel is passed a nondirect byte buffer, the channel might have to create a temporary
direct byte buffer, copy the nondirect byte buffer’s content to the direct byte buffer, perform the I/O
operation on the temporary direct byte buffer, and copy the temporary direct byte buffer’s content to
the nondirect byte buffer. The temporary direct byte buffer will then be subject to garbage collection.

Although optimal for I/O, a direct byte buffer can be expensive to create because memory
extraneous to the virtual machine’s heap will need to be allocated by the operating system, and
setting up and/or tearing down this memory might take longer than when the buffer was located
within the heap. After your code is working and should you want to experiment with performance
optimization, you can easily obtain a direct byte buffer by invoking ByteBuffer’s allocateDirect()
method, which I discussed earlier.

Working with Channels
Channels partner with buffers to achieve high-performance I/O. A channel is an object that
represents an open connection to a hardware device, a file, a network socket, an application
component, or another entity that’s capable of performing write, read, and other I/O operations.
Channels efficiently transfer data between byte buffers and I/O service sources or destinations.

Note Channels are the gateways through which native I/O services are accessed. Channels use byte
buffers as the endpoints for sending and receiving data.

576 CHAPTER 13: Migrating to New I/O

There often exists a one-to-one correspondence between an operating system file handle or file
descriptor and a channel. When you work with channels in a file context, the channel will often be
connected to an open file descriptor. Despite channels being more abstract than file descriptors,
they are still capable of modeling an operating system’s native I/O facilities.

Channel and Its Children
Java supports channels via its java.nio.channels and java.nio.channels.spi packages.
Applications interact with the types located in the former package; developers who are defining new
selector providers work with the latter package.

All channels are instances of classes that ultimately implement the java.nio.channels.Channel
interface. Channel declares the following methods:

 void close(): Close this channel. When this channel is already closed, invoking
close() has no effect. When another thread has already invoked close(), a new
close() invocation blocks until the first invocation finishes, after which close()
returns without effect. This method throws IOException when an I/O error
occurs. After the channel is closed, any further attempts to invoke I/O operations
on it result in java.nio.channels.ClosedChannelException being thrown.

 boolean isOpen(): Return this channel’s open status. This method returns true
when the channel is open; otherwise, it returns false.

These methods indicate that only two operations are common to all channels: close the channel
and determine whether the channel is open or closed. To support I/O, Channel is extended by the
java.nio.channels.WritableByteChannel and java.nio.channels.ReadableByteChannel interfaces:

 WritableByteChannel declares an abstract int write(ByteBuffer buffer)
method that writes a sequence of bytes from buffer to the current channel.
This method returns the number of bytes actually written. It throws
java.nio.channels.NonWritableChannelException when the channel was
not opened for writing, java.nio.channels.ClosedChannelException when
the channel is closed, java.nio.channels.AsynchronousCloseException when
another thread closes the channel during the write,
java.nio.channels.ClosedByInterruptException when another thread interrupts
the current thread while the write operation is in progress (thereby closing the
channel and setting the current thread’s interrupt status), and java.io.IOException
when some other I/O error occurs.

 ReadableByteChannel declares an abstract int read(ByteBuffer buffer)
method that reads bytes from the current channel into buffer. This method
returns the number of bytes actually read (or −1 when there are no more bytes
to read). It throws java.nio.channels.NonReadableChannelException when the
channel was not opened for reading; ClosedChannelException when the channel
is closed; AsynchronousCloseException when another thread closes the channel
during the read; ClosedByInterruptException when another thread interrupts
the current thread while the write operation is in progress, thereby closing the
channel and setting the current thread’s interrupt status; and IOException when
some other I/O error occurs.

577CHAPTER 13: Migrating to New I/O

Along with WritableByteChannel and ReadableByteChannel, InterruptibleChannel directly extends
Channel. InterruptibleChannel describes a channel that can be asynchronously closed and
interrupted. This interface overrides its Channel superinterface’s close() method header, presenting
the following additional stipulation to Channel’s contract for this method: Any thread currently
blocked in an I/O operation on this channel will receive AsynchronousCloseException
(an IOException descendent).

A channel that implements this interface is asynchronously closeable: When a thread is blocked in an
I/O operation on an interruptible channel, another thread may invoke the channel’s close() method.
This causes the blocked thread to receive a thrown AsynchronousCloseException instance.

A channel that implements this interface is also interruptible: When a thread is blocked in an I/O
operation on an interruptible channel, another thread may invoke the blocked thread’s interrupt()
method. Doing this causes the channel to be closed, the blocked thread to receive a thrown
ClosedByInterruptException instance, and the blocked thread to have its interrupt status set. (When
a thread’s interrupt status is already set and it invokes a blocking I/O operation on a channel, the
channel is closed and the thread will immediately receive a thrown ClosedByInterruptException
instance; its interrupt status will remain set.)

NIO’s designers chose to shut down a channel when a blocked thread is interrupted because
they couldn’t find a way to reliably handle interrupted I/O operations in the same manner across
platforms. The only way to guarantee deterministic behavior was to shut down the channel.

Note A channel whose class implements only WritableByteChannel or ReadableByteChannel
is unidirectional. Attempting to read from a writable byte channel or write to a readable byte channel
results in a thrown exception.

You can use the instanceof operator to determine if a channel instance implements either
interface. Because it’s somewhat awkward to test for both interfaces, Java supplies the
java.nio.channels.ByteChannel interface, which is an empty marker interface that subtypes
WritableByteChannel and ReadableByteChannel. When you need to learn whether or not a
channel is bidirectional, it’s more convenient to specify an expression such as channel instanceof
ByteChannel.

Tip You can determine whether or not a channel supports asynchronous closing and
interruption by using the instanceof operator in an expression such as channel instanceof
InterruptibleChannel.

578 CHAPTER 13: Migrating to New I/O

You previously learned that you must call a class method on a Buffer subclass to obtain a buffer.
Regarding channels, there are two ways to obtain a channel:

The java.nio.channels package provides a Channels utility class that offers
two methods for obtaining channels from streams—for each of the following
methods, the underlying stream is closed when the channel is closed, and the
channel isn’t buffered:

 WritableByteChannel newChannel(OutputStream outputStream) returns a
writable byte channel for the given outputStream.

 ReadableByteChannel newChannel(InputStream inputStream) returns a
readable byte channel for the given inputStream.

Various classic I/O classes have been retrofitted to support channel creation. For
example, RandomAccessFile declares a FileChannel getChannel() method for
returning a file channel instance, and java.net.Socket declares a SocketChannel
getChannel() method for returning a socket channel.

Listing 13-6 uses the Channels class to obtain channels for the standard input and output streams
and then uses these channels to copy bytes from the input channel to the output channel.

Listing 13-6. Copying Bytes From an Input Channel to an Output Channel

import java.io.IOException;

import java.nio.ByteBuffer;

import java.nio.channels.Channels;
import java.nio.channels.ReadableByteChannel;
import java.nio.channels.WritableByteChannel;

public class ChannelDemo
{
 public static void main(String[] args)
 {
 ReadableByteChannel src = Channels.newChannel(System.in);
 WritableByteChannel dest = Channels.newChannel(System.out);

 try
 {
 copy(src, dest); // or copyAlt(src, dest);
 }
 catch (IOException ioe)
 {
 System.err.println("I/O error: " + ioe.getMessage());
 }
 finally
 {

579CHAPTER 13: Migrating to New I/O

 try
 {
 src.close();
 dest.close();
 }
 catch (IOException ioe)
 {
 ioe.printStackTrace();
 }
 }
 }

 static void copy(ReadableByteChannel src, WritableByteChannel dest)
 throws IOException
 {
 ByteBuffer buffer = ByteBuffer.allocateDirect(2048);
 while (src.read(buffer) != −1)
 {
 buffer.flip();
 dest.write(buffer);
 buffer.compact();
 }
 buffer.flip();
 while (buffer.hasRemaining())
 dest.write(buffer);
 }

 static void copyAlt(ReadableByteChannel src, WritableByteChannel dest)
 throws IOException
 {
 ByteBuffer buffer = ByteBuffer.allocateDirect(2048);
 while (src.read(buffer) != −1)
 {
 buffer.flip();
 while (buffer.hasRemaining())
 dest.write(buffer);
 buffer.clear();
 }
 }
}

Listing 13-6 presents two approaches to copying bytes from the standard input stream to the
standard output stream. In the first approach, which is exemplified by the copy() method, the goal
is to minimize native I/O calls (via the write() method calls), although more data may end up being
copied as a result of the compact() method calls. In the second approach, as demonstrated by
copyAlt(), the goal is to eliminate data copying, although more native I/O calls might occur.

Each of copy() and copyAlt() first allocates a direct byte buffer (recall that a direct byte buffer is
the most efficient means for performing I/O on the virtual machine) and enters a while loop that
continually reads bytes from the source channel until end-of-input (read() returns −1). Following the
read, the buffer is flipped so that it can be drained. Here is where the methods diverge.

580 CHAPTER 13: Migrating to New I/O

The copy() method while loop makes a single call to write(). Because write()
might not completely drain the buffer, compact() is called to compact the buffer
prior to the next read. Compaction ensures that unwritten buffer content isn’t
overwritten during the next read operation. Following the while loop, copy() flips
the buffer in preparation for draining any remaining content, and then works with
hasRemaining() and write() to completely drain the buffer.

The copyAlt() method while loop contains a nested while loop that works with
hasRemaining() and write() to continue draining the buffer until the buffer is
empty. This is followed by a clear() method call that empties the buffer so that
it can be filled on the next read() call.

Note It’s important to realize that a single write() method call may not output the entire content of
a buffer. Similarly, a single read() call may not completely fill a buffer.

Compile Listing 13-6 (javac ChannelDemo.java) and run this application (java ChannelDemo and
java ChannelDemo <ChannelDemo.java >ChannelDemo.bak are examples) to verify that standard
input is copied to standard output. After testing the copy() method, replace copy(src, dest); with
copyAlt(src, dest); and repeat.

Channels in Depth
The previous discussion of the Channel interface and its direct descendents has given you some
insight into NIO channels. However, there is much more to explore. This section takes you deeper
into channels by exploring scatter/gather I/O and file channels. Unfortunately, the need for brevity
restrains me from also exploring socket channels.

Scatter/Gather I/O
Channels provide the ability to perform a single I/O operation across multiple buffers. This capability
is known as scatter/gather I/O (and is also known as vectored I/O).

In the context of a write operation, the contents of several buffers are gathered (drained) in sequence
and then sent through the channel to a destination—these buffers are not required to have identical
capacities. In the context of a read operation, the contents of a channel are scattered (filled) to
multiple buffers in sequence; each buffer is filled to its limit until the channel is empty or total buffer
space is used up.

Note Modern operating systems provide APIs that support vectored I/O to eliminate (or at least
reduce) system calls or buffer copies and hence improve performance. For example, the Win32/Win64
APIs provide ReadFileScatter() and WriteFileGather() functions for this purpose.

581CHAPTER 13: Migrating to New I/O

Java provides the java.nio.channels.ScatteringByteChannel interface to support scattering and
the java.nio.channels.GatheringByteChannel interface to support gathering.

ScatteringByteChannel offers the following methods:

 long read(ByteBuffer[] buffers, int offset, int length)

 long read(ByteBuffer[] buffers)

GatheringByteChannel offers the following methods:

 long write(ByteBuffer[] buffers, int offset, int length)

 long write(ByteBuffer[] buffers)

The first read() method and the first write() method let you identify the first buffer to read/write
by passing a zero-based offset to offset and the number of buffers to read/write by passing a
value to length. The second read() method and the second write() method read/write all buffers
in sequence.

Listing 13-7 Demonstrates read(ByteBuffer[] buffers) and write(ByteBuffer[] buffers).

Listing 13-7. Demonstrating Scatter/Gather

import java.io.FileInputStream;
import java.io.FileOutputStream;
import java.io.IOException;

import java.nio.ByteBuffer;

import java.nio.channels.Channels;
import java.nio.channels.GatheringByteChannel;
import java.nio.channels.ReadableByteChannel;
import java.nio.channels.ScatteringByteChannel;

public class ChannelDemo
{
 public static void main(String[] args) throws IOException
 {
 ScatteringByteChannel src;
 src = (ScatteringByteChannel) Channels.newChannel(new FileInputStream("x.dat"));
 ByteBuffer buffer1 = ByteBuffer.allocateDirect(5);
 ByteBuffer buffer2 = ByteBuffer.allocateDirect(3);
 ByteBuffer[] buffers = { buffer1, buffer2 };
 src.read(buffers);
 buffer1.flip();
 while (buffer1.hasRemaining())
 System.out.printf("%c%n", buffer1.get());
 System.out.println();
 buffer2.flip();
 while (buffer2.hasRemaining())
 System.out.printf("%c%n", buffer2.get());
 buffer1.rewind();
 buffer2.rewind();

582 CHAPTER 13: Migrating to New I/O

 GatheringByteChannel dest;
 dest = (GatheringByteChannel) Channels.newChannel(new FileOutputStream("y.dat"));
 buffers[0] = buffer2;
 buffers[1] = buffer1;
 dest.write(buffers);
 }
}

Listing 13-7’s main() method first obtains a scattering byte channel by instantiating
java.io.FileInputStream and passing this instance to the Channels class’s ReadableByteChannel
newChannel(InputStream inputStream) method. The returned ReadableByteChannel instance is
cast to ScatteringByteChannel because this instance is actually a file channel (discussed later) that
implements ScatteringByteChannel.

Next, main() creates a couple of direct byte buffers; the first buffer has a capacity of 5 bytes and the
second buffer has a capacity of 3 bytes. These buffers are subsequently stored in an array and this
array is passed to read(ByteBuffer[]) to fill them.

After filling the buffers, main() flips them so that it can output their contents to standard output. After
these contents have been output, the buffers are rewound in preparation for being drained via a
gather operation.

main() now obtains a gathering byte channel by instantiating java.io.FileOutputStream and
passing this instance to the Channels class’s WritableByteChannel newChannel(OutputStream
outputStream) method. The returned WritableByteChannel instance is cast to GatheringByteChannel
because this instance is actually a file channel (discussed later) that implements
GatheringByteChannel.

Finally, main() assigns these buffers to the buffers array in reverse order to how they were originally
assigned and then passes this array to write(ByteBuffer[]) to drain them.

Note The %n format specifier in the System.out.printf() method calls is a portable way to
specify the line terminator (a 1-or-2-character sequence designating the end of the line). It’s not a
good idea to specify \n because some platforms require \r\n as the line terminator, whereas other
platforms require \r.

Create a file named x.dat and store the following text in this file:

12345abcdefg

Now compile Listing 13-7 (javac ChannelDemo.java) and run this application (java ChannelDemo). You
should observe the following output:

1
2
3
4
5

583CHAPTER 13: Migrating to New I/O

a
b
c

Additionally, you should observe a newly created y.dat file with the following content:

abc12345

File Channels
I previously mentioned that RandomAccessFile declares a FileChannel getChannel() method for
returning a file channel instance. It turns out that FileInputStream and FileOutputStream also
provide the same method. In contrast, FileReader and FileWriter don’t offer a way to obtain a file
channel.

Caution The file channel returned from FileInputStream’s getChannel() method is read-only, and
the file channel returned from FileOutputStream’s getChannel() method is write-only. Attempting to
write to a read-only file channel or read from a write-only file channel results in an exception.

The abstract java.nio.channels.FileChannel class describes a file channel. Because this class
extends the abstract java.nio.channels.spi.AbstractInterruptibleChannel class, which
implements the InterruptibleChannel interface, file channels are interruptible. Because this class
implements the ByteChannel, GatheringByteChannel, and ScatteringByteChannel interfaces, you can
write to, read from, and perform scattering I/O on underlying files. However, there’s more.

Note Unlike buffers, which are not thread-safe, file channels are thread-safe.

A file channel maintains a virtual pointer into the file, which is known as the file pointer, and
FileChannel lets you obtain and change the file pointer value. It also lets you obtain the size of the
file underlying the channel, attempt to lock the entire file or just a region of the file, perform
memory-mapped file I/O, request that cached data be forced to the disk, and transfer data directly
to another channel in a manner that has the potential to be optimized by the platform.

Table 13-2 describes a few of FileChannel’s methods.

584 CHAPTER 13: Migrating to New I/O

Table 13-2. FileChannel Methods

Method Description

void force(boolean
metadata)

Request that all updates to this file channel be committed to the storage device.
When this method returns, all modifications made to the platform file underlying
this channel have been committed when the file resides on a local storage device.
However, when the file isn’t hosted locally (e.g., it’s on a networked file system),
applications cannot be certain that the modifications have been committed.
(No assurances are given that changes made to the file using methods defined
elsewhere will be committed. For example, changes made via a mapped byte
buffer may not be committed.)

The metadata value indicates whether the update should include the file’s
metadata (e.g., last modification time and last access time), when true is passed,
or not include the file’s metadata, when false is passed. Passing true may
invoke an underlying write to the operating system (if the platform is maintaining
metadata, such as last access time), even when the channel is opened as a read-
only channel.

This method throws ClosedChannelException when the channel is already closed
and throws IOException when any other I/O error occurs.

FileLock lock() Obtain an exclusive lock on this file channel’s underlying file. This convenience
method is equivalent to executing fileChannel.lock(0L, Long.MAX_VALUE,
false);, where fileChannel references a file channel.

This method returns a java.nio.channels.FileLock object representing the
locked area. It throws ClosedChannelException when the file channel is closed;
NonWritableChannelException when the channel isn’t open for writing; java.nio.
channels.OverlappingFileLockException when either a lock is already held that
overlaps this lock request or another thread is waiting to acquire a lock that will
overlap with this request; java.nio.channels.FileLockInterruptionException
when the calling thread was interrupted while waiting to acquire the lock;
AsynchronousCloseException when the channel was closed while the calling
thread was waiting to acquire the lock; and IOException when another I/O error
occurs while obtaining the requested lock.

(continued)

585CHAPTER 13: Migrating to New I/O

Method Description

MappedByteBuffer map
(FileChannel.MapMode
mode, long position,
long size)

Map a region of this file channel’s file directly into memory according to one of
three modes:

*read-only: any attempt to modify the resulting buffer will cause
ReadOnlyBufferException to be thrown (MapMode.READ_ONLY)

*read/write: changes made to the resulting buffer will eventually be propagated to
the file; they may or may not be made visible to other programs that have mapped
the same file (MapMode.READ_WRITE)

*private: changes made to the resulting buffer will not be propagated to the file
and will not be visible to other programs that have mapped the same file; instead,
they will cause private copies of the modified portions of the buffer to be created
(MapMode.PRIVATE)

For a read-only mapping, this channel must have been opened for reading; for
a read/write or private mapping, this channel must have been opened for both
reading and writing.

The value passed to position identifies the position within the file at which the
mapped region is to start. The value passed to size identifies the length of the
mapped region.

When successful, this method returns the mapped byte buffer. The returned
mapped byte buffer will have a position of zero and a limit and capacity of size; its
mark will be undefined. The buffer and the mapping that it represents will remain
valid until the buffer itself is garbage-collected.

When unsuccessful, this method throws an exception. It throws
NonReadableChannelException when mode is READ_ONLY, but this channel wasn’t
opened for reading; NonWritableChannelException when mode is READ_WRITE
or PRIVATE, but this channel wasn’t opened for both reading and writing;
IllegalArgumentException when mode isn’t one of the constants defined by the
FileChannel.MapMode class, a negative value is passed to position, or the value
passed to size is negative or greater than java.lang.Integer.MAX_VALUE; and
IOException when any other I/O error occurs.

Once established, a mapping isn’t dependent on the file channel that was used to
create it. In particular, closing the channel has no effect on the mapping’s validity.

Many of the details of memory-mapped files are inherently dependent on the
underlying operating system and are therefore unspecified. The behavior of this
method when the requested region is not completely contained within this channel’s
file is unspecified. Whether changes made to the content or size of the underlying
file, by this or another application, are propagated to the buffer is unspecified. The
rate at which changes to the buffer are propagated to the file is unspecified.

For most operating systems, mapping a file into memory is more expensive than
reading or writing a few tens of kilobytes of data via the usual read/write methods.
From a performance perspective, it’s generally only worth mapping relatively large
files into memory.

Table 13-2. (continued)

(continued)

586 CHAPTER 13: Migrating to New I/O

Method Description

long position() Return the current value of this file channel’s file pointer, which is relative to zero.
This method throws ClosedChannelException when the file channel is closed and
IOException when another I/O error occurs.

FileChannel position
(long offset)

Set this file channel’s file pointer to offset. The argument is the number of bytes
counted from the start of the file. The position cannot be set to a value that is
negative. The new position can be set beyond the current file size. If set beyond
the current file size, attempts to read will return end of file. Write operations will
succeed, but they will fill the bytes between the current end of file and the new
position with the required number of (unspecified) byte values. This method throws
IllegalArgumentException when offset is negative, ClosedChannelException
when the file channel is closed, and IOException when another I/O error occurs.

int read
(ByteBuffer buffer)

Read bytes from this file channel into the given buffer. The maximum number of
bytes that will be read is the remaining number of bytes in the buffer when the
method is invoked. The bytes will be copied into the buffer starting at the buffer’s
current position. The call may block when other threads are also attempting to
read from this channel. On completion, the buffer’s position is set to the end of the
bytes that have been read. The buffer’s limit isn’t changed. This method returns
the number of bytes actually read and throws the same exceptions as previously
discussed regarding ReadableByteChannel.

long size() Return the size (in bytes) of the file underlying this file channel. This method
throws ClosedChannelException when the file channel is closed and IOException
when another I/O error occurs.

FileChannel truncate
(long size)

Truncate the file underlying this file channel to size. Any bytes beyond the given
size are removed from the file. When there are no bytes beyond the given size,
the file contents are unmodified. When the file pointer is currently greater than the
given size, it’s set to the new size.

FileLock tryLock() Attempt to obtain an exclusive lock on this file channel’s underlying file
without blocking. This convenience method is equivalent to executing
fileChannel.tryLock(0L, Long.MAX_VALUE, false); where fileChannel
references a file channel.

This method returns a FileLock object representing the locked area or null when
the lock would overlap with an existing exclusive lock in another operating system
process. It throws ClosedChannelException when the file channel is closed;
OverlappingFileLockException when a lock that overlaps the requested region
is already held by this virtual machine, or when another thread is already blocked
in this method and is attempting to lock an overlapping region; and IOException
when another I/O error occurs while obtaining the requested lock.

Table 13-2. (continued)

(continued)

587CHAPTER 13: Migrating to New I/O

Table 13-2 provides a lot of material to understand. To help you gain this knowledge, Listing 13-8
demonstrates several of these methods

Listing 13-8. Demonstrating a File Channel

import java.io.FileInputStream;
import java.io.FileOutputStream;
import java.io.IOException;

import java.nio.ByteBuffer;
import java.nio.MappedByteBuffer;

import java.nio.channels.FileChannel;

public class ChannelDemo
{
 public static void main(String[] args) throws IOException
 {
 if (args.length != 1)
 {
 System.out.println("usage: java ChannelDemo newfilespec");
 return;
 }
 FileOutputStream fos = new FileOutputStream(args[0]);
 FileChannel fc = fos.getChannel();
 System.out.println("position: " + fc.position());
 System.out.println("size: " + fc.size());
 String msg = "This is a test message.";
 ByteBuffer buffer = ByteBuffer.allocateDirect(msg.length() * 2);
 buffer.asCharBuffer().put(msg);
 fc.write(buffer);
 System.out.println("position: " + fc.position());
 System.out.println("size: " + fc.size());
 fc.truncate(24L);
 fc.close();
 FileInputStream fis = new FileInputStream(args[0]);
 fc = fis.getChannel();

Method Description

int write
(ByteBuffer buffer)

Write a sequence of bytes to this file channel from the given buffer. Bytes are
written starting at the channel’s current file position unless the channel is in
append mode, in which case the position is first advanced to the end of the file.
The file is grown (when necessary) to accommodate the written bytes, and then
the file position is updated with the number of bytes actually written. Otherwise
this method behaves exactly as specified by the WritableByteChannel interface.
This method returns the number of bytes actually written and throws the same
exceptions as previously discussed regarding WritableByteChannel.

Table 13-2. (continued)

588 CHAPTER 13: Migrating to New I/O

 System.out.println("size: " + fc.size());
 buffer.clear();
 fc.read(buffer);
 buffer.flip();
 while (buffer.hasRemaining())
 System.out.print(buffer.getChar());
 System.out.println();
 System.out.println(buffer.getChar(0));
 System.out.println(buffer.getChar(1));
 System.out.println(buffer.getChar(2));
 MappedByteBuffer mbb = fc.map(FileChannel.MapMode.READ_ONLY, 0, 4);
 System.out.println(mbb.getChar(0));
 System.out.println(mbb.getChar(2));
 System.out.println(mbb.getChar(4));
 fc.close();
 }
}

Listing 13-8’s main() method first verifies that you’ve specified a single command-line argument,
which is the name of a file that’s to be created and overwritten. It then creates a file output stream,
obtains a file channel for this stream, outputs some information about the channel, outputs some
content to the file, once again outputs channel information, truncates the file, and closes the file.

main() next creates a file input stream, obtains a file channel for this stream, outputs channel
information, reads file content into a buffer, and outputs buffer contents. Finally, a mapped byte
buffer (which provides a memory-mapped region of the file) is obtained and content is output.

Compile Listing 13-8 (javac ChannelDemo.java) and run this application (e.g., java ChannelDemo
x.dat). You should observe the following output:

position: 0
size: 0
position: 46
size: 46
size: 24
This is a te
T
?
h
T
H
Exception in thread "main"
java.lang.IndexOutOfBoundsException
 at java.nio.Buffer.checkIndex(Unknown Source)
 at java.nio.DirectByteBuffer.getChar(Unknown Source)
 at ChannelDemo.main(ChannelDemo.java:46)

There are two interesting items in this output: the question mark (?) and the exception. The question
mark arises from outputting an undisplayable Unicode character via System.out.println(buffer.
getChar(1));, where buffer.getChar(1) returns the second half of the 2-byte Unicode character
starting at byte index 0 and the first half of the 2-byte Unicode character starting at byte index 2.

589CHAPTER 13: Migrating to New I/O

The exception arises from mbb.getChar(4)’s attempt to access the Unicode character at byte
indexes 4 and 5. However, the only valid byte indexes in the mapped byte buffer are indexes
0 through 3.

Working With Regular Expressions
Text-processing applications often need to match text against patterns (character strings that
concisely describe sets of strings that are considered to be matches). For example, an application
might need to locate all occurrences of a specific word pattern in a text file so that it can replace
those occurrences with another word. The NIO JSR includes regular expressions to help text-
processing applications perform pattern matching with high performance.

Pattern, PatternSyntaxException, and Matcher
A regular expression (also known as a regex or regexp) is a string-based pattern that represents the
set of strings that match this pattern. The pattern consists of literal characters and metacharacters,
which are characters with special meanings instead of literal meanings.

The Regular Expressions API provides the java.util.regex.Pattern class to represent patterns via
compiled regexes. Regexes are compiled for performance reasons; pattern matching via compiled
regexes is much faster than if the regexes were not compiled. Table 13-3 describes Pattern’s
methods.

Table 13-3. Pattern Methods

Method Description

static Pattern compile(String regex) Compile regex and return its Pattern object. This method throws
java.util.regex.PatternSyntaxException when regex’s syntax is
invalid.

static Pattern compile(String
regex,int flags)

Compile regex according to the given flags (a bitset consisting
of some combination of Pattern’s CANON_EQ, CASE_INSENSITIVE,
COMMENTS, DOTALL, LITERAL, MULTILINE, UNICODE_CASE, and
UNIX_LINES constants) and return its Pattern object. This method
throws PatternSyntaxException when regex’s syntax is invalid,
and throws IllegalArgumentException when bit values other than
those corresponding to the defined match flags are set in flags.

int flags() Return this Pattern object’s match flags. This method returns 0 for
Pattern instances created via compile(String) and the bitset of
flags for Pattern instances created via compile(String, int).

Matcher matcher(CharSequence input) Return a Matcher that will match input against this Pattern’s
compiled regex.

(continued)

590 CHAPTER 13: Migrating to New I/O

Table 13-3 reveals the java.lang.CharSequence interface, which describes a readable and immutable
sequence of char values—the underlying implementation may be mutable. Instances of any class
that implements this interface (e.g., String, java.lang.StringBuffer, and java.lang.StringBuilder)
can be passed to Pattern methods that take CharSequence arguments (e.g., split(CharSequence)).

Table 13-3 also reveals that each of Pattern’s compile() methods and its matches() method
(which calls the compile(String) method) throws PatternSyntaxException when a syntax error is
encountered while compiling the pattern argument. Table 13-4 describes PatternSyntaxException’s
methods.

Method Description

static boolean matches(String regex,
CharSequence input)

Compile regex and attempt to match input against the compiled
regex. Return true when there is a match; otherwise, return
false. This convenience method is equivalent to
Pattern.compile(regex).matcher(input).matches() and throws
PatternSyntaxException when regex’s syntax is invalid.

String pattern() Return this Pattern’s uncompiled regex.

static String quote(String s) Quote s using “\Q” and “\E” so that all other metacharacters lose
their special meaning. When the returned java.lang.String object
is later compiled into a Pattern instance, it only can be matched
literally.

String[] split(CharSequence input) Split input around matches of this Pattern’s compiled regex and
return an array containing the matches.

String[] split(CharSequence input,
int limit)

Split input around matches of this Pattern’s compiled regex;
limit controls the number of times the compiled regex is applied
and thus affects the length of the resulting array.

String toString() Return this Pattern’s uncompiled regex.

Table 13-3. (continued)

Table 13-4. PatternSyntaxException Methods

Method Description

String getDescription() Return a description of the syntax error.

int getIndex() Return the approximate index of where the syntax error occurred in the
pattern or −1 when the index isn’t known.

String getMessage() Return a multiline string containing the description of the syntax error and its
index, the erroneous pattern, and a visual indication of the error index within
the pattern.

String getPattern() Return the erroneous pattern.

591CHAPTER 13: Migrating to New I/O

Finally, Table 13-4’s Matcher matcher(CharSequence input) method reveals that the Regular
Expressions API also provides the java.util.regex.Matcher class, whose matchers attempt to
match compiled regexes against input text. Matcher declares the following methods to perform
matching operations:

 boolean matches() attempts to match the entire region against the pattern.
When the match succeeds, more information can be obtained by calling
Matcher’s start(), end(), and group() methods. For example, int start()
returns the start index of the previous match, int end() returns the offset of the
first character following the previous match, and String group() returns the
input subsequence matched by the previous match. Each method throws
java.lang.IllegalStateException when a match has not yet been attempted or
the previous match attempt failed.

 boolean lookingAt() attempts to match the input sequence, starting at the
beginning of the region, against the pattern. As with matches(), this method
always starts at the beginning of the region. Unlike matches(), lookingAt()
doesn’t require that the entire region be matched. When the match succeeds,
more information can be obtained by calling Matcher’s start(), end(), and
group() methods.

 boolean find() attempts to find the next subsequence of the input sequence
that matches the pattern. It starts at the beginning of this matcher’s region, or, if
a previous call to this method was successful and the matcher hasn’t since been
reset (by calling Matcher’s Matcher reset() or Matcher reset(CharSequence
input) method), at the first character not matched by the previous match. When
the match succeeds, more information can be obtained by calling Matcher’s
start(), end(), and group() methods.

Note A matcher finds matches in a subset of its input called the region. By default, the region
contains all of the matcher’s input. The region can be modified by calling Matcher’s
Matcher region(int start, int end) method (set the limits of this matcher’s region)
and queried by calling Matcher’s int regionStart() and int regionEnd() methods.

I’ve created a simple application that demonstrates Pattern, PatternSyntaxException, and Matcher.
Listing 13-9 presents this application’s source code.

Listing 13-9. Playing With Regular Expressions

import java.util.regex.Matcher;
import java.util.regex.Pattern;
import java.util.regex.PatternSyntaxException;

public class RegExDemo
{
 public static void main(String[] args)
 {

592 CHAPTER 13: Migrating to New I/O

 if (args.length != 2)
 {
 System.err.println("usage: java RegExDemo regex input");
 return;
 }
 try
 {
 System.out.println("regex = " + args[0]);
 System.out.println("input = " + args[1]);
 Pattern p = Pattern.compile(args[0]);
 Matcher m = p.matcher(args[1]);
 while (m.find())
 System.out.println("Located [" + m.group() + "] starting at "
 + m.start() + " and ending at " + (m.end() - 1));
 }
 catch (PatternSyntaxException pse)
 {
 System.err.println("Bad regex: " + pse.getMessage());
 System.err.println("Description: " + pse.getDescription());
 System.err.println("Index: " + pse.getIndex());
 System.err.println("Incorrect pattern: " + pse.getPattern());
 }
 }
}

Compile Listing 13-9 (javac RegExDemo.java) and run this application via java RegExDemo ox ox.
You’ll discover the following output:

regex = ox
input = ox
Located [ox] starting at 0 and ending at 1

find() searches for a match by comparing regex characters with the input characters in left-to-right
order and returns true because o equals o and x equals x.

Continuing, execute java RegExDemo box ox. This time, you’ll discover the following output:

regex = box
input = ox

find() first compares regex character b with input character o. Because these characters are
not equal and because there are not enough characters in the input to continue the search,
find() doesn’t output a “Located” message to indicate a match. However, if you execute
java RegExDemo ox box, you’ll discover a match:

regex = ox
input = box
Located [ox] starting at 1 and ending at 2

The ox regex consists of literal characters. More sophisticated regexes combine literal characters
with metacharacters (e.g., the period [.]) and other regex constructs.

593CHAPTER 13: Migrating to New I/O

Note Pattern recognizes the following line terminators: carriage return (\r), newline (line feed) (\n),
carriage return immediately followed by newline (\r\n), next line (\u0085), line separator (\u2028),
and paragraph separator (\u2029). The period metacharacter can be made to also match these line
terminators by specifying the Pattern.DOTALL flag when calling Pattern.compile(String, int).

Tip To specify a metacharacter as a literal character, precede the metacharacter with a backslash
character (as in \.) or place the metacharacter between \Q and \E (as in \Q.\E). In either case, make
sure to double the backslash character when the escaped metacharacter appears in a string literal; for
example, "\\." or "\\Q.\\E".

Character Classes
A character class is a set of characters appearing between [and]. There are six kinds of character
classes:

A simple character class consists of literal characters placed side by side and
matches only these characters. For example, [abc] consists of characters
a, b, and c. Also, java RegExDemo t[aiou]ck tack reports a match because a is a
member of [aiou]. It also reports a match when the input is tick, tock, or tuck
because i, o, and u are members.

A negation character class consists of a circumflex metacharacter (^), followed
by literal characters placed side by side, and matches all characters except
for the characters in the class. For example, [^abc] consists of all characters
except for a, b, and c. Also, java RegExDemo "[^b]ox" box doesn’t report a
match because b isn’t a member of [^b], whereas java RegExDemo "[^b]ox"
fox reports a match because f is a member. (The double quotes surrounding
[^b]ox are necessary on my Windows 7 platform because ^ is treated specially
at the command line.)

A range character class consists of successive literal characters expressed as
a starting literal character, followed by the hyphen metacharacter (−), followed
by an ending literal character, and matches all characters in this range. For
example, [a-z] consists of all characters from a through z. Also, java RegExDemo
[h-l]ouse house reports a match because h is a member of the class, whereas
java RegExDemo [h-l]ouse mouse doesn’t report a match because m lies outside
of the range and is therefore not part of the class. You can combine multiple
ranges within the same range character class by placing them side by side; for
example, [A-Za-z] consists of all uppercase and lowercase Latin letters.

The period metacharacter matches all characters except for the line terminator. For example, each of
java RegExDemo .ox box and java RegExDemo .ox fox report a match because the period matches
the b in box and the f in fox.

594 CHAPTER 13: Migrating to New I/O

A union character class consists of multiple nested character classes and
matches all characters that belong to the resulting union. For example,
[abc[u-z]] consists of characters a, b, c, u, v, w, x, y, and z. Also, java
RegExDemo [[0–9][A-F][a-f]] e reports a match because e is a hexadecimal
character. (I could have alternatively expressed this character class as
[0-9A-Fa-f] by combining multiple ranges.)

An intersection character class consists of multiple &&–separated nested character
classes and matches all characters that are common to these nested character
classes. For example, [a-c&&[c-f]] consists of character c, which is the only
character common to [a-c] and [c-f]. Also, java RegExDemo "[aeiouy&&[y]]" y
reports a match because y is common to classes [aeiouy] and [y].

A subtraction character class consists of multiple &&-separated nested character
classes, where at least one nested character class is a negation character class,
and matches all characters except for those indicated by the negation character
class/classes. For example, [a-z&&[^x-z]] consists of characters a through w.
(The square brackets surrounding ^x-z are necessary; otherwise, ^ is ignored
and the resulting class consists of only x, y, and z.) Also, java RegExDemo
"[a-z&&[^aeiou]]" g reports a match because g is a consonant and only
consonants belong to this class. (I’m ignoring y, which is sometimes regarded as
a consonant and sometimes regarded as a vowel.)

A predefined character class is a regex construct for a commonly specified character class.
Table 13-5 identifies Pattern’s predefined character classes.

Table 13-5. Predefined Character Classes

Predefined Character Class Description
\d Match any digit character. \d is equivalent to [0–9].

\D Match any nondigit character. \D is equivalent to [^\d].

\s Match any whitespace character. \s is equivalent to [\t\n\x0B\f\r].

\S Match any nonwhitespace character. \S is equivalent to [^\s].

\w Match any word character. \w is equivalent to [a-zA-Z0-9].

\W Match any nonword character. \W is equivalent to [^\w].

For example, java RegExDemo \wbc abc reports a match because \w matches the word character
a in abc.

Capturing Groups
A capturing group saves a match’s characters for later recall during pattern matching and is
expressed as a character sequence surrounded by parentheses metacharacters (and). All
characters within a capturing group are treated as a unit. For example, the (Android) capturing
group combines A, n, d, r, o, i, and d into a unit. It matches the Android pattern against all

595CHAPTER 13: Migrating to New I/O

occurrences of Android in the input. Each match replaces the previous match’s saved Android
characters with the next match’s Android characters.

Capturing groups can appear inside other capturing groups. For example, capturing groups
(A) and (B(C)) appear inside capturing group ((A)(B(C))), and capturing group (C) appears
inside capturing group (B(C)). Each nested or nonnested capturing group receives its own number,
numbering starts at 1, and capturing groups are numbered from left to right. For example, ((A)
(B(C))) is assigned 1, (A) is assigned 2, (B(C)) is assigned 3, and (C) is assigned 4.

A capturing group saves its match for later recall via a back reference, which is a backslash
character followed by a digit character denoting a capturing group number. The back reference
causes the matcher to use the back reference’s capturing group number to recall the capturing
group’s saved match and then use that match’s characters to attempt a further match. The following
example uses a back reference to determine if the input consists of two consecutive Android
patterns:

java RegExDemo "(Android) \1" "Android Android"

RegExDemo reports a match because the matcher detects Android, followed by a space, followed by
Android in the input.

Boundary Matchers and Zero-Length Matches
A boundary matcher is a regex construct for identifying the beginning of a line, a word boundary, the
end of text, and other commonly occurring boundaries. See Table 13-6.

Table 13-6. Boundary Matchers

Boundary Matcher Description

^ Match beginning of line.

$ Match end of line.

\b Match word boundary.

\B Match nonword boundary.

\A Match beginning of text.

\G Match end of previous match.

\Z Match end of text except for line terminator (when present).

\z Match end of text.

596 CHAPTER 13: Migrating to New I/O

For example, java RegExDemo \b\b "I think" reports several matches, as revealed in the following
output:

regex = \b\b
input = I think
Located [] starting at 0 and ending at −1
Located [] starting at 1 and ending at 0
Located [] starting at 2 and ending at 1
Located [] starting at 7 and ending at 6

This output reveals several zero-length matches. When a zero-length match occurs, the starting
and ending indexes are equal, although the output shows the ending index to be one less than the
starting index because I specified end() - 1 in Listing 13-9 (so that a match’s end index identifies a
non-zero-length match’s last character, not the character following the non-zero-length match’s
last character).

Note A zero-length match occurs in empty input text, at the beginning of input text, after the last
character of input text, or between any two characters of that text. Zero-length matches are easy to
identify because they always start and end at the same index position.

Quantifiers
The final regex construct I present is the quantifier, a numeric value implicitly or explicitly bound to a
pattern. Quantifiers are categorized as greedy, reluctant, or possessive:

A greedy quantifier (?, *, or +) attempts to find the longest match. Specify X? to
find one or no occurrences of X, X* to find zero or more occurrences of X, X+
to find one or more occurrences of X, X{n} to find n occurrences of X, X{n,} to
find at least n (and possibly more) occurrences of X, and X{n,m} to find at least
n but no more than m occurrences of X.

A reluctant quantifier (??, *?, or +?) attempts to find the shortest match. Specify X??
to find one or no occurrences of X, X*? to find zero or more occurrences of X,
X+? to find one or more occurrences of X, X{n}? to find n occurrences of
X, X{n,}? to find at least n (and possibly more) occurrences of X, and X{n,m}?
to find at least n but no more than m occurrences of X.

A possessive quantifier (?+, *+, or ++) is similar to a greedy quantifier except
that a possessive quantifier only makes one attempt to find the longest match,
whereas a greedy quantifier can make multiple attempts. Specify X?+ to find one
or no occurrences of X, X*+ to find zero or more occurrences of X, X++ to find
one or more occurrences of X, X{n}+ to find n occurrences of X, X{n,}+ to find
at least n (and possibly more) occurrences of X, and X{n,m}+ to find at least n
but no more than m occurrences of X.

597CHAPTER 13: Migrating to New I/O

For an example of a greedy quantifier, execute java RegExDemo .*end "wend rend end". You’ll
discover the following output:

regex = .*end
input = wend rend end
Located [wend rend end] starting at 0 and ending at 12

The greedy quantifier (.*) matches the longest sequence of characters that terminates in end. It
starts by consuming all of the input text and then is forced to back off until it discovers that the input
text terminates with these characters.

For an example of a reluctant quantifier, execute java RegExDemo .*?end "wend rend end". You’ll
discover the following output:

regex = .*?end
input = wend rend end
Located [wend] starting at 0 and ending at 3
Located [rend] starting at 4 and ending at 8
Located [end] starting at 9 and ending at 12

The reluctant quantifier (.*?) matches the shortest sequence of characters that terminates in end.
It begins by consuming nothing and then slowly consumes characters until it finds a match. It then
continues until it exhausts the input text.

For an example of a possessive quantifier, execute java RegExDemo .*+end "wend rend end". You’ll
discover the following output:

regex = .*+end
input = wend rend end

The possessive quantifier (.*+) doesn’t detect a match because it consumes the entire input
text, leaving nothing left over to match end at the end of the regex. Unlike a greedy quantifier,
a possessive quantifier doesn’t back off.

While working with quantifiers, you’ll probably encounter zero-length matches. For example, execute
java RegExDemo 1? 101101:

regex = 1?
input = 101101
Located [1] starting at 0 and ending at 0
Located [] starting at 1 and ending at 0
Located [1] starting at 2 and ending at 2
Located [1] starting at 3 and ending at 3
Located [] starting at 4 and ending at 3
Located [1] starting at 5 and ending at 5
Located [] starting at 6 and ending at 5

The result of this greedy quantifier is that 1 is detected at locations 0, 2, 3, and 5 in the input text and
that nothing is detected (a zero-length match) at locations 1, 4, and 6.

598 CHAPTER 13: Migrating to New I/O

This time, execute java RegExDemo 1?? 101101:

regex = 1??
input = 101101
Located [] starting at 0 and ending at −1
Located [] starting at 1 and ending at 0
Located [] starting at 2 and ending at 1
Located [] starting at 3 and ending at 2
Located [] starting at 4 and ending at 3
Located [] starting at 5 and ending at 4
Located [] starting at 6 and ending at 5

This output might look surprising, but remember that a reluctant quantifier looks for the shortest
match, which (in this case) is no match at all.

Finally, execute java RegExDemo 1+? 101101:

regex = 1+?
input = 101101
Located [1] starting at 0 and ending at 0
Located [1] starting at 2 and ending at 2
Located [1] starting at 3 and ending at 3
Located [1] starting at 5 and ending at 5

This possessive quantifier only matches the locations where 1 is detected in the input text. It doesn’t
perform zero-length matches.

Note Check out the Java documentation on the Pattern class to learn about additional regex constructs.

Practical Regular Expressions
Most of the previous regex examples haven’t been practical, except to help you grasp how to use
the various regex constructs. In contrast, the following examples reveal a regex that matches phone
numbers of the form (ddd) ddd-dddd or ddd-dddd. A single space appears between (ddd) and ddd;
there’s no space on either side of the hyphen.

java RegExDemo "(\(\d{3}\))?\s*\d{3}-\d{4}" "(800) 555-1212"
regex = (\(\d{3}\))?\s*\d{3}-\d{4}
input = (800) 555–1212
Located [(800) 555–1212] starting at 0 and ending at 13

java RegExDemo "(\(\d{3}\))?\s*\d{3}-\d{4}" 555–1212
regex = (\(\d{3}\))?\s*\d{3}-\d{4}
input = 555–1212
Located [555–1212] starting at 0 and ending at 7

599CHAPTER 13: Migrating to New I/O

Note To learn more about regular expressions, check out “Lesson: Regular Expressions”
(http://download.oracle.com/javase/tutorial/essential/regex/index.html) in
The Java Tutorials.

EXERCISES

The following exercises are designed to test your understanding of Chapter 13’s content:

1. Define New I/O.

2. What is a buffer?

3. Identify a buffer’s four properties.

4. What happens when you invoke Buffer’s array() method on a buffer backed by a
read-only array?

5. What happens when you invoke Buffer’s flip() method on a buffer?

6. What happens when you invoke Buffer’s reset() method on a buffer where a mark has not
been set?

7. True or False: Buffers are thread-safe.

8. Identify the classes that extend the abstract Buffer class.

9. How do you create a byte buffer?

10. Define view buffer.

11. How is a view buffer created?

12. How do you create a read-only view buffer?

13. Identify ByteBuffer’s methods for storing a single byte in a byte buffer and fetching a single byte
from a byte buffer.

14. What causes BufferOverflowException or BufferUnderflowException to occur?

15. What is the equivalent of executing buffer.flip();?

16. True or false: Calling flip() twice returns you to the original state.

17. What is the difference between Buffer’s clear() and reset() methods?

18. What does ByteBuffer’s compact() method accomplish?

19. What is the purpose of the ByteOrder class?

20. Define direct byte buffer.

21. How do you obtain a direct byte buffer?

22. What is a channel?

23. What capabilities does the Channel interface provide?

600 CHAPTER 13: Migrating to New I/O

24. Identify the three interfaces that directly extend Channel.

25. True or false: A channel that implements InterruptibleChannel is asynchronously closeable.

26. Identify the two ways to obtain a channel.

27. Define scatter/gather I/O.

28. What interfaces are provided for achieving scatter/gather I/O?

29. Define file channel.

30. True or false: File channels don’t support scatter/gather I/O.

31. What method does FileChannel provide for mapping a region of a file into memory?

32. What is the fundamental difference between FileChannel’s lock() and tryLock() methods?

33. Define regular expression.

34. What does the Pattern class accomplish?

35. What do Pattern’s compile() methods do when they discover illegal syntax in their regular
expression arguments?

36. What does the Matcher class accomplish?

37. What is the difference between Matcher’s matches() and lookingAt() methods?

38. Define character class.

39. Identify the various kinds of character classes.

40. Define capturing group.

41. What is a zero-length match?

42. Define quantifier.

43. What is the difference between a greedy quantifier and a reluctant quantifier?

44. How do possessive and greedy quantifiers differ?

45. Refactor Listing 11-8 (Chapter 11’s Copy application) to use the ByteBuffer and FileChannel
classes in partnership with FileInputStream and FileOutputStream.

46. Create a ReplaceText application that takes input text, a pattern that specifies text to replace, and
replacement text command-line arguments, and uses Matcher’s String replaceAll(String
replacement) method to replace all matches of the pattern with the replacement text (passed to
replacement). For example, java ReplaceText "too many embedded spaces" "\s+" " "
should output too many embedded spaces with only a single space character between
successive words.

601CHAPTER 13: Migrating to New I/O

Summary
Java 1.4 introduced a more powerful I/O architecture that supports memory-mapped file I/O,
readiness selection, file locking, and more. This architecture consists of buffers, channels, selectors,
regular expressions, and charsets and is commonly known as New I/O (NIO).

A buffer is an object that stores a fixed amount of data to be sent to or received from an I/O service
or that has been received from an I/O service. It sits between an application and a channel that
writes buffered data to the service or reads the data from the service and deposits it into the buffer.

A channel is an object that represents an open connection to a hardware device, a file, a network
socket, an application component, or another entity that’s capable of performing write, read, and
other I/O operations. Channels transfer data between a buffer and this other entity.

A regular expression (also known as a regex or regexp) is a string-based pattern that represents the
set of strings that match this pattern. The pattern consists of literal characters and metacharacters,
which are characters with special meanings instead of literal meanings.

Chapter 14 focuses on database access. You first encounter the Java DB and SQLite database
products and then learn how to use the JDBC API to create/access their databases.

603

Chapter 14
Accessing Databases

Applications often need to access databases to store and retrieve various kinds of data. A database
(http://en.wikipedia.org/wiki/Database) is an organized collection of data. Although there are
many kinds of databases (e.g., hierarchical, object oriented, and relational), relational databases,
which organize data into tables that can be related to each other, are common.

Note In a relational database, each row stores a single item (e.g., an employee) and each column
stores a single item attribute (e.g., an employee’s name).

Except for the most trivial of databases (e.g., Chapter 11’s flat file database based on a single data
file), databases are created and managed through a database management system (DBMS)—see
http://en.wikipedia.org/wiki/Database_management_system. Relational DBMSs (RDBMSs) support
Structured Query Language (SQL) for working with tables and more.

Note For brevity, I assume that you’re familiar with SQL. If not, you might want to check out
Wikipedia’s “SQL” entry (http://en.wikipedia.org/wiki/SQL) for an introduction.

Java supports database access and creation (and more) via its relational database-oriented JDBC
(Java DataBase Connectivity) API. Because you need an RDBMS before you can explore JDBC,
this chapter first introduces you to Java DB, which is included with the JDK, followed by SQLite
(http://en.wikipedia.org/wiki/Sqlite). Chapter 14 then focuses on JDBC.

604 CHAPTER 14: Accessing Databases

Note Android offers an alternative to JDBC via its android.database and
android.database.sqlite packages, which are the preferred means for accessing databases from
an Android application. Although Android supports JDBC by including this API and an undocumented JDBC
driver (discussed later in this chapter), you should focus on using Android’s database access alternative
when developing an Android application that requires database access. Because you still might find JDBC
useful, especially when creating a non-Android application, I present JDBC in this chapter.

JVM

application

embedded driver

engine

database

Figure 14-1. No separate processes are required to start up or shut down an embedded database engine

Introducing Java DB
First introduced by Sun Microsystems as part of JDK 6 (and not included in the JRE) to give
developers an RDBMS to test their JDBC code, Java DB is a distribution of Apache’s open-source
Derby product, which is based on IBM’s Cloudscape RDBMS code base. This pure-Java RDBMS
is also bundled with JDK 7 (but not in the JRE). It’s secure, supports JDBC and SQL (including
transactions, stored procedures, and concurrency), and has a small footprint—its core engine and
JDBC driver occupy approximately 2 MB.

Note A JDBC driver is a classfile plug-in for communicating with a database. I’ll have more to say
about JDBC drivers when I introduce JDBC later in this chapter.

Java DB is capable of running in an embedded environment or in a client/server environment.
In an embedded environment, where an application accesses the database engine via Java
DB’s embedded driver, the database engine runs in the same virtual machine as the application.
Figure 14-1 illustrates the embedded environment architecture, where the database engine is
embedded in the application.

605CHAPTER 14: Accessing Databases

In a client/server environment, client applications and the database engine run in separate virtual
machines. A client application accesses the network server through Java DB’s client driver. The
network server, which runs in the same virtual machine as the database engine, accesses the
database engine through the embedded driver. Figure 14-2 illustrates this architecture.

JVM

application application

client driver client driver

The network server
defaults to

communicating with
clients on part 1527.

JVM

JVM

network server

embedded driver

engine

database

Figure 14-2. Multiple clients communicate with the same database engine through the network server

Java DB implements the database portion of the architectures shown in Figures 14-1 and 14-2 as a
directory with the same name as the database. Within this directory, Java DB creates a log directory
to store transaction logs, a seg0 directory to store the data files, and a service.properties file to
store configuration parameters.

Note Java DB doesn’t provide an SQL command to drop (destroy) a database. Destroying a database
requires that you manually delete its directory structure.

Java DB Installation and Configuration
When you install JDK 7 with the default settings, the bundled Java DB is installed into %JAVA_HOME%\db
on Windows platforms or into the db subdirectory in the equivalent location on Unix/Linux platforms.
(For convenience, I adopt the Windows convention when presenting environment variable paths.)

606 CHAPTER 14: Accessing Databases

Note I focus on Java DB 10.8.2.2 in this chapter because it’s included with JDK 7 build
1.7.0_06-b24, which is the Java build on which this book is based.

The db directory contains five files and the following pair of subdirectories:

The bin directory contains scripts for setting up embedded and client/server
environments, running command-line tools, and starting/stopping the network
server. You should add this directory to your PATH environment variable so that
you can conveniently execute its scripts from anywhere in the filesystem.

The lib directory contains various JAR files that house the engine library
(derby.jar), the command-line tools libraries (derbytools.jar and derbyrun.jar), the
network server library (derbynet.jar), the network client library (derbyclient.jar),
and various locale libraries. This directory also contains derby.war, which is used to
register the network servlet (see http://en.wikipedia.org/wiki/Java_Servlet) at
the /derbynet relative path—it’s also possible to manage the Java DB network server
remotely via the servlet interface (see http://db.apache.org/derby/docs/10.8/
adminguide/cadminservlet98430.html).

Before you can run the tools and start/stop the network server, you must set the DERBY_HOME
environment variable. Set this variable for Windows via set DERBY_HOME=%JAVA_HOME%\db, and for
Unix (Korn shell) via export DERBY_HOME=$JAVA_HOME/db. (This setting will not persist past the current
command shell session unless you make it permanent.)

Note The embedded and client/server environment setup scripts refer to a DERBY_INSTALL
environment variable. According to the “Re: DERBY_INSTALL and DERBY_HOME” mail item
(www.mail-archive.com/derby-dev@db.apache.org/msg22098.html), DERBY_HOME is
equivalent to and replaces DERBY_INSTALL for consistency with other Apache projects.

You must also set the CLASSPATH environment variable. The easiest way to set this environment
variable is to run a script file included with Java DB. Windows and Unix/Linux versions of various
“setxxxCP” script files (which extend the current classpath) are located in the %JAVA_HOME%\db\bin
directory. The script file(s) to run will depend on whether you work with the embedded or client/
server environment:

For the embedded environment, invoke setEmbeddedCP to add derby.jar and
derbytools.jar to the classpath.

For the client/server environment, invoke setNetworkServerCP to add
derbynet.jar and derbytools.jar to the classpath. In a separate command
window, invoke setNetworkClientCP to add derbyclient.jar and
derbytools.jar to the classpath.

607CHAPTER 14: Accessing Databases

Java DB Demos
For JDK 7, the Java DB demos are included with other Java demos in a separate distribution
file—see www.oracle.com/technetwork/java/javase/downloads/index-jsp-138363.html. After
downloading and unarchiving the distribution file, you can move it to %JAVA_HOME%. If you’re running
Windows 7, you’ll also need to ensure that Java DB can write files to subdirectories of C:\Program
Files (64-bit JDK) or C:\Program Files (x86) (32-bit JDK). Otherwise, you’ll encounter “access
denied” errors.

The %JAVA_HOME%\demo\db\programs directory contains HTML documentation that describes the
demos included with Java DB; the demo.html file is the entry point into this documentation. These
demos include a simple JDBC application for working with Java DB, a network server sample
program, and sample programs that are introduced in the Working with Derby manual.

Note The Working with Derby manual underscores Java DB’s Derby heritage. You can download
this manual and other Derby manuals from the documentation section
(http://db.apache.org/derby/manuals/index.html) of Apache’s Derby project site
(http://db.apache.org/derby/index.html).

For brevity, I’ll focus only on the simple JDBC application that’s located in the programs directory’s
simple subdirectory. This application runs in either the default embedded environment or the client/
server environment. It creates and connects to a derbyDB database, introduces a table into this
database, performs SQL insert/update/select operations on this table, drops (removes) the table,
and disconnects from the database.

To run this application in the embedded environment, open a command window and make sure that
the DERBY_HOME and CLASSPATH environment variables have been set properly; invoke setEmbeddedCP
to set the classpath. Assuming that simple is the current directory, invoke java SimpleApp or java
SimpleApp embedded to run this application. You should observe the following output:

SimpleApp starting in embedded mode
Loaded the appropriate driver
Connected to and created database derbyDB
Created table location
Inserted 1956 Webster
Inserted 1910 Union
Updated 1956 Webster to 180 Grand
Updated 180 Grand to 300 Lakeshore
Verified the rows
Dropped table location
Committed the transaction
Derby shut down normally
SimpleApp finished

This output reveals that an application running in the embedded environment shuts down the
database engine before exiting. This is done to perform a checkpoint and release resources. When
this shutdown doesn’t occur, Java DB notes the absence of the checkpoint, assumes a crash, and
causes recovery code to run before the next database connection (which takes longer to complete).

608 CHAPTER 14: Accessing Databases

Tip When running SimpleApp (or any other Java DB application) in the embedded environment,
you can determine where the database directory will be created by setting the derby.system.home
property. For example, java -Dderby.system.home=c:\temp SimpleApp causes derbyDB to be
created in the temp subdirectory of the root directory of the C: drive on the Windows 7 platform.

To run this application in the client/server environment, you need to start the network server and run
the application in separate command windows.

In one command window, set DERBY_HOME. Start the network server via the startNetworkServer script
(located in %JAVA_HOME%\db\bin), which takes care of setting the classpath. You should see output
similar to this:

Sun Nov 25 16:01:23 CST 2012 : Security manager installed using the Basic server security policy.
Sun Nov 25 16:01:24 CST 2012 : Apache Derby Network Server - 10.8.2.2 - (1181258) started and ready
to accept connections on port 1527

In the other command window, set DERBY_HOME followed by CLASSPATH (via setNetworkClientCP).
Assuming that the simple directory is current, execute the java SimpleApp derbyClient command
line to run this application. This time, you should observe the following output:

SimpleApp starting in derbyclient mode
Loaded the appropriate driver
Connected to and created database derbyDB
Created table location
Inserted 1956 Webster
Inserted 1910 Union
Updated 1956 Webster to 180 Grand
Updated 180 Grand to 300 Lakeshore
Verified the rows
Dropped table location
Committed the transaction
SimpleApp finished

Notice that the database engine is not shut down in the client/server environment. Although not
indicated in the output, there’s a second difference between running SimpleApp in the embedded and
client/server environments. In the embedded environment, the derbyDB database directory is created
in the simple directory. In the client/server environment, this database directory is created in the
directory that was current when you executed startNetworkServer.

When you’re finished playing with SimpleApp in the client/server environment, you should shut down
the network server and database engine. Accomplish this task by invoking the stopNetworkServer
script (located in %JAVA_HOME%\db\bin). You can also shut down (or start and otherwise control) the
network server by running the NetworkServerControl script (also located in %JAVA_HOME%\db\bin).
For example, NetworkServerControl shutdown shuts down the network server and database engine.

609CHAPTER 14: Accessing Databases

Java DB Command-Line Tools
The %JAVA_HOME%\db\bin directory contains sysinfo, ij, and dblook Windows and Unix/Linux script
files for launching command-line tools:

Run sysinfo to view the Java environment/Java DB configuration.

Run ij to run scripts that execute ad hoc SQL commands and perform
repetitive tasks.

Run dblook to view all or part of a database’s Data Definition Language (DDL).

If you experience trouble with Java DB (e.g., not being able to connect to a database), you can run
sysinfo to find out if the problem is configuration related. This tool reports various settings under
the Java Information, Derby Information, and Locale Information headings. It outputs the following
information on my platform:

------------------ Java Information ------------------
Java Version: 1.7.0_06
Java Vendor: Oracle Corporation
Java home: C:\Program Files\Java\jdk1.7.0_06\jre
Java classpath: C:\PROGRA~1\Java\JDK17~2.0_0\db\lib\derbyclient.jar;C:\PROGRA~1\Java\JDK17~2.0_0\
db\lib\derbytools.jar;.;C:\Program Files (x86)\QuickTime\QTSystem\QTJava.zip;C:\PROGRA~1\Java\
JDK17~2.0_0\db/lib/derby.jar;C:\PROGRA~1\Java\JDK17~2.0_0\db/lib/derbynet.jar;C:\PROGRA~1\Java\
JDK17~2.0_0\db/lib/derbyclient.jar;C:\PROGRA~1\Java\JDK17~2.0_0\db/lib/derbytools.jar
OS name: Windows 7
OS architecture: amd64
OS version: 6.1
Java user name: Owner
Java user home: C:\Users\Owner
Java user dir: C:\PROGRA~1\Java\jdk1.7.0_06\db\bin
java.specification.name: Java Platform API Specification
java.specification.version: 1.7
java.runtime.version: 1.7.0_06-b24
--------- Derby Information --------
JRE - JDBC: Java SE 7 - JDBC 4.0
[C:\Program Files\Java\jdk1.7.0_06\db\lib\derby.jar] 10.8.2.2 - (1181258)
[C:\Program Files\Java\jdk1.7.0_06\db\lib\derbytools.jar] 10.8.2.2 - (1181258)
[C:\Program Files\Java\jdk1.7.0_06\db\lib\derbynet.jar] 10.8.2.2 - (1181258)
[C:\Program Files\Java\jdk1.7.0_06\db\lib\derbyclient.jar] 10.8.2.2 - (1181258)
--
----------------- Locale Information -----------------
Current Locale : [English/Canada [en_CA]]
Found support for locale: [cs]
 version: 10.8.2.2 - (1181258)
Found support for locale: [de_DE]
 version: 10.8.2.2 - (1181258)
Found support for locale: [es]
 version: 10.8.2.2 - (1181258)
Found support for locale: [fr]
 version: 10.8.2.2 - (1181258)
Found support for locale: [hu]
 version: 10.8.2.2 - (1181258)

610 CHAPTER 14: Accessing Databases

Found support for locale: [it]
 version: 10.8.2.2 - (1181258)
Found support for locale: [ja_JP]
 version: 10.8.2.2 - (1181258)
Found support for locale: [ko_KR]
 version: 10.8.2.2 - (1181258)
Found support for locale: [pl]
 version: 10.8.2.2 - (1181258)
Found support for locale: [pt_BR]
 version: 10.8.2.2 - (1181258)
Found support for locale: [ru]
 version: 10.8.2.2 - (1181258)
Found support for locale: [zh_CN]
 version: 10.8.2.2 - (1181258)
Found support for locale: [zh_TW]
 version: 10.8.2.2 - (1181258)
--

The ij script is useful for creating a database and initializing a user’s schema (a namespace that
logically organizes tables and other database objects) by running a script file that specifies the
appropriate DDL statements. For example, you’ve created an EMPLOYEES table with its NAME and PHOTO
columns and have created a create_emp_schema.sql script file in the current directory that contains
the following line:

CREATE TABLE EMPLOYEES(NAME VARCHAR(30), PHOTO BLOB);

The following embedded ij script session creates the employees database and EMPLOYEES table:

C:\db>ij
ij version 10.8
ij> connect 'jdbc:derby:employees;create=true';
ij> run 'create_emp_schema.sql';
ij> CREATE TABLE EMPLOYEES(NAME VARCHAR(30), PHOTO BLOB);
0 rows inserted/updated/deleted
ij> disconnect;
ij> exit;
C:>\db>

The connect command causes the employees database to be created—I’ll have more to say about
this command’s syntax when I introduce JDBC later in this chapter. The run command causes
create_emp_schema.sql to execute, and the subsequent pair of lines is generated as a result.

The CREATE TABLE EMPLOYEES(NAME VARCHAR(30), PHOTO BLOB); line is an SQL statement for creating
a table named EMPLOYEES with NAME and PHOTO columns. Data items entered into the NAME column
are of SQL type VARCHAR (a varying number of characters—a string) with a maximum of 30 characters,
and data items entered into the PHOTO column are of SQL type BLOB (a binary large object, such as
an image).

611CHAPTER 14: Accessing Databases

Note I specify SQL statements in uppercase, but you can also specify them in lowercase or mixed case.

After run 'create_emp_schema.sql' finishes, the specified EMPLOYEES table is added to the newly
created employees database. To verify the table’s existence, run dblook against the employees
directory, as the following session demonstrates.

C:\db>dblook -d jdbc:derby:employees
-- Timestamp: 2012-11-25 16:13:42.693
-- Source database is: employees
-- Connection URL is: jdbc:derby:employees
-- appendLogs: false

-- --
-- DDL Statements for tables
-- --

CREATE TABLE "APP"."EMPLOYEES" ("NAME" VARCHAR(30), "PHOTO" BLOB(2147483647));

C:\db>

All database objects (e.g., tables and indexes) are assigned to user and system schemas, which
logically organize these objects in the same way that packages logically organize classes. When a
user creates or accesses a database, Java DB uses the specified username as the namespace name
for newly added database objects. In the absence of a username, Java DB chooses APP, as the
preceding session output shows.

Introducing SQLite
SQLite (http://sqlite.org/) is a very simple and popular RDBMS. Basically, it implements a
self-contained, serverless, zero-configuration, transactional SQL database engine; and is
considered to be the most widely deployed database engine in the world. For example, SQLite is
found in Mozilla Firefox, Google Chrome, and other web browsers. It’s also found in Google Android,
Apple iOS, and other mobile operating systems.

Note To learn what sets SQLite apart from other RDBMs, visit the “Distinctive Features of SQLite”
page at http://sqlite.org/different.html. As well as learning about features such as the
aforementioned zero-configuration, you’ll learn about features such as manifest typing, in which you
can store any value of any data type into any column regardless of the declared type of that column.

To introduce yourself to SQLite, visit the SQLite home page at http://sqlite.org/. You
can explore online documentation (http://sqlite.org/docs.html), download SQLite software
(http://sqlite.org/download.html), and so on. Regarding downloads, you can download source code,
documentation, and precompiled binaries for the Linux, Mac OS X (x86), and Windows platforms.

612 CHAPTER 14: Accessing Databases

I downloaded the sqlite-shell-win32-x86-3071401.zip distribution file for my Windows 7 platform.
This archive contains a single sqlite3 executable, which offers a command-line shell for accessing
and modifying SQLite databases. According to the SQLite downloads page, this program is
compatible with all versions of SQLite through version 3.7.14.1 (and beyond). (The Android SDK for
Windows also includes sqlite3.exe but not necessarily the same version.)

You can specify sqlite3 with a database filename argument (e.g., sqlite3 employees) to create the
database file (e.g., employees) when it doesn’t exist (you must create a table at least) or open the
existing file and enter this tool’s shell from where you can execute sqlite3-specific dot-prefixed
commands and SQL statements. As Figure 14-3 shows, you can also specify sqlite3 without an
argument and enter the shell.

Figure 14-3. sqlite3 is invoked without a database filename argument

Figure 14-3 reveals the prologue that greets you after entering the sqlite3 shell, which is indicated
by the sqlite> prompt from where you enter commands. It also reveals part of the help text that’s
presented when you type the sqlite3-specific “.help” command.

Tip You can create a database after specifying sqlite3 without an argument by entering the
appropriate SQL statements to create and populate desired tables (and possibly create indexes) and
then invoking .backup filename (where filename identifies the file that stores the database) before
exiting sqlite3.

613CHAPTER 14: Accessing Databases

While discussing Java DB command-line tools, I presented a small employee-oriented database
example consisting of an employees database and a create_emp_schema.sql script file that contains
the following SQL statement for creating an EMPLOYEES table (consisting of names and photos):

CREATE TABLE EMPLOYEES(NAME VARCHAR(30), PHOTO BLOB);

Let’s find out how to create this database and table with sqlite3.

At the command-line, execute sqlite3 employees. At the resulting sqlite> command prompt,
execute the aforementioned SQL statement, and then execute .quit to quit sqlite3. You should
now observe an employees file in the same directory as sqlite3.

Re-execute sqlite3 employees. At the sqlite> command prompt, execute .tables. You should
observe a single output line consisting of EMPLOYEES. Now execute .schema employees (case isn’t
significant) and you should see the aforementioned CREATE TABLE statement.

You can continue to play with sqlite3 and the employees database/EMPLOYEES table. For example,
you could insert a single row of data into the EMPLOYEES table via the following INSERT statement and
then select/output this row via the following SELECT statement:

INSERT INTO EMPLOYEES VALUES('Duke', null);
SELECT * FROM EMPLOYEES;

You should observe the following line as the result—nothing appears for the photo because of its
null value:

DUKE|

Accessing Databases via JDBC
JDBC is an API (associated with the java.sql and javax.sql packages—I mainly focus on
java.sql in this chapter) for communicating with RDBMSs in an RDBMS-independent manner. You
can use JDBC to perform various database operations, such as submitting SQL statements that tell
the RDBMS to create a table and to update or query tabular data.

Data Sources, Drivers, and Connections
Although JDBC is typically used to communicate with RDBMSs, it also can be used to communicate
with a flat file database. For this reason, JDBC uses the term data source (a data-storage facility
ranging from a simple file to a complex relational database managed by an RDBMS) to abstract the
source of data.

Because data sources are accessed in different ways (e.g., Chapter 11’s flat file database is
accessed via methods of the java.io.RandomAccessFile class, whereas Java DB and SQLite
databases are accessed via SQL statements), JDBC uses drivers (classfile plug-ins) to abstract
over their implementations. This abstraction lets you write an application that can be adapted to
an arbitrary data source without having to change a single line of code (in most cases). Drivers are
implementations of the java.sql.Driver interface.

614 CHAPTER 14: Accessing Databases

JDBC recognizes four types of drivers:

 Type 1 drivers implement JDBC as a mapping to another data-access API (e.g.,
Open Database Connectivity, or ODBC—see http://en.wikipedia.org/wiki/
ODBC). The driver converts JDBC method calls into function calls on the other
library. The JDBC-ODBC Bridge Driver is an example and isn’t supported by
Oracle. It was commonly used in the early days of JDBC when other kinds of
drivers were uncommon.

 Type 2 drivers are written partly in Java and partly in native code. They interact
with a data source-specific native client library and are not portable for this
reason. Oracle’s OCI (Oracle Call Interface) client-side driver is an example.

 Type 3 drivers don’t depend on native code and communicate with a
middleware server (a server that sits between the application client and the
data source) via an RDBMS-independent protocol. The middleware server then
communicates the client’s requests to the data source.

 Type 4 drivers don’t depend on native code and implement the network protocol
for a specific data source. The client connects directly to the data source
instead of going through a middleware server.

Before you can communicate with a data source, you need to establish a connection. JDBC
provides the java.sql.DriverManager class and the javax.sql.DataSource interface for this purpose:

 DriverManager lets an application connect to a data source by specifying a URL.
When this class first attempts to establish a connection, it automatically loads
any JDBC 4.x drivers located via the classpath. (Pre-JDBC 4.x drivers must be
loaded manually.)

 DataSource hides connection details from the application to promote data
source portability and is preferred over DriverManager for this reason. Because
a discussion of DataSource is somewhat involved (and is typically used in a Java
EE context), I focus on DriverManager in this chapter.

Before letting you obtain a data source connection, early JDBC versions required you to explicitly
load a suitable driver by specifying Class.forName() with the name of the class that implements
the Driver interface. For example, the JDBC-ODBC Bridge driver was loaded via
Class.forName("sun.jdbc.odbc.JdbcOdbcDriver");. Later JDBC versions relaxed this requirement
by letting you specify a list of drivers to load via the jdbc.drivers system property. DriverManager
would attempt to load all of these drivers during its initialization.

Under Java 7, DriverManager first loads all drivers identified by the jdbc.drivers system property. It
then uses the java.util.ServiceLoader-based service provider mechanism to load all drivers from
accessible driver JAR files so that you don’t have to explicitly load drivers. This mechanism requires
a driver to be packaged into a JAR file that includes META-INF/services/java.sql.Driver. The
java.sql.Driver text file must contain a single line that names the driver’s implementation of the
Driver interface.

Each loaded driver instantiates and registers itself with DriverManager via DriverManager’s void
registerDriver(Driver driver) class method. When invoked, a getConnection() method walks
through registered drivers, returning an implementation of the java.sql.Connection interface

615CHAPTER 14: Accessing Databases

from the first driver that recognizes getConnection()’s JDBC URL. (You might want to check out
DriverManager’s source code to see how this is done.)

Note To maintain data source-independence, much of JDBC consists of interfaces. Each driver
provides implementations of the various interfaces.

To connect to a data source and obtain a Connection instance, call one of DriverManager’s
Connection getConnection(String url), Connection getConnection(String url, Properties
info), or Connection getConnection(String url, String user, String password) methods. With
either method, the url argument specifies a string-based URL that starts with the jdbc: prefix and
continues with data source-specific syntax.

Consider Java DB. The URL syntax varies depending on the driver. For the embedded driver (when
you want to access a local database), this syntax is as follows:

jdbc:derby:databaseName;URLAttributes

For the client driver (when you want to access a remote database, although you can also access a
local database with this driver), this syntax is as follows:

jdbc:derby://host:port/databaseName;URLAttributes

With either syntax, URLAttributes is an optional sequence of semicolon-delimited name=value pairs.
For example, create=true tells Java DB to create a new database.

The following example demonstrates the first syntax by telling JDBC to load the Java DB embedded
driver and create the database named testdb on the local host:

Connection con = DriverManager.getConnection("jdbc:derby:testdb;create=true");

The following example demonstrates the second syntax by telling JDBC to load the Java DB client
driver and create the database named testdb on port 8500 of the xyz host:

Connection con;
con = DriverManager.getConnection("jdbc:derby://xyz:8500/testdb;create=true");

Consider SQLite. The Xerial project (www.xerial.org/trac/Xerial) provides the SQLite JDBC driver
(www.xerial.org/trac/Xerial/wiki/SQLiteJDBC) for testing JDBC with SQLite. Point your browser to
www.xerial.org/maven/repository/artifact/org/xerial/sqlite-jdbc/, navigate to the appropriate
directory (e.g., 3.7.2), and download an appropriate driver JAR file (e.g., sqlite-jdbc-3.7.2.jar).

For creating an actual file in which to store the database, the URL syntax for the Xerial SQLite driver
is as follows:

jdbc:sqlite:databaseName

616 CHAPTER 14: Accessing Databases

The following examples demonstrate this syntax for connecting to a database file (which is created
when it doesn’t exist) named sample.db:

Connection con1 = DriverManager.getConnection("jdbc:sqlite:sample.db");
Connection con2 = DriverManager.getConnection("jdbc:sqlite:C:/temp/sample.db ");

The first example obtains a connection to the current directory’s sample.db file; the second example
obtains a connection to a sample.db file in the C:\temp directory.

SQLite also supports in-memory database management, which doesn’t create any database files.
The following example shows you how to connect to an existing in-memory database:

Connection con = DriverManager.getConnection("jdbc:sqlite::memory:");

The following example shows you how to create and obtain a connection to an in-memory database:

Connection con = DriverManager.getConnection("jdbc:sqlite:");

Note For the most part, this chapter’s applications can be used with either the Java DB embedded
driver connection syntax or the non-in-memory SQLite driver connection syntax.

Exceptions
DriverManager’s getConnection() methods (and other JDBC methods in the various JDBC
interfaces) throw java.sql.SQLException or one of its subclasses when something goes wrong.
Along with the methods it inherits from java.lang.Throwable (e.g., String getMessage()),
SQLException declares various constructors (not discussed for brevity) and the following methods:

 int getErrorCode() returns a vendor-specific integer error code. Normally this
value will be the actual error code returned by the underlying data source.

 SQLException getNextException() returns the SQLException instance chained
to this SQLException object (via a call to setNextException(SQLException ex)) or
null when there isn’t a chained exception.

 String getSQLState() returns a “SQLstate” string that provides an X/Open or
SQL:1999 (see http://en.wikipedia.org/wiki/SQL:1999) error code identifying
the exception.

 Iterator<Throwable> iterator() returns an iterator over the chained
SQLExceptions and their causes in proper order. The iterator will be used to
iterate over each SQLException and its underlying cause (if any). You would
normally not call this method but would instead use the enhanced for statement
(discussed in Chapter 9), which calls iterator() when you need to iterate over
the chain of SQLExceptions. (The Android documentation at the current time of
writing reports this method to be obsolete.)

617CHAPTER 14: Accessing Databases

 void setNextException(SQLException sqlex) appends sqlex to the end of the
chain. (The Android documentation at the current time of writing reports this
method to be obsolete.)

One or more SQLExceptions might occur while processing a request, and the code that throws
these exceptions can add them to a chain of SQLExceptions by invoking setNextException().
Also, an SQLException instance might be thrown as a result of a different exception
(e.g., java.io.IOException), which is known as that exception’s cause (see Chapter 5).

SQL state error codes are defined by the ISO/ANSI and Open Group (X/Open) SQL standards.
The error code is a five-character string consisting of a two-character class value followed by
a three-character subclass value. Class value “00” indicates success, class value “01” indicates
a warning, and other class values normally indicate an exception. Examples of SQL state error
codes are 00000 (success) and 08001 (unable to connect to the data source).

Listing 14-1 presents a framework for structuring a JDBC application that connects to a JDBC or
SQLite data source, perform some work, and respond to a thrown SQLException instance.

Listing 14-1. Architecting a Basic JDBC Application

import java.sql.Connection;
import java.sql.DriverManager;
import java.sql.SQLException;

public class JDBCDemo
{
 final static String URL1 = "jdbc:derby:employee;create=true";
 final static String URL2 = "jdbc:sqlite:employee";

 public static void main(String[] args)
 {
 String url = null;
 if (args.length != 1)
 {
 System.err.println("usage 1: java JDBCDemo javadb");
 System.err.println("usage 2: java JDBCDemo sqlite");
 return;
 }
 if (args[0].equals("javadb"))
 url = URL1;
 else
 if (args[0].equals("sqlite"))
 url = URL2;
 else
 {
 System.err.println("invalid command-line argument");
 return;
 }
 Connection con = null;

618 CHAPTER 14: Accessing Databases

 try
 {
 if (args[0].equals("sqlite"))
 Class.forName("org.sqlite.JDBC");
 con = DriverManager.getConnection(url);
 // Perform useful work. The following throw statement simulates a
 // JDBC method throwing SQLException.
 throw new SQLException("Unable to access database table",
 new java.io.IOException("File I/O problem"));
 }
 catch (ClassNotFoundException cnfe)
 {
 System.err.println("unable to load sqlite driver");
 }
 catch (SQLException sqlex)
 {
 while (sqlex != null)
 {
 System.err.println("SQL error : " + sqlex.getMessage());
 System.err.println("SQL state : " + sqlex.getSQLState());
 System.err.println("Error code: " + sqlex.getErrorCode());
 System.err.println("Cause: " + sqlex.getCause());
 sqlex = sqlex.getNextException();
 }
 }
 finally
 {
 if (con != null)
 try
 {
 con.close();
 }
 catch (SQLException sqle)
 {
 sqle.printStackTrace();
 }
 }
 }
}

Listing 14-1 requires that you run this application with the javadb or sqlite command-line argument.
This argument determines which JDBC driver to use. If you specify sqlite as the argument, Xerial
requires that the SQLite driver classfile be explicitly loaded, and this task is accomplished via the
Class.forName("org.sqlite.JDBC") method call.

Next, a connection to the data source is obtained. When successful, IOException and SQLException
objects are created, and the IOException instance is wrapped inside the SQLException instance (as
its cause), which is subsequently thrown. The catch block that handles the SQL exception uses a
while loop to demonstrate outputting the SQL exception and all chained exceptions.

Connections must be closed when no longer needed. Connection declares a void close() method
for this purpose. This method is documented to throw SQLException.

619CHAPTER 14: Accessing Databases

Compile Listing 14-1 via the following command line:

javac JDBCDemo.java

Run this application via the following command line:

java JDBCDemo javadb

Assuming that Java DB hasn’t been configured (by setting the DERBY_HOME and CLASSPATH
environment variables), you should expect the following output:

SQL error : No suitable driver found for jdbc:derby:employee;create=true
SQL state : 08001
Error code: 0
Cause: null

Set the DERBY_HOME environment variable, and then execute setEmbeddedCP to install Java DB’s
embedded driver. Then re-execute java JDBCDemo javadb. This time, you should observe the
following correct output:

SQL error : Unable to access database table
SQL state : null
Error code: 0
Cause: java.io.IOException: File I/O problem

Furthermore, an employee directory containing the database and a derby.log file should appear in
the current directory.

Now, run this application via the following command:

java JDBCDemo sqlite

Assuming that SQLite hasn’t been configured, you should observe the following output:

unable to load sqlite driver

This error message results from the thrown java.lang.ClassNotFoundException instance. This
exception was thrown from the Class.forName("org.sqlite.JDBC") method call that attempted to
load a nonexistent driver classfile.

You need to add the Xerial SQLite driver to the classpath when running JDBCDemo. Accomplish this
task via the following command line:

java -cp sqlite-jdbc-3.7.2.jar;. JDBCDemo sqlite

Because of the previously created employee directory, you should observe the following output:

SQL error : [SQLITE_CANTOPEN] Unable to open the database file (out of memory)
SQL state : null
Error code: 0
Cause: null

620 CHAPTER 14: Accessing Databases

Remove the employee directory (and derby.log for neatness) and re-execute the aforementioned
command line. This time, you should observe the following correct output:

SQL error : Unable to access database table
SQL state : null
Error code: 0
Cause: java.io.IOException: File I/O problem

SQLException declares several subclasses (e.g., java.sql.BatchUpdateException—an error has
occurred during a batch update operation). Many of these subclasses are categorized under
java.sql.SQLNonTransientException- and java.sql.SQLTransientException-rooted class
hierarchies in which SQLNonTransientException describes failed operations that cannot be
retried without changing application source code or some aspect of the data source, and
SQLTransientException describes failed operations that can be retried immediately.

Statements
After obtaining a connection to a data source, an application interacts with the data source by
issuing SQL statements (e.g., CREATE TABLE, INSERT, SELECT, UPDATE, DELETE, and DROP TABLE).
JDBC supports SQL statements via the java.sql.Statement, java.sql.PreparedStatement, and
java.sql.CallableStatement interfaces. Furthermore, Connection declares various
createStatement(), prepareStatement, and prepareCall() methods that return Statement,
PreparedStatement, or CallableStatement implementation instances, respectively.

Statement and ResultSet
Statement is the easiest-to-use interface, and Connection’s Statement createStatement() method
is the easiest-to-use method for obtaining a Statement instance. After calling this method, you can
execute various SQL statements by invoking Statement methods such as the following:

 ResultSet executeQuery(String sql) executes a SELECT statement and
(assuming no exception is thrown) provides access to its results via a
java.sql.ResultSet instance.

 int executeUpdate(String sql) executes a CREATE TABLE, INSERT, UPDATE,
DELETE, or DROP TABLE statement and (assuming no exception is thrown) typically
returns the number of table rows affected by this statement.

I’ve created a second JDBCDemo application that demonstrates these methods. Listing 14-2 presents
its source code.

Listing 14-2. Creating, Inserting Values into, Querying, and Dropping an EMPLOYEES Table

import java.sql.Connection;
import java.sql.DriverManager;
import java.sql.ResultSet;
import java.sql.SQLException;
import java.sql.Statement;

621CHAPTER 14: Accessing Databases

public class JDBCDemo
{
 final static String URL1 = "jdbc:derby:employee;create=true";
 final static String URL2 = "jdbc:sqlite:employee";

 public static void main(String[] args)
 {
 String url = null;
 if (args.length != 1)
 {
 System.err.println("usage 1: java JDBCDemo javadb");
 System.err.println("usage 2: java JDBCDemo sqlite");
 return;
 }
 if (args[0].equals("javadb"))
 url = URL1;
 else
 if (args[0].equals("sqlite"))
 url = URL2;
 else
 {
 System.err.println("invalid command-line argument");
 return;
 }
 Connection con = null;
 try
 {
 if (args[0].equals("sqlite"))
 Class.forName("org.sqlite.JDBC");
 con = DriverManager.getConnection(url);
 Statement stmt = null;
 try
 {
 stmt = con.createStatement();
 String sql = "CREATE TABLE EMPLOYEES(ID INTEGER, NAME VARCHAR(30))";
 stmt.executeUpdate(sql);
 sql = "INSERT INTO EMPLOYEES VALUES(1, 'John Doe')";
 stmt.executeUpdate(sql);
 sql = "INSERT INTO EMPLOYEES VALUES(2, 'Sally Smith')";
 stmt.executeUpdate(sql);
 ResultSet rs = stmt.executeQuery("SELECT * FROM EMPLOYEES");
 while (rs.next())
 System.out.println(rs.getInt("ID") + " " + rs.getString("NAME"));
 stmt.executeUpdate("DROP TABLE EMPLOYEES");
 }
 catch (SQLException sqlex)
 {
 while (sqlex != null)
 {
 System.err.println("SQL error : " + sqlex.getMessage());
 System.err.println("SQL state : " + sqlex.getSQLState());
 System.err.println("Error code: " + sqlex.getErrorCode());

622 CHAPTER 14: Accessing Databases

 System.err.println("Cause: " + sqlex.getCause());
 sqlex = sqlex.getNextException();
 }
 }
 finally
 {
 if (stmt != null)
 try
 {
 stmt.close();
 }
 catch (SQLException sqle)
 {
 sqle.printStackTrace();
 }
 }
 }
 catch (ClassNotFoundException cnfe)
 {
 System.err.println("unable to load sqlite driver");
 }
 catch (SQLException sqlex)
 {
 while (sqlex != null)
 {
 System.err.println("SQL error : " + sqlex.getMessage());
 System.err.println("SQL state : " + sqlex.getSQLState());
 System.err.println("Error code: " + sqlex.getErrorCode());
 System.err.println("Cause: " + sqlex.getCause());
 sqlex = sqlex.getNextException();
 }
 }
 finally
 {
 if (con != null)
 try
 {
 con.close();
 }
 catch (SQLException sqle)
 {
 sqle.printStackTrace();
 }
 }
 }
}

Listing 14-2 presents a similar architecture to Listing 14-1. For brevity, I won’t repeat the same
instructions and examples that I presented while discussing SQL exceptions. Instead, I prefer to
focus on new aspects of JDBC.

623CHAPTER 14: Accessing Databases

After successfully establishing a connection to the employee data source, main() creates a statement
and uses it to execute SQL statements for creating, inserting values into, querying, and dropping an
EMPLOYEES table.

The executeQuery() method returns a ResultSet object that provides access to a query’s tabular
results. Each result set is associated with a cursor that provides access to a specific row of data.
The cursor initially points before the first row; call ResultSet’s boolean next() method to advance
the cursor to the next row. As long as there’s a next row, this method returns true; it returns false
when there are no more rows to examine.

ResultSet also declares various methods for returning the current row’s column values based on
their types. For example, int getInt(String columnLabel) returns the integer value corresponding
to the INTEGER-based column identified by columnLabel. Similarly, String getString(String
columnLabel) returns the string value corresponding to the VARCHAR-based column identified by
columnLabel.

Tip If you don’t have column names but have zero-based column indexes, call ResultSet methods
such as int getInt(int columnIndex) and String getString(int columnIndex).
However, best practice is to call int getInt(String columnLabel).

Compile Listing 14-2 and run this application as previously discussed—you will want to first delete
the employee directory/file left behind by the previous application. You should observe the
following output:

1 John Doe
2 Sally Smith

SQL’s INTEGER and VARCHAR types map to Java’s int and String types. Table 14-1 presents a more
complete list of type mappings.

Table 14-1. SQL Type/Java Type Mappings

SQL Type Java Type

ARRAY java.sql.Array

BIGINT long

BINARY byte[]

BIT boolean

BLOB java.sql.Blob

BOOLEAN boolean

CHAR java.lang.String

CLOB java.sql.Clob

(continued)

624 CHAPTER 14: Accessing Databases

Check out http://docs.oracle.com/javase/1.5.0/docs/guide/jdbc/getstart/mapping.html for
more information on type mappings.

PreparedStatement
PreparedStatement is the next easiest-to-use interface, and Connection’s PreparedStatement
prepareStatement() method is the easiest-to-use method for obtaining a PreparedStatement
instance—PreparedStatement is a subinterface of Statement.

Unlike a regular statement, a prepared statement represents a precompiled SQL statement.
The SQL statement is compiled to improve performance and prevent SQL injection (see
http://en.wikipedia.org/wiki/SQL_injection), and the compiled result is stored in a
PreparedStatement implementation instance.

You typically obtain this instance when you want to execute the same prepared statement multiple
times (e.g., you want to execute an SQL INSERT statement multiple times to populate a database
table). Consider Listing 14-3.

SQL Type Java Type

DATE java.sql.Date

DECIMAL java.math.BigDecimal

DOUBLE double

FLOAT double

INTEGER int

LONGVARBINARY byte[]

LONGVARCHAR java.lang.String

NUMERIC java.math.BigDecimal

REAL Float

REF java.sql.Ref

SMALLINT Short

STRUCT java.sql.Struct

TIME java.sql.Time

TIMESTAMP java.sql.Timestamp

TINYINT Byte

VARBINARY byte[]

VARCHAR java.lang.String

Table 14-1. (continued)

625CHAPTER 14: Accessing Databases

Listing 14-3. Creating, Inserting Values via a Prepared Statement into, Querying, and Dropping an EMPLOYEES Table

import java.sql.Connection;
import java.sql.DriverManager;
import java.sql.PreparedStatement;
import java.sql.ResultSet;
import java.sql.SQLException;
import java.sql.Statement;

public class JDBCDemo
{
 final static String URL1 = "jdbc:derby:employee;create=true";
 final static String URL2 = "jdbc:sqlite:employee";

 public static void main(String[] args)
 {
 String url = null;
 if (args.length != 1)
 {
 System.err.println("usage 1: java JDBCDemo javadb");
 System.err.println("usage 2: java JDBCDemo sqlite");
 return;
 }
 if (args[0].equals("javadb"))
 url = URL1;
 else
 if (args[0].equals("sqlite"))
 url = URL2;
 else
 {
 System.err.println("invalid command-line argument");
 return;
 }
 Connection con = null;
 try
 {
 if (args[0].equals("sqlite"))
 Class.forName("org.sqlite.JDBC");
 con = DriverManager.getConnection(url);
 Statement stmt = null;
 try
 {
 stmt = con.createStatement();
 String sql = "CREATE TABLE EMPLOYEES(ID INTEGER, NAME VARCHAR(30))";
 stmt.executeUpdate(sql);
 PreparedStatement pstmt = null;
 try
 {
 pstmt = con.prepareStatement("INSERT INTO EMPLOYEES VALUES(?, ?)");
 String[] empNames = { "John Doe", "Sally Smith" };
 for (int i = 0; i < empNames.length; i++)

626 CHAPTER 14: Accessing Databases

 {
 pstmt.setInt(1, i+1);
 pstmt.setString(2, empNames[i]);
 pstmt.executeUpdate();
 }
 ResultSet rs = stmt.executeQuery("SELECT * FROM EMPLOYEES");
 while (rs.next())
 System.out.println(rs.getInt("ID") + " " + rs.getString("NAME"));
 stmt.executeUpdate("DROP TABLE EMPLOYEES");
 }
 catch (SQLException sqlex)
 {
 while (sqlex != null)
 {
 System.err.println("SQL error : " + sqlex.getMessage());
 System.err.println("SQL state : " + sqlex.getSQLState());
 System.err.println("Error code: " + sqlex.getErrorCode());
 System.err.println("Cause: " + sqlex.getCause());
 sqlex = sqlex.getNextException();
 }
 }
 finally
 {
 if (pstmt != null)
 try
 {
 pstmt.close();
 }
 catch (SQLException sqle)
 {
 sqle.printStackTrace();
 }
 }
 }
 catch (SQLException sqlex)
 {
 while (sqlex != null)
 {
 System.err.println("SQL error : " + sqlex.getMessage());
 System.err.println("SQL state : " + sqlex.getSQLState());
 System.err.println("Error code: " + sqlex.getErrorCode());
 System.err.println("Cause: " + sqlex.getCause());
 sqlex = sqlex.getNextException();
 }
 }
 finally
 {
 if (stmt != null)
 try
 {
 stmt.close();
 }
 catch (SQLException sqle)

627CHAPTER 14: Accessing Databases

 {
 sqle.printStackTrace();
 }
 }
 }
 catch (ClassNotFoundException cnfe)
 {
 System.err.println("unable to load sqlite driver");
 }
 catch (SQLException sqlex)
 {
 while (sqlex != null)
 {
 System.err.println("SQL error : " + sqlex.getMessage());
 System.err.println("SQL state : " + sqlex.getSQLState());
 System.err.println("Error code: " + sqlex.getErrorCode());
 System.err.println("Cause: " + sqlex.getCause());
 sqlex = sqlex.getNextException();
 }
 }
 finally
 {
 if (con != null)
 try
 {
 con.close();
 }
 catch (SQLException sqle)
 {
 sqle.printStackTrace();
 }
 }
 }
}

Listing 14-3 creates a String object that specifies an SQL INSERT statement. Each “?” character
serves as a placeholder for a value that’s specified before the statement is executed.

After the PreparedStatement implementation instance has been obtained, this interface’s void
setInt(int parameterIndex, int x) and void setString(int parameterIndex, String x) methods
are called on this instance to provide these values (the first argument passed to each method is a
1-based integer column index into the table associated with the statement—1 corresponds to the
leftmost column), and then PreparedStatement’s int executeUpdate() method is called to execute
this SQL statement. The end result is that a pair of rows containing John Doe, Sally Smith, and their
respective identifiers is added to the EMPLOYEES table.

CallableStatement
CallableStatement is the most specialized of the statement interfaces; it extends PreparedStatement.
You use this interface to execute SQL stored procedures in which a stored procedure is a list of SQL
statements that perform a specific task (e.g., fire an employee). Java DB differs from other RDBMSs

628 CHAPTER 14: Accessing Databases

in that a stored procedure’s body is implemented as a public static Java method. Furthermore, the
class in which this method is declared must be public.

Note SQLite doesn’t support stored procedures.

You create a stored procedure by executing an SQL statement that typically begins with
CREATE PROCEDURE and then continues with RDBMS-specific syntax. For example, the Java DB
syntax for creating a stored procedure, as specified on the web page at
http://db.apache.org/derby/docs/10.8/ref/rrefcreateprocedurestatement.html, is as follows:

CREATE PROCEDURE procedure-name ([procedure-parameter [, procedure-parameter]]*)
[procedure-element]*

procedure-name is expressed as

[schemaName .] SQL92Identifier

procedure-parameter is expressed as

[{ IN | OUT | INOUT }] [parameter-Name] DataType

procedure-element is expressed as

{
| [DYNAMIC] RESULT SETS INTEGER
| LANGUAGE { JAVA }
| DeterministicCharacteristic
| EXTERNAL NAME string
| PARAMETER STYLE JAVA
| EXTERNAL SECURITY { DEFINER | INVOKER }
| { NO SQL | MODIFIES SQL DATA | CONTAINS SQL | READS SQL DATA }
}

Anything between [] is optional, the * to the right of [] indicates that anything between these
metacharacters can appear zero or more times, the {} metacharacters surround a list of items, and |
separates possible items—only one of these items can be specified.

For example, CREATE PROCEDURE FIRE(IN ID INTEGER) PARAMETER STYLE JAVA LANGUAGE JAVA
DYNAMIC RESULT SETS 0 EXTERNAL NAME 'JDBCDemo.fire' creates a stored procedure named FIRE.
This procedure specifies an input parameter named ID and is associated with a public static
method named fire in a public class named JDBCDemo.

After creating the stored procedure, you need to obtain a CallableStatement implementation
instance to call that procedure, and you do so by invoking one of Connection’s prepareCall()
methods, for example, CallableStatement prepareCall(String sql).

The string passed to prepareCall() is an escape clause (RDBMS-independent syntax) consisting
of an open {, followed by the word call, followed by a space, followed by the name of the stored

629CHAPTER 14: Accessing Databases

Note Escape clauses are JDBC’s way of smoothing out some of the differences in how different
RDBMS vendors implement SQL. When a JDBC driver detects escape syntax, it converts it into the code
that the particular RDBMS understands. This makes escape syntax RDBMS independent.

Once you have a CallableStatement reference, you pass arguments to these parameters in the
same way as with PreparedStatement. The following example demonstrates:

CallableStatement cstmt = null;
try
{
 cstmt = con.prepareCall("{ call FIRE(?)}"))
 cstmt.setInt(1, 2);
 cstmt.execute();
}
catch (SQLException sqle)
{
 // handle the exception
}
finally
{
 // close the callable statement
}

The cstmt.setInt(1, 2) method call assigns 2 to the leftmost stored procedure parameter—parameter
index 1 corresponds to the leftmost parameter (or to a single parameter when there’s only one).
The cstmt.execute() method call executes the stored procedure, which results in a callback to the
application’s public static void fire(int id) method.

I’ve created another version of the JDBCDemo application that demonstrates this callable statement in
a Java DB context only. Listing 14-4 presents its source code.

Listing 14-4. Firing an Employee via a Stored Procedure

import java.sql.CallableStatement;
import java.sql.Connection;
import java.sql.DriverManager;
import java.sql.ResultSet;
import java.sql.SQLException;
import java.sql.Statement;

public class JDBCDemo
{
 public static void main(String[] args)
 {
 String url = "jdbc:derby:employee;create=true";

procedure, followed by a parameter list with “?” placeholder characters for the arguments that will
be passed, followed by a closing }.

630 CHAPTER 14: Accessing Databases

 Connection con = null;
 try
 {
 con = DriverManager.getConnection(url);
 Statement stmt = null;
 try
 {
 stmt = con.createStatement();
 String sql = "CREATE PROCEDURE FIRE(IN ID INTEGER)" +
 " PARAMETER STYLE JAVA" +
 " LANGUAGE JAVA" +
 " DYNAMIC RESULT SETS 0" +
 " EXTERNAL NAME 'JDBCDemo.fire'";
 stmt.executeUpdate(sql);
 sql = "CREATE TABLE EMPLOYEES(ID INTEGER, NAME VARCHAR(30), " +
 "FIRED BOOLEAN)";
 stmt.executeUpdate(sql);
 sql = "INSERT INTO EMPLOYEES VALUES(1, 'John Doe', false)";
 stmt.executeUpdate(sql);
 sql = "INSERT INTO EMPLOYEES VALUES(2, 'Sally Smith', false)";
 stmt.executeUpdate(sql);
 dump(stmt.executeQuery("SELECT * FROM EMPLOYEES"));
 CallableStatement cstmt = null;
 try
 {
 cstmt = con.prepareCall("{ call FIRE(?)}");
 cstmt.setInt(1, 2);
 cstmt.execute();
 dump(stmt.executeQuery("SELECT * FROM EMPLOYEES"));
 stmt.executeUpdate("DROP TABLE EMPLOYEES");
 stmt.executeUpdate("DROP PROCEDURE FIRE");
 }
 catch (SQLException sqlex)
 {
 while (sqlex != null)
 {
 System.err.println("SQL error : " + sqlex.getMessage());
 System.err.println("SQL state : " + sqlex.getSQLState());
 System.err.println("Error code: " + sqlex.getErrorCode());
 System.err.println("Cause: " + sqlex.getCause());
 sqlex = sqlex.getNextException();
 }
 }
 finally
 {
 if (cstmt != null)
 try
 {
 cstmt.close();
 }
 catch (SQLException sqle)

631CHAPTER 14: Accessing Databases

 {
 sqle.printStackTrace();
 }
 }
 }
 catch (SQLException sqlex)
 {
 while (sqlex != null)
 {
 System.err.println("SQL error : " + sqlex.getMessage());
 System.err.println("SQL state : " + sqlex.getSQLState());
 System.err.println("Error code: " + sqlex.getErrorCode());
 System.err.println("Cause: " + sqlex.getCause());
 sqlex = sqlex.getNextException();
 }
 }
 finally
 {
 if (stmt != null)
 try
 {
 stmt.close();
 }
 catch (SQLException sqle)
 {
 sqle.printStackTrace();
 }
 }
 }
 catch (SQLException sqlex)
 {
 while (sqlex != null)
 {
 System.err.println("SQL error : " + sqlex.getMessage());
 System.err.println("SQL state : " + sqlex.getSQLState());
 System.err.println("Error code: " + sqlex.getErrorCode());
 System.err.println("Cause: " + sqlex.getCause());
 sqlex = sqlex.getNextException();
 }
 }
 finally
 {
 if (con != null)
 try
 {
 con.close();
 }
 catch (SQLException sqle)
 {
 sqle.printStackTrace();
 }
 }
 }

632 CHAPTER 14: Accessing Databases

 static void dump(ResultSet rs) throws SQLException
 {
 StringBuilder sb = new StringBuilder();
 while (rs.next())
 {
 sb.append(rs.getInt("ID"));
 sb.append(' ');
 sb.append(rs.getString("NAME"));
 sb.append(' ');
 sb.append(rs.getBoolean("FIRED"));
 System.out.println(sb);
 sb.setLength(0);
 }
 System.out.println();
 }

 public static void fire(int id) throws SQLException
 {
 Connection con = DriverManager.getConnection("jdbc:default:connection");
 String sql = "UPDATE EMPLOYEES SET FIRED=TRUE WHERE ID=" + id;
 Statement stmt = null;
 try
 {
 stmt = con.createStatement();
 stmt.executeUpdate(sql);
 }
 finally
 {
 if (stmt != null)
 try
 {
 stmt.close();
 }
 catch (SQLException sqle)
 {
 sqle.printStackTrace();
 }
 }
 }
}

Much of Listing 14-4 should be fairly understandable, so I’ll only discuss the fire() method. As
previously stated, this method is invoked as a result of the callable statement invocation.

fire() is called with the integer identifier of the employee to fire. It first accesses the current
Connection object by invoking getConnection() with the jdbc.default:connection argument, which
is supported by Oracle virtual machines through a special internal driver.

After creating an SQL UPDATE statement string to set the FIRED column to true in the EMPLOYEES table
row where its ID field equals the value in id, fired() invokes executeUpdate() to update the table
appropriately.

633CHAPTER 14: Accessing Databases

Compile Listing 14-4 (javac JDBCDemo.java) and run this application (java JDBCDemo). You should
observe the following output:

1 John Doe false
2 Sally Smith false

1 John Doe false
2 Sally Smith true

Metadata
A data source is typically associated with metadata (data about data) that describes the data source.
When the data source is an RDBMS, this data is typically stored in a collection of tables.

Metadata includes a list of catalogs (RDBMS databases whose tables describe RDBMS objects such
as base tables [tables that physically exist], views [virtual tables], and indexes [files that improve the
speed of data retrieval operations]), schemas (namespaces that partition database objects), and
additional information (e.g., version numbers, identification strings, and limits).

To access a data source’s metadata, invoke Connection’s DatabaseMetaData getMetaData() method.
This method returns an implementation instance of the java.sql.DatabaseMetaData interface.

I’ve created yet another JDBCDemo application that demonstrates getMetaData() and various
DatabaseMetaData methods in the context of Java DB. Listing 14-5 presents MetaData’s source code.

Listing 14-5. Obtaining Metadata from an Employee Data Source

import java.sql.Connection;
import java.sql.DatabaseMetaData;
import java.sql.DriverManager;
import java.sql.ResultSet;
import java.sql.SQLException;
import java.sql.Statement;

public class JDBCDemo
{
 public static void main(String[] args)
 {
 String url = "jdbc:derby:employee;create=true";
 Connection con = null;
 try
 {
 con = DriverManager.getConnection(url);
 dump(con.getMetaData());
 }
 catch (SQLException sqlex)
 {
 while (sqlex != null)
 {
 System.err.println("SQL error : " + sqlex.getMessage());
 System.err.println("SQL state : " + sqlex.getSQLState());

634 CHAPTER 14: Accessing Databases

 System.err.println("Error code: " + sqlex.getErrorCode());
 System.err.println("Cause: " + sqlex.getCause());
 sqlex = sqlex.getNextException();
 }
 }
 finally
 {
 if (con != null)
 try
 {
 con.close();
 }
 catch (SQLException sqle)
 {
 sqle.printStackTrace();
 }
 }
 }

 static void dump(DatabaseMetaData dbmd) throws SQLException
 {
 System.out.println("DB Major Version = " + dbmd.getDatabaseMajorVersion());
 System.out.println("DB Minor Version = " + dbmd.getDatabaseMinorVersion());
 System.out.println("DB Product = " + dbmd.getDatabaseProductName());
 System.out.println("Driver Name = " + dbmd.getDriverName());
 System.out.println("Numeric function names for escape clause = " +
 dbmd.getNumericFunctions());
 System.out.println("String function names for escape clause = " +
 dbmd.getStringFunctions());
 System.out.println("System function names for escape clause = " +
 dbmd.getSystemFunctions());
 System.out.println("Time/date function names for escape clause = " +
 dbmd.getTimeDateFunctions());
 System.out.println("Catalog term: " + dbmd.getCatalogTerm());
 System.out.println("Schema term: " + dbmd.getSchemaTerm());
 System.out.println();
 System.out.println("Catalogs");
 System.out.println("--------");
 ResultSet rsCat = dbmd.getCatalogs();
 while (rsCat.next())
 System.out.println(rsCat.getString("TABLE_CAT"));
 System.out.println();
 System.out.println("Schemas");
 System.out.println("-------");
 ResultSet rsSchem = dbmd.getSchemas();
 while (rsSchem.next())
 System.out.println(rsSchem.getString("TABLE_SCHEM"));
 System.out.println();
 System.out.println("Schema/Table");
 System.out.println("------------");
 rsSchem = dbmd.getSchemas();
 while (rsSchem.next())

635CHAPTER 14: Accessing Databases

 {
 String schem = rsSchem.getString("TABLE_SCHEM");
 ResultSet rsTab = dbmd.getTables(null, schem, "%", null);
 while (rsTab.next())
 System.out.println(schem + " " + rsTab.getString("TABLE_NAME"));
 }
 }
}

Listing 14-5’s dump() method invokes various methods on its dbmd argument to output assorted
metadata.

The int getDatabaseMajorVersion() and int getDatabaseMinorVersion() methods return
the major (e.g., 10) and minor (e.g., 8) parts of Java DB’s version number. Similarly, String
getDatabaseProductName() returns the name of this product (e.g., Apache Derby), and String
getDriverName() returns the name of the driver (e.g., Apache Derby Embedded JDBC Driver).

SQL defines various functions that can be invoked as part of SELECT and other statements. For
example, you can specify SELECT COUNT(*) AS TOTAL FROM EMPLOYEES to return a one-row-by-one-
column result set with the column named TOTAL and the row value containing the number of rows in
the EMPLOYEES table.

Because not all RDMSs adopt the same syntax for specifying function calls, JDBC uses a function
escape clause, consisting of { fn functionname(arguments) }, to abstract over differences. For
example, SELECT {fn UCASE(NAME)} FROM EMPLOYEES selects all NAME column values from EMPLOYEES
and uppercases their values in the result set.

The String getNumericFunctions(), String getStringFunctions(), String getSystemFunctions(),
and String getTimeDateFunctions() methods return lists of function names that can appear in
function escape clauses. For example, getNumericFunctions() returns ABS,ACOS,ASIN,ATAN,ATAN2,
CEILING,COS,COT,DEGREES,EXP,FLOOR,LOG,LOG10,MOD,PI,RADIANS,RAND,SIGN,SIN,SQRT,TAN for
Java DB 10.8.

Not all vendors use the same terminology for catalog and schema. For this reason, the String
getCatalogTerm() and String getSchemaTerm() methods are present to return the vendor-specific
terms, which happen to be CATALOG and SCHEMA for Java DB 10.8.

The ResultSet getCatalogs() method returns a result set of catalog names, which are accessible
via the result set’s TABLE_CAT column. This result set is empty for Java DB 10.8, which divides a
single default catalog into various schemas.

The ResultSet getSchemas() method returns a result set of schema names, which are accessible
via the result set’s TABLE_SCHEM column. This column contains APP, NULLID, SQLJ, SYS, SYSCAT,
SYSCS_DIAG, SYSCS_UTIL, SYSFUN, SYSIBM, SYSPROC, and SYSSTAT values for Java DB 10.8. APP is the
default schema in which a user’s database objects are stored.

The ResultSet getTables(String catalog, String schemaPattern, String tableNamePattern,
String[] types) method returns a result set containing table names (in the TABLE_NAME column) and
other table-oriented metadata that match the specified catalog, schemaPattern, tableNamePattern,
and types. To obtain a result set of all tables for a specific schema, pass null to catalog and types,
the schema name to schemaPattern, and the % wildcard to tableNamePattern.

636 CHAPTER 14: Accessing Databases

For example, the SYS schema stores SYSALIASES, SYSCHECKS, SYSCOLPERMS, SYSCOLUMNS,
SYSCONGLOMERATES, SYSCONSTRAINTS, SYSDEPENDS, SYSFILES, SYSFOREIGNKEYS, SYSKEYS, SYSPERMS,
SYSROLES, SYSROUTINEPERMS, SYSSCHEMAS, SYSSEQUENCES, SYSSTATEMENTS, SYSSTATISTICS,
SYSTABLEPERMS, SYSTABLES, SYSTRIGGERS, and SYSVIEWS tables.

Listings 14-2 through 14-4 suffer from an architectural problem. After creating the EMPLOYEES table,
suppose that SQLException is thrown before the table is dropped. The next time the JDBCDemo
application runs (under Java DB), SQLException is thrown when the application attempts to recreate
EMPLOYEES because this table already exists. You have to manually delete the employee directory
before you can re-run JDBCDemo.

It would be nice to call an isExist() function before creating EMPLOYEES, but that function doesn’t
exist. However, you can create a same-named method with help from getTables(), and Listing 14-6
shows you how to accomplish this task.

Listing 14-6. Determining the Existence of Employee Before Creating This Table

import java.sql.Connection;
import java.sql.DatabaseMetaData;
import java.sql.DriverManager;
import java.sql.ResultSet;
import java.sql.SQLException;
import java.sql.Statement;

public class JDBCDemo
{
 public static void main(String[] args)
 {
 String url = "jdbc:derby:employee;create=true";
 Connection con = null;
 try
 {
 con = DriverManager.getConnection(url);
 Statement stmt = null;
 try
 {
 stmt = con.createStatement();
 String sql;
 if (!isExist(con, "EMPLOYEES"))
 {
 System.out.println("EMPLOYEES doesn't exist");
 sql = "CREATE TABLE EMPLOYEES(ID INTEGER, NAME VARCHAR(30))";
 stmt.executeUpdate(sql);
 }
 else
 System.out.println("EMPLOYEES already exists");
 sql = "INSERT INTO EMPLOYEES VALUES(1, 'John Doe')";
 stmt.executeUpdate(sql);
 sql = "INSERT INTO EMPLOYEES VALUES(2, 'Sally Smith')";
 stmt.executeUpdate(sql);
 ResultSet rs = stmt.executeQuery("SELECT * FROM EMPLOYEES");
 while (rs.next())

637CHAPTER 14: Accessing Databases

 System.out.println(rs.getInt("ID") + " " + rs.getString("NAME"));
 stmt.executeUpdate("DROP TABLE EMPLOYEES");
 }
 catch (SQLException sqlex)
 {
 while (sqlex != null)
 {
 System.err.println("SQL error : " + sqlex.getMessage());
 System.err.println("SQL state : " + sqlex.getSQLState());
 System.err.println("Error code: " + sqlex.getErrorCode());
 System.err.println("Cause: " + sqlex.getCause());
 sqlex = sqlex.getNextException();
 }
 }
 finally
 {
 if (stmt != null)
 try
 {
 stmt.close();
 }
 catch (SQLException sqle)
 {
 sqle.printStackTrace();
 }
 }
 }
 catch (SQLException sqlex)
 {
 while (sqlex != null)
 {
 System.err.println("SQL error : " + sqlex.getMessage());
 System.err.println("SQL state : " + sqlex.getSQLState());
 System.err.println("Error code: " + sqlex.getErrorCode());
 System.err.println("Cause: " + sqlex.getCause());
 sqlex = sqlex.getNextException();
 }
 }
 finally
 {
 if (con != null)
 try
 {
 con.close();
 }
 catch (SQLException sqle)
 {
 sqle.printStackTrace();
 }
 }
 }

638 CHAPTER 14: Accessing Databases

 static boolean isExist(Connection con, String tableName) throws SQLException
 {
 DatabaseMetaData dbmd = con.getMetaData();
 ResultSet rs = dbmd.getTables(null, "APP", tableName, null);
 return rs.next();
 }
}

Listing 14-6 refactors Listing 14-2 (from a Java DB perspective only) by introducing a boolean
isExist(Connection con, String tableName) class method, which returns true when tableName
exists, and using this method to determine the existence of EMPLOYEES before creating this table.

When the specified table exists, a ResultSet object containing one row is returned, and ResultSet’s
next() method returns true. Otherwise, the result set contains no rows and next() returns false.

Caution isExist() assumes the default APP schema, which might not be the case when
usernames are involved (each user’s database objects are stored in a schema corresponding to the
user’s name).

EXERCISES

The following exercises are designed to test your understanding of Chapter 14’s content:

1. Define database.

2. What is a relational database?

3. Identify two other database categories.

4. Define database management system.

5. What is Java DB?

6. True or false: Java DB’s client driver causes the database engine to run in the same virtual machine
as the application.

7. What does setEmbeddedCP accomplish?

8. True or false: You run Java DB’s dblook command-line tool to view the Java environment/Java DB
configuration.

9. What is SQLite?

10. Define manifest typing.

11. What tool does SQLite provide for accessing and modifying SQLite databases?

12. What is JDBC?

13. Define data source.

14. A JDBC driver implements what interface?

639CHAPTER 14: Accessing Databases

15. True or false: There are three kinds of JDBC drivers.

16. Describe a Type 3 JDBC driver.

17. What types does JDBC provide for communicating with a data source?

18. How do you obtain a connection to a Java DB data source via the embedded driver?

19. True or false: String getSQLState() returns a vendor-specific error code.

20. What is a SQL state error code?

21. What is the difference between SQLNonTransientException and SQLTransientException?

22. Identify JDBC’s three statement types.

23. Which Statement method do you call to execute an SQL SELECT statement?

24. What does a result set’s cursor accomplish?

25. To which Java type does the SQL FLOAT type map?

26. What does a prepared statement represent?

27. True or false: CallableStatement extends PreparedStatement.

28. Define stored procedure.

29. How do you call a stored procedure?

30. What is an escape clause?

31. Define metadata.

32. What does metadata include?

33. Refactor Listing 14-5 to output metadata for the SQLite driver as well as for the Java DB
embedded driver.

Summary
A database is an organized collection of data. Although there are many kinds of databases (e.g.,
hierarchical, object oriented, and relational), relational databases, which organize data into tables
that can be related to each other, are common.

Except for the most trivial of databases (e.g., Chapter 11’s flat file database based on a single data
file), databases are created and managed through a database management system. Relational
DBMSs support SQL for working with tables and more.

First introduced by Sun Microsystems as part of JDK 6 (and not included in the JRE) to give
developers an RDBMS to test their JDBC code, Java DB is a distribution of Apache’s open-source
Derby product, which is based on IBM’s Cloudscape RDBMS code base.

Java DB is capable of running in an embedded environment or in a client/server environment. In
an embedded environment, where an application accesses the database engine via Java DB’s
embedded driver, the database engine runs in the same virtual machine as the application.

640 CHAPTER 14: Accessing Databases

In a client/server environment, client applications and the database engine run in separate virtual
machines. A client application accesses the network server through Java DB’s client driver. The
network server, which runs in the same virtual machine as the database engine, accesses the
database engine through the embedded driver.

SQLite is a self-contained, serverless, zero-configuration, transactional SQL database engine and
is considered to be the most widely deployed database engine in the world. For example, SQLite is
found in Mozilla Firefox, Google Chrome, and other web browsers. It’s also found in Google Android,
Apple iOS, and other mobile operating systems.

The sqlite3 executable offers a command-line shell for accessing and modifying SQLite databases.
You can specify sqlite3 with a database filename argument to create the database file when it
doesn’t exist (you must create a table at least) or open the existing file and enter this tool’s shell from
where you can execute sqlite3-specific, dot-prefixed commands and SQL statements.

JDBC is an API for performing various database operations, such as submitting SQL statements that
tell the RDBMS to create a table and to update or query tabular data. Although JDBC is typically
used to communicate with RDBMSs, it also can be used to communicate with a flat file database.
For this reason, JDBC uses the term data source to abstract the source of data.

Because data sources are accessed in different ways, JDBC uses drivers to abstract over
their implementations. This abstraction lets you write an application that can be adapted to an
arbitrary data source without having to change a single line of code (in most cases). Drivers are
implementations of the java.sql.Driver interface. JDBC recognizes four types of drivers.

To connect to a data source and obtain a Connection instance, call one of DriverManager’s
getConnection() methods. With either method, the url argument specifies a string-based URL that
starts with the jdbc: prefix and continues with data source-specific syntax.

DriverManager’s getConnection() methods (and other JDBC methods in the various JDBC
interfaces) throw SQLException or one of its subclasses when something goes wrong. Instances of
this class provide vendor codes, SQL state strings, and other kinds of information.

After obtaining a connection to a data source, an application interacts with the data source by
issuing SQL statements. JDBC supports SQL statements via the Statement, PreparedStatement, and
CallableStatement interfaces.

The executeQuery() methods return a ResultSet object that provides access to a query’s tabular
results. Each result set is associated with a cursor that provides access to a specific row of data.
The cursor initially points before the first row.

ResultSet also declares various methods for returning the current row’s column values based on
their types. For example, int getInt(String columnLabel) returns the integer value corresponding
to the INTEGER-based column identified by columnLabel.

A prepared statement represents a precompiled SQL statement. The SQL statement is compiled
to improve performance and prevent SQL injection, and the compiled result is stored in a
PreparedStatement implementation instance.

641CHAPTER 14: Accessing Databases

A callable statement is a special kind of prepared statement for executing SQL stored procedures
in which a stored procedure is a list of SQL statements that perform a specific task. The argument
passed to a callable statement’s prepareCall() method is specified using escape syntax.

A data source is typically associated with metadata that describes the data source. When the data
source is an RDBMS, this data is typically stored in a collection of tables. Metadata includes a list of
catalogs, base tables, views, indexes, schemas, and additional information.

Now that you’ve reached the end of this chapter, check out Appendixes A and B, which offer
solutions to all exercises in Chapters 1 through 14 and introduce you to a card game application.

643

Appendix A
Solutions to Exercises

Each of Chapters 1 through 14 closes with an “Exercises” section that tests your understanding of
the chapter’s material. Solutions to these exercises are presented in this appendix.

Chapter 1: Getting Started with Java
1. Java is a language and a platform. The language is partly patterned after the

C and C++ languages to shorten the learning curve for C/C++ developers.
The platform consists of a virtual machine and associated execution
environment.

2. A virtual machine is a software-based processor that presents its own
instruction set.

3. The purpose of the Java compiler is to translate source code into instructions
(and associated data) that are executed by the virtual machine.

4. The answer is true: a classfile’s instructions are commonly referred to as
bytecode.

5. When the virtual machine’s interpreter learns that a sequence of bytecode
instructions is being executed repeatedly, it informs the virtual machine’s Just
In Time (JIT) compiler to compile these instructions into native code.

6. The Java platform promotes portability by providing an abstraction over
the underlying platform. As a result, the same bytecode runs unchanged on
Windows-based, Linux-based, Mac OS X–based, and other platforms.

7. The Java platform promotes security by providing a secure environment in
which code executes. It accomplishes this task in part by using a bytecode
verifier to make sure that the classfile’s bytecode is valid.

644 APPENDIX A: Solutions to Exercises

8. The answer is false: Java SE is the platform for developing applications and
applets.

9. The JRE implements the Java SE platform and makes it possible to run Java
programs.

10. The difference between the public and private JREs is that the public JRE
exists apart from the JDK, whereas the private JRE is a component of the
JDK that makes it possible to run Java programs independently of whether or
not the public JRE is installed.

11. The JDK provides development tools (including a compiler) for developing
Java programs. It also provides a private JRE for running these programs.

12. The JDK’s javac tool is used to compile Java source code.

13. The JDK’s java tool is used to run Java applications.

14. Standard I/O is a mechanism consisting of Standard Input, Standard Output,
and Standard Error that makes it possible to read text from different sources
(keyboard or file), write nonerror text to different destinations (screen or file),
and write error text to different destinations (screen or file).

15. You specify the main() method’s header as public static void
main(String[] args).

16. An IDE is a development framework consisting of a project manager for
managing a project’s files, a text editor for entering and editing source code,
a debugger for locating bugs, and other features. The IDE that Google
supports for developing Android apps is Eclipse.

Chapter 2: Learning Language Fundamentals
1. Unicode is a computing industry standard for consistently encoding,

representing, and handling text that’s expressed in most of the world’s
writing systems.

2. A comment is a language feature for embedding documentation in source code.

3. The three kinds of comments that Java supports are single-line, multiline,
and Javadoc.

4. An identifier is a language feature that consists of letters (A–Z, a–z, or
equivalent uppercase/lowercase letters in other human alphabets), digits
(0–9 or equivalent digits in other human alphabets), connecting punctuation
characters (e.g., the underscore), and currency symbols (e.g., the dollar sign $).
This name must begin with a letter, a currency symbol, or a connecting
punctuation character; and its length cannot exceed the line in which
it appears.

645APPENDIX A: Solutions to Exercises

5. The answer is false: Java is a case-sensitive language.

6. A type is a language feature that identifies a set of values (and their
representation in memory) and a set of operations that transform these
values into other values of that set.

7. A primitive type is a type that’s defined by the language and whose values
are not objects.

8. Java supports the Boolean, character, byte integer, short integer, integer, long
integer, floating-point, and double precision floating-point primitive types.

9. A user-defined type is a type that’s defined by the developer using a class,
an interface, an enum, or an annotation type and whose values are objects.

10. An array type is a special reference type that signifies an array, a region of
memory that stores values in equal-size and contiguous slots, which are
commonly referred to as elements.

11. A variable is a named memory location that stores some type of value.

12. An expression is a combination of literals, variable names, method calls, and
operators. At runtime, it evaluates to a value whose type is referred to as the
expression’s type.

13. The two expression categories are simple expression and compound
expression.

14. A literal is a value specified verbatim.

15. String literal "The quick brown fox \jumps\ over the lazy dog." is illegal
because, unlike \", \j and \ (a backslash followed by a space character)
are not valid escape sequences. To make this string literal legal, you must
escape these backslashes, as in "The quick brown fox \\jumps\\ over the
lazy dog.".

16. An operator is a sequence of instructions symbolically represented in
source code.

17. The difference between a prefix operator and a postfix operator is that a
prefix operator precedes its operand and a postfix operator trails its operand.

18. The purpose of the cast operator is to convert from one type to another type.
For example, you can use this operator to convert from floating-point type to
32-bit integer type.

19. Precedence refers to an operator’s level of importance.

20. The answer is true: most of Java’s operators are left-to-right associative.

21. A statement is a language feature that assigns a value to a variable, controls
a program’s flow by making a decision and/or repeatedly executing another
statement, or performs another task.

646 APPENDIX A: Solutions to Exercises

22. The while statement evaluates its Boolean expression at the top of the loop,
whereas the do-while statement evaluates its Boolean expression at the
bottom of the loop. As a result, while executes zero or more times, whereas
do-while executes one or more times.

23. The difference between the break and continue statements is that break
transfers execution to the first statement following a switch statement or
a loop, whereas continue skips the remainder of the current loop iteration,
reevaluates the loop’s Boolean expression, and performs another iteration
(when true) or terminates the loop (when false).

24. Listing A-1 presents an OutputGradeLetter application (the class is named
OutputGradeLetter) whose main() method executes the grade letter code
sequence presented while discussing the if-else statement.

Listing A-1. Classifying a Grade

public class OutputGradeLetter
{
 public static void main(String[] args)
 {
 char gradeLetter = 'u'; // unknown
 int testMark = 100;

 if (testMark >= 90)
 {
 gradeLetter = 'A';
 System.out.println("You aced the test.");
 }
 else
 if (testMark >= 80)
 {
 gradeLetter = 'B';
 System.out.println("You did very well on this test.");
 }
 else
 if (testMark >= 70)
 {
 gradeLetter = 'C';
 System.out.println("Not bad, but you need to study more for future tests.");
 }
 else
 if (testMark >= 60)
 {
 gradeLetter = 'D';
 System.out.println("Your test result suggests that you need a tutor.");
 }

647APPENDIX A: Solutions to Exercises

 else
 {
 gradeLetter = 'F';
 System.out.println("Your test result is pathetic; you need summer school.");
 }
 }
}

25. Listing A-2 presents a Triangle application whose main() method uses a pair
of nested for statements along with System.out.print() to output a 10-row
triangle of asterisks, where each row contains an odd number of asterisks
(1, 3, 5, 7, and so on).

Listing A-2. Printing a Triangle of Asterisks

public class Triangle
{
 public static void main(String[] args)
 {
 for (int row = 1; row < 20; row += 2)
 {
 for (int col = 0; col < 19 - row / 2; col++)
 System.out.print(" ");
 for (int col = 0; col < row; col++)
 System.out.print("*");
 System.out.print('\n');
 }
 }
}

Chapter 3: Discovering Classes and Objects
1. A class is a template for manufacturing objects.

2. You declare a class by providing a header followed by a body. The header
minimally consists of reserved word class followed by an identifier. The
body consists of a sequence of declarations placed between a pair of brace
characters.

3. An object is a named aggregate of code and data.

4. You instantiate an object by using the new operator followed by a constructor.

5. A constructor is a block of code for constructing an object by initializing it in
some manner.

6. The answer is true: Java creates a default noargument constructor when a
class declares no constructors.

648 APPENDIX A: Solutions to Exercises

7. A parameter list is a round bracket-delimited and comma-separated list of
zero or more parameter declarations. A parameter is a constructor or method
variable that receives an expression value passed to the constructor or
method when it is called.

8. An argument list is a round bracket-delimited and comma-separated list of
zero or more expressions. An argument is one of these expressions whose
value is passed to the corresponding parameter when a constructor or
method variable is called.

9. The answer is false: you invoke another constructor by specifying this
followed by an argument list.

10. Arity is the number of arguments passed to a constructor or method or the
number of operator operands.

11. A local variable is a variable that is declared in a constructor or method and
is not a member of the constructor or method parameter list.

12. Lifetime is a property of a variable that determines how long the variable
exists. For example, local variables and parameters come into existence
when a constructor or method is called and are destroyed when the
constructor or method finishes. Similarly, an instance field comes into
existence when an object is created and is destroyed when the object is
garbage collected.

13. Scope is a property of a variable that determines how accessible the variable
is to code. For example, a parameter can be accessed only by the code
within the constructor or method in which the parameter is declared.

14. Encapsulation refers to the merging of state and behaviors into a single
source code entity. Instead of separating state and behaviors, which is done
in structured programs, state and behaviors are combined into classes
and objects, which are the focus of object-based programs. For example,
whereas a structured program makes you think in terms of separate balance
state and deposit/withdraw behaviors, an object-based program makes you
think in terms of bank accounts, which unite balance state with deposit/
withdraw behaviors through encapsulation.

15. A field is a variable declared within a class body.

16. The difference between an instance field and a class field is that an instance
field describes some attribute of the real-world entity that an object is
modeling and is unique to each object, and a class field identifies some data
item that is shared by all objects.

17. A blank final is a read-only instance field. It differs from a true constant in that
there are multiple copies of blank finals (one per object) and only one true
constant (one per class).

649APPENDIX A: Solutions to Exercises

18. You prevent a field from being shadowed by changing the name of a
same-named local variable or parameter or by qualifying the local variable’s
name or parameter’s name with this or the class name followed by the
member access operator.

19. A method is a named block of code declared within a class body.

20. The difference between an instance method and a class method is that an
instance method describes some behavior of the real-world entity that an
object is modeling and can access a specific object’s state, and a class
method identifies some behavior that is common to all objects and cannot
access a specific object’s state.

21. Recursion is the act of a method invoking itself.

22. You overload a method by introducing a method with the same name as an
existing method but with a different parameter list into the same class.

23. A class initializer is a static-prefixed block that is introduced into a class
body. An instance initializer is a block that is introduced into a class body as
opposed to being introduced as the body of a method or a constructor.

24. A garbage collector is code that runs in the background and occasionally
checks for unreferenced objects.

25. The answer is false: String[] letters = new String[2] { "A", "B" }; is
incorrect syntax. Remove the 2 from between the square brackets to make
it correct.

26. A ragged array is a two-dimensional array in which each row can have a
different number of columns.

27. Calculating the greatest common divisor of two positive integers, which is the
greatest positive integer that divides evenly into both positive integers, provides
another example of tail recursion. Listing A-3 presents the source code.

Listing A-3. Recursively Calculating the Greatest Common Divisor

public static int gcd(int a, int b)
{
 // The greatest common divisor is the largest positive integer that
 // divides evenly into two positive integers a and b. For example,
 // GCD(12, 18) is 6.

 if (b == 0) // Base problem
 return a;
 else
 return gcd(b, a % b);
}

650 APPENDIX A: Solutions to Exercises

28. Listing A-4 presents the source code to a Book class with name, author, and
International Standard Book Number (ISBN) fields and a suitable constructor
and getter methods that return field values. Furthermore, a main() method
is present that creates an array of Book objects and iterates over this array
outputting each book’s name, author, and ISBN.

Listing A-4. Building a Library of Books

public class Book
{
 private String name;
 private String author;
 private String isbn;

 public Book(String name, String author, String isbn)
 {
 this.name = name;
 this.author = author;
 this.isbn = isbn;
 }

 public String getName()
 {
 return name;
 }

 public String getAuthor()
 {
 return author;
 }

 public String getISBN()
 {
 return isbn;
 }

 public static void main(String[] args)
 {
 Book[] books = new Book[]
 {
 new Book("Jane Eyre",
 "Charlotte Brontë",
 "0895772000"),
 new Book("A Kick in the Seat of the Pants",
 "Roger von Oech",
 "0060155280"),
 new Book("The Prince and the Pilgrim",
 "Mary Stewart",
 "0340649925")
 };

651APPENDIX A: Solutions to Exercises

 for (int i = 0; i < books.length; i++)
 System.out.println(books[i].getName() + " - " +
 books[i].getAuthor() + " - " +
 books[i].getISBN());
 }
}

Chapter 4: Discovering Inheritance, Polymorphism,
and Interfaces

1. Implementation inheritance is inheritance through class extension.

2. Java supports implementation inheritance by providing reserved word
extends.

3. A subclass can have only one superclass because Java doesn’t support
multiple implementation inheritance.

4. You prevent a class from being subclassed by declaring the class final.

5. The answer is false: the super() call can only appear in a constructor.

6. If a superclass declares a constructor with one or more parameters, and
if a subclass constructor doesn’t use super() to call that constructor, the
compiler reports an error because the subclass constructor attempts to
call a nonexistent noargument constructor in the superclass. (When a class
doesn’t declare any constructors, the compiler creates a constructor with
no parameters [a noargument constructor] for that class. Therefore, if the
superclass didn’t declare any constructors, a noargument constructor would
be created for the superclass. Continuing, if the subclass constructor didn’t
use super() to call the superclass constructor, the compiler would insert the
call and there would be no error.)

7. An immutable class is a class whose instances cannot be modified.

8. The answer is false: a class cannot inherit constructors.

9. Overriding a method means to replace an inherited method with another
method that provides the same signature and the same return type but
provides a new implementation.

10. To call a superclass method from its overriding subclass method, prefix the
superclass method name with reserved word super and the member access
operator in the method call.

11. You prevent a method from being overridden by declaring the method final.

652 APPENDIX A: Solutions to Exercises

12. You cannot make an overriding subclass method less accessible than the
superclass method it is overriding because subtype polymorphism would
not work properly if subclass methods could be made less accessible.
Suppose you upcast a subclass instance to superclass type by assigning
the instance’s reference to a variable of superclass type. Now suppose you
specify a superclass method call on the variable. If this method is overridden
by the subclass, the subclass version of the method is called. However, if
access to the subclass’s overriding method’s access could be made private,
calling this method would break encapsulation—private methods cannot be
called directly from outside of their class.

13. You tell the compiler that a method overrides another method by prefixing the
overriding method’s header with the @Override annotation.

14. Java doesn’t support multiple implementation inheritance because this form
of inheritance can lead to ambiguities.

15. The name of Java’s ultimate superclass is Object. This class is located in the
java.lang package.

16. The purpose of the clone() method is to duplicate an object without calling
a constructor.

17. Object’s clone() method throws CloneNotSupportedException when the
class whose instance is to be shallowly cloned doesn’t implement the
Cloneable interface.

18. The difference between shallow copying and deep copying is that shallow
copying copies each primitive or reference field’s value to its counterpart
in the clone, whereas deep copying creates, for each reference field, a new
object and assigns its reference to the field. This deep copying process
continues recursively for these newly created objects.

19. The == operator cannot be used to determine if two objects are logically
equivalent because this operator only compares object references and not
the contents of these objects.

20. Object’s equals() method compares the current object’s this reference
to the reference passed as an argument to this method. (When I refer to
Object’s equals() method, I am referring to the equals() method in the
Object class.)

21. Expression "abc" == "a" + "bc" returns true. It does so because the String
class contains special support that allows literal strings and string-valued
constant expressions to be compared via ==.

22. You can optimize a time-consuming equals() method by first using == to
determine if this method’s reference argument identifies the current object
(which is represented in source code via reserved word this).

653APPENDIX A: Solutions to Exercises

23. The purpose of the finalize() method is to provide a safety net for calling
an object’s cleanup method in case that method is not called.

24. You should not rely on finalize() for closing open files because file
descriptors are a limited resource and an application might not be able to
open additional files until finalize() is called, and this method might be
called infrequently (or perhaps not at all).

25. A hash code is a small value that results from applying a mathematical
function to a potentially large amount of data.

26. The answer is true: you should override the hashCode() method whenever
you override the equals() method.

27. Object’s toString() method returns a string representation of the current
object that consists of the object’s class name, followed by the @ symbol,
followed by a hexadecimal representation of the object’s hash code. (When I
refer to Object’s toString() method, I am referring to the toString() method
in the Object class.)

28. You should override toString() to provide a concise but meaningful
description of the object to facilitate debugging via System.out.println()
method calls. It is more informative for toString() to reveal object state than
to reveal a class name, followed by the @ symbol, followed by a hexadecimal
representation of the object’s hash code.

29. Composition is a way to reuse code by composing classes out of other
classes based on a “has-a” relationship between them.

30. The answer is false: composition is used to describe “has-a” relationships
and implementation inheritance is used to describe “is-a” relationships.

31. The fundamental problem of implementation inheritance is that it breaks
encapsulation. You fix this problem by ensuring that you have control over
the superclass as well as its subclasses by ensuring that the superclass is
designed and documented for extension or by using a wrapper class in lieu
of a subclass when you would otherwise extend the superclass.

32. Subtype polymorphism is a kind of polymorphism where a subtype instance
appears in a supertype context, and executing a supertype operation on
the subtype instance results in the subtype’s version of that operation
executing.

33. Subtype polymorphism is accomplished by upcasting the subtype instance
to its supertype; by assigning the instance’s reference to a variable of that
type; and, via this variable, calling a superclass method that has been
overridden in the subclass.

654 APPENDIX A: Solutions to Exercises

34. You would use abstract classes and abstract methods to describe generic
concepts (e.g., shape, animal, or vehicle) and generic operations (e.g., drawing
a generic shape). Abstract classes cannot be instantiated and abstract methods
cannot be called because they have no code bodies.

35. An abstract class can contain concrete methods.

36. The purpose of downcasting is to access subtype features. For example, you
would downcast a Point variable that contains a Circle instance reference to the
Circle type so that you can call Circle’s getRadius() method on the instance.

37. Two forms of RTTI are the virtual machine verifying that a cast is legal and
using the instanceof operator to determine whether or not an instance is a
member of a type.

38. A covariant return type is a method return type that, in the superclass’s
method declaration, is the supertype of the return type in the subclass’s
overriding method declaration.

39. You formally declare an interface by specifying at least reserved word
interface, followed by a name, followed by a brace-delimited body of
constants and/or method headers.

40. The answer is true: you can precede an interface declaration with the
abstract reserved word. However, doing so is redundant.

41. A marker interface is an interface that declares no members.

42. Interface inheritance is inheritance through interface implementation or
interface extension.

43. You implement an interface by appending an implements clause, consisting
of reserved word implements followed by the interface’s name, to a class
header and by overriding the interface’s method headers in the class.

44. You might encounter one or more name collisions when you implement
multiple interfaces.

45. You form a hierarchy of interfaces by appending reserved word extends
followed by an interface name to an interface header.

46. Java’s interfaces feature is so important because it gives developers the
utmost flexibility in designing their applications.

47. Interfaces and abstract classes describe abstract types.

48. Interfaces and abstract classes differ in that interfaces can only declare
abstract methods and constants and can be implemented by any class in
any class hierarchy. In contrast, abstract classes can declare constants and
nonconstant fields; can declare abstract and concrete methods; and can
only appear in the upper levels of class hierarchies, where they are used to
describe abstract concepts and behaviors.

655APPENDIX A: Solutions to Exercises

49. Listings A-5 through A-11 declare the Animal, Bird, Fish, AmericanRobin,
DomesticCanary, RainbowTrout, and SockeyeSalmon classes that were called
for in Chapter 4.

Listing A-5. The Animal Class Abstracting Over Birds and Fish (and Other Organisms)

public abstract class Animal
{
 private String kind;
 private String appearance;

 public Animal(String kind, String appearance)
 {
 this.kind = kind;
 this.appearance = appearance;
 }

 public abstract void eat();

 public abstract void move();

 @Override
 public final String toString()
 {
 return kind + " -- " + appearance;
 }
}

Listing A-6. The Bird Class Abstracting Over American Robins, Domestic Canaries, and Other Kinds of Birds

public abstract class Bird extends Animal
{
 public Bird(String kind, String appearance)
 {
 super(kind, appearance);
 }

 @Override
 public final void eat()
 {
 System.out.println("eats seeds and insects");
 }

 @Override
 public final void move()
 {
 System.out.println("flies through the air");
 }
}

656 APPENDIX A: Solutions to Exercises

Listing A-7. The Fish Class Abstracting Over Rainbow Trout, Sockeye Salmon, and Other Kinds of Fish

public abstract class Fish extends Animal
{
 public Fish(String kind, String appearance)
 {
 super(kind, appearance);
 }

 @Override
 public final void eat()
 {
 System.out.println("eats krill, algae, and insects");
 }

 @Override
 public final void move()
 {
 System.out.println("swims through the water");
 }
}

Listing A-8. The AmericanRobin Class Denoting a Bird with a Red Breast

public final class AmericanRobin extends Bird
{
 public AmericanRobin()
 {
 super("americanrobin", "red breast");
 }
}

Listing A-9. The DomesticCanary Class Denoting a Bird of Various Colors

public final class DomesticCanary extends Bird
{
 public DomesticCanary()
 {
 super("domestic canary", "yellow, orange, black, brown, white, red");
 }
}

Listing A-10. The RainbowTrout Class Denoting a Rainbow-Colored Fish

public final class RainbowTrout extends Fish
{
 public RainbowTrout()
 {
 super("rainbowtrout", "bands of brilliant speckled multicolored " +
 "stripes running nearly the whole length of its body");
 }
}

657APPENDIX A: Solutions to Exercises

Listing A-11. The SockeyeSalmon Class Denoting a Red-and-Green Fish

public final class SockeyeSalmon extends Fish
{
 public SockeyeSalmon()
 {
 super("sockeyesalmon", "bright red with a green head");
 }
}

Animal’s toString() method is declared final because it doesn’t make sense to
override this method, which is complete in this example. Also, each of Bird’s and
Fish’s overriding eat() and move() methods is declared final because it doesn’t
make sense to override these methods in this example, which assumes that all
birds eat seeds and insects; all fish eat krill, algae, and insects; all birds fly through
the air; and all fish swim through the water.

The AmericanRobin, DomesticCanary, RainbowTrout, and SockeyeSalmon classes
are declared final because they represent the bottom of the Bird and Fish class
hierarchies, and it doesn’t make sense to subclass them.

50. Listing A-12 declares the Animals class that was called for in Chapter 4.

Listing A-12. The Animals Class Letting Animals Eat and Move

public class Animals
{
 public static void main(String[] args)
 {
 Animal[] animals = { new AmericanRobin(), new RainbowTrout(),
 new DomesticCanary(), new SockeyeSalmon() };
 for (int i = 0; i < animals.length; i++)
 {
 System.out.println(animals[i]);
 animals[i].eat();
 animals[i].move();
 System.out.println();
 }
 }
}

51. Listings A-13 through A-15 declare the Countable interface, the modified
Animal class, and the modified Animals class that were called for in Chapter 4.

Listing A-13. The Countable Interface for Use in Taking a Census of Animals

public interface Countable
{
 String getID();
}

658 APPENDIX A: Solutions to Exercises

Listing A-14. The Refactored Animal Class for Help in Census Taking

public abstract class Animal implements Countable
{
 private String kind;
 private String appearance;

 public Animal(String kind, String appearance)
 {
 this.kind = kind;
 this.appearance = appearance;
 }

 public abstract void eat();

 public abstract void move();

 @Override
 public final String toString()
 {
 return kind + " -- " + appearance;
 }

 @Override
 public final String getID()
 {
 return kind;
 }
}

Listing A-15. The Modified Animals Class for Carrying Out the Census

public class Animals
{
 public static void main(String[] args)
 {
 Animal[] animals = { new AmericanRobin(), new RainbowTrout(),
 new DomesticCanary(), new SockeyeSalmon(),
 new RainbowTrout(), new AmericanRobin() };
 for (int i = 0; i < animals.length; i++)
 {
 System.out.println(animals[i]);
 animals[i].eat();
 animals[i].move();
 System.out.println();
 }

 Census census = new Census();
 Countable[] countables = (Countable[]) animals;
 for (int i = 0; i < countables.length; i++)
 census.update(countables[i].getID());

659APPENDIX A: Solutions to Exercises

 for (int i = 0; i < Census.SIZE; i++)
 System.out.println(census.get(i));
 }
}

Chapter 5: Mastering Advanced Language Features Part 1
1. A nested class is a class that is declared as a member of another class or

scope.

2. The four kinds of nested classes are static member classes, nonstatic
member classes, anonymous classes, and local classes.

3. Nonstatic member classes, anonymous classes, and local classes are also
known as inner classes.

4. The answer is false: a static member class doesn’t have an enclosing
instance.

5. You instantiate a nonstatic member class from beyond its enclosing class by
first instantiating the enclosing class and then prefixing the new operator with
the enclosing class instance as you instantiate the enclosed class. Example:
new EnclosingClass().new EnclosedClass().

6. It’s necessary to declare local variables and parameters final when they are
being accessed by an instance of an anonymous class or a local class.

7. The answer is true: an interface can be declared within a class or within
another interface.

8. A package is a unique namespace that can contain a combination of
top-level classes, other top-level types, and subpackages.

9. You ensure that package names are unique by specifying your reversed
Internet domain name as the top-level package name.

10. A package statement is a statement that identifies the package in which a
source file’s types are located.

11. The answer is false: you cannot specify multiple package statements in a
source file.

12. An import statement is a statement that imports types from a package
by telling the compiler where to look for unqualified type names during
compilation.

13. You indicate that you want to import multiple types via a single import
statement by specifying the wildcard character (*).

14. During a runtime search, the virtual machine reports a “no class definition
found” error when it cannot find a classfile.

660 APPENDIX A: Solutions to Exercises

15. You specify the user classpath to the virtual machine via the -classpath
option used to start the virtual machine or, when not present, the CLASSPATH
environment variable.

16. A constant interface is an interface that only exports constants.

17. Constant interfaces are used to avoid having to qualify their names with their
classes.

18. Constant interfaces are bad because their constants are nothing more than
an implementation detail that should not be allowed to leak into the class’s
exported interface because they might confuse the class’s users (what is
the purpose of these constants?). Also, they represent a future commitment:
even when the class no longer uses these constants, the interface must
remain to ensure binary compatibility.

19. A static import statement is a version of the import statement that lets you
import a class’s static members so that you don’t have to qualify them with
their class names.

20. You specify a static import statement as import, followed by static, followed
by a member access operator–separated list of package and subpackage
names, followed by the member access operator, followed by a class’s name,
followed by the member access operator, followed by a single static member
name or the asterisk wildcard, for example, import static java.lang.Math.cos;
(import the cos() static method from the Math class).

21. An exception is a divergence from an application’s normal behavior.

22. Objects are superior to error codes for representing exceptions because error
code Boolean or integer values are less meaningful than object names and
because objects can contain information about what led to the exception.
These details can be helpful to a suitable workaround. Furthermore, error
codes are easy to ignore.

23. A throwable is an instance of Throwable or one of its subclasses.

24. The getCause() method returns an exception that is wrapped inside another
exception.

25. Exception describes exceptions that result from external factors (e.g., not
being able to open a file) and from flawed code (e.g., passing an illegal
argument to a method). Error describes virtual machine-oriented exceptions
such as running out of memory or being unable to load a classfile.

26. A checked exception is an exception that represents a problem with
the possibility of recovery and for which the developer must provide a
workaround.

661APPENDIX A: Solutions to Exercises

27. A runtime exception is an exception that represents a coding mistake.

28. You would introduce your own exception class when no existing exception
class in the standard class library meets your needs.

29. The answer is false: you use a throws clause to identify exceptions that are
thrown from a method by appending this clause to a method’s header.

30. The purpose of a try statement is to provide a scope (via its brace-delimited
body) in which to present code that can throw exceptions. The purpose of a
catch block is to receive a thrown exception and provide code (via its
brace-delimited body) that handles that exception by providing a workaround.

31. The purpose of a finally block is to provide cleanup code that is executed
whether an exception is thrown or not.

32. Listing A-16 presents the G2D class that was called for in Chapter 5.

Listing A-16. The G2D Class with Its Matrix Nonstatic Member Class

public class G2D
{
 private Matrix xform;

 public G2D()
 {
 xform = new Matrix();
 xform.a = 1.0;
 xform.e = 1.0;
 xform.i = 1.0;
 }

 private class Matrix
 {
 double a, b, c;
 double d, e, f;
 double g, h, i;
 }
}

33. To extend the logging package (presented in Chapter 5’s discussion of
packages) to support a null device in which messages are thrown away, first
introduce Listing A-17’s NullDevice package-private class.

Listing A-17. Implementing the Proverbial “Bit Bucket” Class

package logging;

class NullDevice implements Logger
{
 private String dstName;

662 APPENDIX A: Solutions to Exercises

 NullDevice(String dstName)
 {
 }

 public boolean connect()
 {
 return true;
 }

 public boolean disconnect()
 {
 return true;
 }

 public boolean log(String msg)
 {
 return true;
 }
}

Continue by introducing, into the LoggerFactory class, a NULLDEVICE constant and
code that instantiates NullDevice with a null argument—a destination name is not
required—when newLogger()’s dstType parameter contains this constant’s value.
Check out Listing A-18.

Listing A-18. A Refactored LoggerFactory Class

package logging;

public abstract class LoggerFactory
{
 public final static int CONSOLE = 0;
 public final static int FILE = 1;
 public final static int NULLDEVICE = 2;

 public static Logger newLogger(int dstType, String...dstName)
 {
 switch (dstType)
 {
 case CONSOLE : return new Console(dstName.length == 0 ? null
 : dstName[0]);
 case FILE : return new File(dstName.length == 0 ? null
 : dstName[0]);
 case NULLDEVICE: return new NullDevice(null);
 default : return null;
 }
 }
}

663APPENDIX A: Solutions to Exercises

34. Modifying the logging package (presented in Chapter 5’s discussion
of packages) so that Logger’s connect() method throws a
CannotConnectException instance when it cannot connect to its logging
destination, and the other two methods each throw a NotConnectedException
instance when connect() was not called or when it threw a
CannotConnectException instance, results in Listing A-19’s Logger interface.

Listing A-19. A Logger Interface Whose Methods Throw Exceptions

package logging;

public interface Logger
{
 void connect() throws CannotConnectException;
 void disconnect() throws NotConnectedException;
 void log(String msg) throws NotConnectedException;
}

Listing A-20 presents the CannotConnectException class.

Listing A-20. An Uncomplicated CannotConnectException Class

package logging;

public class CannotConnectException extends Exception
{
}

The NotConnectedException class has the same structure but with a different name.

Listing A-21 presents the Console class.

Listing A-21. The Console Class Satisfying Logger’s Contract Without Throwing Exceptions

package logging;

class Console implements Logger
{
 private String dstName;

 Console(String dstName)
 {
 this.dstName = dstName;
 }

 public void connect() throws CannotConnectException
 {
 }

 public void disconnect() throws NotConnectedException
 {
 }

664 APPENDIX A: Solutions to Exercises

 public void log(String msg) throws NotConnectedException
 {
 System.out.println(msg);
 }
}

Listing A-22 presents the File class.

Listing A-22. The File Class Satisfying Logger’s Contract by Throwing Exceptions As Necessary

package logging;

class File implements Logger
{
 private String dstName;

 File(String dstName)
 {
 this.dstName = dstName;
 }

 public void connect() throws CannotConnectException
 {
 if (dstName == null)
 throw new CannotConnectException();
 }

 public void disconnect() throws NotConnectedException
 {
 if (dstName == null)
 throw new NotConnectedException();
 }

 public void log(String msg) throws NotConnectedException
 {
 if (dstName == null)
 throw new NotConnectedException();
 System.out.println("writing " + msg + " to file " + dstName);
 }
}

35. When you modify TestLogger to respond appropriately to thrown
CannotConnectException and NotConnectedException objects, you end up
with something similar to Listing A-23.

Listing A-23. A TestLogger Class That Handles Thrown Exceptions

import logging.*;

public class TestLogger
{
 public static void main(String[] args)

665APPENDIX A: Solutions to Exercises

 {
 try
 {
 Logger logger = LoggerFactory.newLogger(LoggerFactory.CONSOLE);
 logger.connect();
 logger.log("test message #1");
 logger.disconnect();
 }
 catch (CannotConnectException cce)
 {
 System.err.println("cannot connect to console-based logger");
 }
 catch (NotConnectedException nce)
 {
 System.err.println("not connected to console-based logger");
 }

 try
 {
 Logger logger = LoggerFactory.newLogger(LoggerFactory.FILE, "x.txt");
 logger.connect();
 logger.log("test message #2");
 logger.disconnect();
 }
 catch (CannotConnectException cce)
 {
 System.err.println("cannot connect to file-based logger");
 }
 catch (NotConnectedException nce)
 {
 System.err.println("not connected to file-based logger");
 }

 try
 {
 Logger logger = LoggerFactory.newLogger(LoggerFactory.FILE);
 logger.connect();
 logger.log("test message #3");
 logger.disconnect();
 }
 catch (CannotConnectException cce)
 {
 System.err.println("cannot connect to file-based logger");
 }
 catch (NotConnectedException nce)
 {
 System.err.println("not connected to file-based logger");
 }
 }
}

666 APPENDIX A: Solutions to Exercises

Chapter 6: Mastering Advanced Language Features Part 2
1. An assertion is a statement that lets you express an assumption of program

correctness via a Boolean expression.

2. You would use assertions to validate internal invariants, control-flow
invariants, preconditions, postconditions, and class invariants.

3. The answer is false: specifying the -ea command-line option with no
argument enables all assertions except for system assertions.

4. An annotation is an instance of an annotation type and associates metadata
with an application element. It’s expressed in source code by prefixing the
type name with the @ symbol.

5. Constructors, fields, local variables, methods, packages, parameters, and
types (annotation, class, enum, and interface) can be annotated.

6. The three compiler-supported annotation types are Override, Deprecated,
and SuppressWarnings.

7. You declare an annotation type by specifying the @ symbol, immediately
followed by reserved word interface, followed by the type’s name, followed
by a body.

8. A marker annotation is an instance of an annotation type that supplies no
data apart from its name—the type’s body is empty.

9. An element is a method header that appears in the annotation type’s body. It
cannot have parameters or a throws clause. Its return type must be primitive
(e.g., int), String, Class, an enum type, an annotation type, or an array of
the preceding types. It can have a default value.

10. You assign a default value to an element by specifying default followed by
the value, whose type must match the element’s return type. For example,
String developer() default "unassigned";.

11. A meta-annotation is an annotation that annotates an annotation type.

12. Java’s four meta-annotation types are Target, Retention, Documented,
and Inherited.

13. Generics can be defined as a suite of language features for declaring and
using type-agnostic classes and interfaces.

14. You would use generics to ensure that your code is typesafe by avoiding
thrown ClassCastExceptions.

15. The difference between a generic type and a parameterized type is that a
generic type is a class or interface that introduces a family of parameterized
types by declaring a formal type parameter list, and a parameterized type is
an instance of a generic type.

667APPENDIX A: Solutions to Exercises

16. Anonymous classes cannot be generic because they have no names.

17. The five kinds of actual type arguments are concrete types, concrete
parameterized types, array types, type parameters, and wildcards.

18. The answer is true: you cannot specify a primitive-type name (e.g., double
or int) as an actual type argument.

19. A raw type is a generic type without its type parameters.

20. The compiler reports an unchecked warning message when it detects an
explicit cast that involves a type parameter. The compiler is concerned that
downcasting to whatever type is passed to the type parameter might result in
a violation of type safety.

21. You suppress an unchecked warning message by prefixing the
constructor or method that contains the unchecked code with the
@SuppressWarnings("unchecked") annotation.

22. The answer is true: List<E>’s E type parameter is unbounded.

23. You specify a single upper bound via reserved word extends followed by a
type name.

24. A recursive type bound is a type parameter bound that includes the type
parameter.

25. Wildcard type arguments are necessary because by accepting any actual
type argument, they provide a typesafe workaround to the problem of
polymorphic behavior not applying to multiple parameterized types that
differ only in regard to one type parameter being a subtype of another
type parameter. For example, because List<String> is not a kind of
List<Object>, you cannot pass an object whose type is List<String> to a
method parameter whose type is List<Object>. However, you can pass a
List<String> object to List<?> provided that you are not going to add the
List<String> object to the List<?>.

26. A generic method is a class or instance method with a type-generalized
implementation.

27. Although you might think otherwise, Listing 6-36’s methodCaller() generic
method calls someOverloadedMethod(Object o). This method, instead of
someOverloadedMethod(Date d), is called because overload resolution
happens at compile time, when the generic method is translated to its unique
bytecode representation, and erasure (which takes care of that mapping)
causes type parameters to be replaced by their leftmost bound or Object
(when there is no bound). After erasure, you are left with Listing A-24’s
nongeneric methodCaller() method.

668 APPENDIX A: Solutions to Exercises

Listing A-24. The Nongeneric methodCaller() Method That Results from Erasure

public static void methodCaller(Object t)
{
 someOverloadedMethod(t);
}

28. Reification is representing the abstract as if it was concrete.

29. The answer is false: type parameters are not reified.

30. Erasure is the throwing away of type parameters following compilation so
that they are not available at runtime. Erasure also involves replacing uses
of other type variables by the upper bound of the type variable (e.g.,
Object) and inserting casts to the appropriate type when the resulting code is
not type correct.

31. An enumerated type is a type that specifies a named sequence of related
constants as its legal values.

32. Three problems that can arise when you use enumerated types whose
constants are int-based are lack of compile-time type safety, brittle
applications, and the inability to translate int constants into meaningful
string-based descriptions.

33. An enum is an enumerated type that is expressed via reserved word enum.

34. You use a switch statement with an enum by specifying an enum constant as
the statement’s selector expression and constant names as case values.

35. You can enhance an enum by adding fields, constructors, and methods—
you can even have the enum implement interfaces. Also, you can override
toString() to provide a more useful description of a constant’s value and
subclass constants to assign different behaviors.

36. The purpose of the abstract Enum class is to serve as the common base class
of all Java language-based enumeration types.

37. The difference between Enum's name() and toString() methods is that
name() always returns a constant’s name, but toString() can be overridden
to return a more meaningful description instead of the constant’s name.

38. The answer is true: Enum’s generic type is Enum<E extends Enum<E>>.

39. Listing A-25 presents a ToDo marker annotation type that annotates only type
elements and that also uses the default retention policy.

Listing A-25. The ToDo Annotation Type for Marking Types That Need to Be Completed

import java.lang.annotation.ElementType;
import java.lang.annotation.Target;

669APPENDIX A: Solutions to Exercises

@Target(ElementType.TYPE)
public @interface ToDo
{
}

40. Listing A-26 presents a rewritten StubFinder application that works with
Listing 6-13’s Stub annotation type (with appropriate @Target and @Retention
annotations) and Listing 6-14’s Deck class.

Listing A-26. Reporting a Stub’s ID, Due Date, and Developer via a New Version of StubFinder

import java.lang.reflect.Method;

public class StubFinder
{
 public static void main(String[] args) throws Exception
 {
 if (args.length != 1)
 {
 System.err.println("usage: java StubFinder classfile");
 return;
 }
 Method[] methods = Class.forName(args[0]).getMethods();
 for (int i = 0; i < methods.length; i++)
 if (methods[i].isAnnotationPresent(Stub.class))
 {
 Stub stub = methods[i].getAnnotation(Stub.class);
 System.out.println("Stub ID = " + stub.id());
 System.out.println("Stub Date = " + stub.dueDate());
 System.out.println("Stub Developer = " + stub.developer());
 System.out.println();
 }
 }
}

41. Listing A-27 presents the generic Stack class and the StackEmptyException
and StackFullException helper classes that were called for in Chapter 6.

Listing A-27. Stack and Its StackEmptyException and StackFullException Helper Classes
Proving That Not All Helper Classes Need to Be Nested

public class Stack<E>
{
 private E[] elements;
 private int top;

 @SuppressWarnings("unchecked")
 Stack(int size)
 {
 if (size < 2)
 throw new IllegalArgumentException("" + size);

670 APPENDIX A: Solutions to Exercises

 elements = (E[]) new Object[size];
 top = -1;
 }

 void push(E element) throws StackFullException
 {
 if (top == elements.length - 1)
 throw new StackFullException();
 elements[++top] = element;
 }

 E pop() throws StackEmptyException
 {
 if (isEmpty())
 throw new StackEmptyException();
 return elements[top--];
 }

 boolean isEmpty()
 {
 return top == -1;
 }

 public static void main(String[] args)
 throws StackFullException, StackEmptyException
 {
 Stack<String> stack = new Stack<String>(5);
 assert stack.isEmpty();
 stack.push("A");
 stack.push("B");
 stack.push("C");
 stack.push("D");
 stack.push("E");
 // Uncomment the following line to generate a StackFullException.
 //stack.push("F");
 while (!stack.isEmpty())
 System.out.println(stack.pop());
 // Uncomment the following line to generate a StackEmptyException.
 //stack.pop();
 assert stack.isEmpty();
 }
}

class StackEmptyException extends Exception
{
}

class StackFullException extends Exception
{
}

671APPENDIX A: Solutions to Exercises

42. Listing A-28 presents the Compass enum that was called for in Chapter 6.

Listing A-28. A Compass Enum with Four Direction Constants

enum Compass
{
 NORTH, SOUTH, EAST, WEST
}

Listing A-29 presents the UseCompass class that was called for in Chapter 6.

Listing A-29. Using the Compass Enum to Keep from Getting Lost

public class UseCompass
{
 public static void main(String[] args)
 {
 int i = (int) (Math.random() * 4);
 Compass[] dir = { Compass.NORTH, Compass.EAST, Compass.SOUTH,
 Compass.WEST };
 switch(dir[i])
 {
 case NORTH: System.out.println("heading north"); break;
 case EAST : System.out.println("heading east"); break;
 case SOUTH: System.out.println("heading south"); break;
 case WEST : System.out.println("heading west"); break;
 default : assert false; // Should never be reached.
 }
 }
}

Chapter 7: Exploring the Basic APIs Part 1
1. Math declares double constants E and PI that represent, respectively, the natural

logarithm base value (2.71828. . .) and the ratio of a circle’s circumference to its
diameter (3.14159. . .). E is initialized to 2.718281828459045 and PI is initialized
to 3.141592653589793.

2. Math.abs(Integer.MIN_VALUE) equals Integer.MIN_VALUE because there
doesn’t exist a positive 32-bit integer equivalent of MIN_VALUE. (Integer.MIN_VALUE
equals -2147483648 and Integer.MAX_VALUE equals 2147483647.)

3. Math’s random() method returns a pseudorandom number between 0.0
(inclusive) and 1.0 (exclusive). Expression (int) Math.random() * limit is
incorrect because this expression always returns 0. The (int) cast operator
has higher precedence than *, which means that the cast is performed before
multiplication. random() returns a fractional value and the cast converts this
value to 0, which is then multiplied by limit’s value, resulting in an overall
value of 0.

672 APPENDIX A: Solutions to Exercises

4. The five special values that can arise during floating-point calculations are
+infinity, –infinity, NaN, +0.0, and –0.0.

5. Math and StrictMath differ in the following ways:

 StrictMath’s methods return exactly the same results on all platforms. In
contrast, some of Math’s methods might return values that vary ever so
slightly from platform to platform.

Because StrictMath cannot utilize platform-specific features such as an
extended-precision math coprocessor, an implementation of StrictMath
might be less efficient than an implementation of Math.

6. The purpose of strictfp is to restrict floating-point calculations to ensure
portability. This reserved word accomplishes portability in the context
of intermediate floating-point representations and overflows/underflows
(generating a value too large or small to fit a representation). Furthermore, it
can be applied at the method level or at the class level.

7. BigDecimal is an immutable class that represents a signed decimal number
(e.g., 23.653) of arbitrary precision (number of digits) with an associated scale
(an integer that specifies the number of digits after the decimal point). You
might use this class to accurately store floating-point values that represent
monetary values and properly round the result of each monetary calculation.

8. The RoundingMode constant that describes the form of rounding commonly
taught at school is HALF_UP.

9. BigInteger is an immutable class that represents a signed integer of arbitrary
precision. It stores its value in two’s complement format (all bits are flipped—1s
to 0s and 0s to 1s—and 1 has been added to the result to be compatible
with the two’s complement format used by Java’s byte integer, short integer,
integer, and long integer types).

10. The answer is true: a string literal is a String object.

11. The purpose of String’s intern() method is to store a unique copy of a
String object in an internal table of String objects. intern() makes it possible
to compare strings via their references and == or !=. These operators are the
fastest way to compare strings, which is especially valuable when sorting a
huge number of strings.

12. String and StringBuffer differ in that String objects contain immutable
sequences of characters, whereas StringBuffer objects contain mutable
sequences of characters.

13. StringBuffer and StringBuilder differ in that StringBuffer methods
are synchronized, whereas StringBuilder’s equivalent methods are not
synchronized. As a result, you would use the thread-safe but slower
StringBuffer class in multithreaded situations and the nonthread-safe but
faster StringBuilder class in single-threaded situations.

673APPENDIX A: Solutions to Exercises

14. The purpose of Package’s isSealed() method is to indicate whether or not a
package is sealed (all classes that are part of the package are archived in the
same JAR file). This method returns true when the package is sealed.

15. The answer is true: getPackage() requires at least one classfile to be loaded
from the package before it returns a Package object describing that package.

16. Listing A-30 presents the PrimeNumberTest application that was called for in
Chapter 7.

Listing A-30. Checking a Positive Integer Argument to Discover If It Is Prime

public class PrimeNumberTest
{
 public static void main(String[] args)
 {
 if (args.length != 1)
 {
 System.err.println("usage: java PrimeNumberTest integer");
 System.err.println("integer must be 2 or higher");
 return;
 }
 try
 {
 int n = Integer.parseInt(args[0]);
 if (n < 2)
 {
 System.err.println(n + " is invalid because it is less than 2");
 return;
 }
 for (int i = 2; i <= Math.sqrt(n); i++)
 if (n % i == 0)
 {
 System.out.println (n + " is not prime");
 return;
 }
 System.out.println(n + " is prime");
 }
 catch (NumberFormatException nfe)
 {
 System.err.println("unable to parse " + args[0] + " into an int");
 }
 }
}

17. The following loop uses StringBuffer to minimize object creation:

String[] imageNames = new String[NUM_IMAGES];
StringBuffer sb = new StringBuffer();
for (int i = 0; i < imageNames.length; i++)

674 APPENDIX A: Solutions to Exercises

{
 sb.append("image");
 sb.append(i);
 sb.append(".png");
 imageNames[i] = sb.toString();
 sb.setLength(0); // Erase previous StringBuffer contents.
}

18. Listing A-31 presents the DigitsToWords application that was called for in
Chapter 7.

Listing A-31. Converting an Integer Value to Its Textual Representation

public class DigitsToWords
{
 public static void main(String[] args)
 {
 if (args.length != 1)
 {
 System.err.println("usage: java DigitsToWords integer");
 return;
 }
 System.out.println(convertDigitsToWords(Integer.parseInt(args[0])));
 }

 static String convertDigitsToWords(int integer)
 {
 if (integer < 0 || integer > 9999)
 throw new IllegalArgumentException("Out of range: " + integer);
 if (integer == 0)
 return "zero";
 String[] group1 =
 {
 "one",
 "two",
 "three",
 "four",
 "five",
 "six",
 "seven",
 "eight",
 "nine"
 };
 String[] group2 =
 {
 "ten",
 "eleven",
 "twelve",
 "thirteen",
 "fourteen",
 "fifteen",
 "sixteen",

675APPENDIX A: Solutions to Exercises

 "seventeen",
 "eighteen",
 "nineteen"
 };
 String[] group3 =
 {
 "twenty",
 "thirty",
 "fourty",
 "fifty",
 "sixty",
 "seventy",
 "eighty",
 "ninety"
 };
 StringBuffer result = new StringBuffer();
 if (integer >= 1000)
 {
 int tmp = integer / 1000;
 result.append(group1[tmp - 1] + " thousand");
 integer -= tmp * 1000;
 if (integer == 0)
 return result.toString();
 result.append(" ");
 }
 if (integer >= 100)
 {
 int tmp = integer / 100;
 result.append(group1[tmp - 1] + " hundred");
 integer -= tmp * 100;
 if (integer == 0)
 return result.toString();
 result.append(" and ");
 }
 if (integer >= 10 && integer <= 19)
 {
 result.append(group2[integer - 10]);
 return result.toString();
 }
 if (integer >= 20)
 {
 int tmp = integer / 10;
 result.append(group3[tmp - 2]);
 integer -= tmp * 10;
 if (integer == 0)
 return result.toString();
 result.append("-");
 }
 result.append(group1[integer - 1]);
 return result.toString();
 }
}

676 APPENDIX A: Solutions to Exercises

Chapter 8: Exploring the Basic APIs Part 2
1. A primitive type wrapper class is a class whose instances wrap themselves

around values of primitive types.

2. Java’s primitive type wrapper classes include Boolean, Byte, Character,
Double, Float, Integer, Long, and Short.

3. Java provides primitive type wrapper classes so that primitive-type values
can be stored in collections and to provide a good place to associate useful
constants and class methods with primitive types.

4. The answer is false: Boolean is the smallest of the primitive type wrapper
classes.

5. You should use Character class methods instead of expressions such as
ch >= '0' && ch <= '9' to determine whether or not a character is a digit, a
letter, and so on because it’s too easy to introduce a bug into the expression,
expressions are not very descriptive of what they are testing, and the
expressions are biased toward Latin digits (0–9) and letters (A–Z and a–z).

6. You determine whether or not double variable d contains +infinity or
–infinity by passing this variable as an argument to Double’s boolean
isInfinite(double d) class method, which returns true when this argument
is +infinity or –infinity.

7. Number is the superclass of Byte, Character, and the other primitive type
wrapper classes.

8. A thread is an independent path of execution through an application’s code.

9. The purpose of the Runnable interface is to identify those objects that supply
code for threads to execute via this interface’s solitary void run() method.

10. The purpose of the Thread class is to provide a consistent interface to the
underlying operating system’s threading architecture. It provides methods
that make it possible to associate code with threads as well as to start and
manage those threads.

11. The answer is false: a Thread object associates with a single thread.

12. A race condition is a scenario in which multiple threads update the same
object at the same time or nearly at the same time. Part of the object stores
values written to it by one thread, and another part of the object stores values
written to it by another thread.

13. Thread synchronization is the act of allowing only one thread at a time to
execute code within a method or a block.

14. Synchronization is implemented in terms of monitors and locks.

677APPENDIX A: Solutions to Exercises

15. Synchronization works by requiring that a thread that wants to enter a
monitor-controlled critical section first acquire a lock. The lock is released
automatically when the thread exits the critical section.

16. The answer is true: variables of type long or double are not atomic on 32-bit
virtual machines.

17. The purpose of reserved word volatile is to let threads running on
multiprocessor or multicore machines access a single copy of an instance
field or class field. Without volatile, each thread might access its cached
copy of the field and will not see modifications made by other threads to
their copies.

18. The answer is false: Object’s wait() methods cannot be called from outside
of a synchronized method or block.

19. Deadlock is a situation in which locks are acquired by multiple threads,
neither thread holds its own lock but holds the lock needed by some other
thread, and neither thread can enter and later exit its critical section to release
its held lock because some other thread holds the lock to that critical section.

20. The purpose of the ThreadLocal class is to associate per-thread data (e.g., a
user ID) with a thread.

21. InheritableThreadLocal differs from ThreadLocal in that the former class lets
a child thread inherit a thread-local value from its parent thread.

22. The four java.lang package system classes discussed in Chapter 8 are
System, Runtime, Process, and ProcessBuilder.

23. You invoke System.arraycopy() to copy an array to another array.

24. The exec(String program) method executes the program named program in
a separate native process. The new process inherits the environment of the
method’s caller, and a Process object is returned to allow communication
with the new process. IOException is thrown when an I/O error occurs.

25. Process’s getInputStream() method returns an InputStream reference for
reading bytes that the new process writes to its output stream.

26. Listing A-32 presents the MultiPrint application that was called for in
Chapter 8.

Listing A-32. Printing a Line of Text Multiple Times

public class MultiPrint
{
 public static void main(String[] args)
 {
 if (args.length != 2)

678 APPENDIX A: Solutions to Exercises

 {
 System.err.println("usage: java MultiPrint text count");
 return;
 }
 String text = args[0];
 int count = Integer.parseInt(args[1]);
 for (int i = 0; i < count; i++)
 System.out.println(text);
 }
}

27. Listing A-33 presents the revised CountingThreads application that was
called for in Chapter 8.

Listing A-33. Counting via Daemon Threads

public class CountingThreads
{
 public static void main(String[] args)
 {
 Runnable r = new Runnable()
 {
 @Override
 public void run()
 {
 String name = Thread.currentThread().getName();
 int count = 0;
 while (true)
 System.out.println(name + ": " + count++);
 }
 };
 Thread thdA = new Thread(r);
 thdA.setDaemon(true);
 Thread thdB = new Thread(r);
 thdB.setDaemon(true);
 thdA.start();
 thdB.start();
 }
}

When you run this application, the two daemon threads start executing and
you will probably see some output. However, the application will end as soon
as the default main thread leaves the main() method and dies.

28. Listing A-34 presents the StopCountingThreads application that was called
for in Chapter 8.

679APPENDIX A: Solutions to Exercises

Listing A-34. Stopping the Counting Threads When Return/Enter Is Pressed

import java.io.IOException;

public class StopCountingThreads
{
 private static volatile boolean stopped = false;

 public static void main(String[] args)
 {
 Runnable r = new Runnable()
 {
 @Override
 public void run()
 {
 String name = Thread.currentThread().getName();
 int count = 0;
 while (!stopped)
 System.out.println(name + ": " + count++);
 }
 };
 Thread thdA = new Thread(r);
 Thread thdB = new Thread(r);
 thdA.start();
 thdB.start();
 try { System.in.read(); } catch (IOException ioe) {}
 stopped = true;
 }
}

29. Listing A-35 presents the EVDump application that was called for in Chapter 8.

Listing A-35. Dumping All Environment Variables to Standard Output

public class EVDump
{
 public static void main(String[] args)
 {
 System.out.println(System.getenv()); // System.out.println() calls toString()
 // on its object argument and outputs this
 // string
 }
}

Chapter 9: Exploring the Collections Framework
1. A collection is a group of objects that are stored in an instance of a class

designed for this purpose.

2. The Collections Framework is a group of types that offers a standard
architecture for representing and manipulating collections.

680 APPENDIX A: Solutions to Exercises

3. The Collections Framework largely consists of core interfaces, implementation
classes, and utility classes.

4. A comparable is an object whose class implements the Comparable interface.

5. You would have a class implement the Comparable interface when you want
objects to be compared according to their natural ordering.

6. A comparator is an object whose class implements the Comparator interface.
Its purpose is to allow objects to be compared according to an order that is
different from their natural ordering.

7. The answer is false: a collection uses a comparable (an object whose class
implements the Comparable interface) to define the natural ordering of its
elements.

8. The Iterable interface describes any object that can return its contained
objects in some sequence.

9. The Collection interface represents a collection of objects that are known
as elements.

10. A situation where Collection’s add() method would throw an instance of the
UnsupportedOperationException class is an attempt to add an element to an
unmodifiable collection.

11. Iterable’s iterator() method returns an instance of a class that implements
the Iterator interface. This interface provides a hasNext() method to
determine if the end of the iteration has been reached, a next() method to
return a collection’s next element, and a remove() method to remove the last
element returned by next() from the collection.

12. The purpose of the enhanced for loop statement is to simplify collection or
array iteration.

13. The enhanced for loop statement is expressed as for (type id: collection)
or for (type id: array) and reads “for each type object in collection, assign
this object to id at the start of the loop iteration”; or “for each type object in
array, assign this object to id at the start of the loop iteration.”

14. The answer is true: the enhanced for loop works with arrays. For example,
int[] x = { 1, 2, 3 }; for (int i: x) System.out.println(i); declares
array x and outputs all of its int-based elements.

15. Autoboxing is the act of wrapping a primitive-type value in an object of a
primitive type wrapper class whenever a primitive type is specified but
a reference is required. This feature saves the developer from having to
explicitly instantiate a wrapper class when storing the primitive value in a
collection.

681APPENDIX A: Solutions to Exercises

16. Unboxing is the act of unwrapping a primitive-type value from its wrapper
object whenever a reference is specified but a primitive type is required. This
feature saves the developer from having to explicitly call a method on the
object (e.g., intValue()) to retrieve the wrapped value.

17. A list is an ordered collection, which is also known as a sequence. Elements
can be stored in and accessed from specific locations via integer indexes.

18. A ListIterator instance uses a cursor to navigate through a list.

19. A view is a list that is backed by another list. Changes that are made to the
view are reflected in this backing list.

20. You would use the subList() method to perform range-view operations over
a collection in a compact manner. For example, list.subList(fromIndex,
toIndex).clear(); removes a range of elements from list, where the first
element is located at fromIndex and the last element is located at toIndex - 1.

21. The ArrayList class provides a list implementation that is based on an
internal array.

22. The LinkedList class provides a list implementation that is based on linked
nodes.

23. A node is a fixed sequence of value and link memory locations (i.e., an
arrangement of a specific number of values and links, such as one value
location followed by one link location). From an object-oriented perspective,
it’s an object whose fields store values and references to other node objects.
These references are also known as links.

24. The answer is false: ArrayList provides slower element insertions and
deletions than LinkedList.

25. A set is a collection that contains no duplicate elements.

26. The TreeSet class provides a set implementation that is based on a tree data
structure. As a result, elements are stored in sorted order.

27. The HashSet class provides a set implementation that is backed by a
hashtable data structure.

28. The answer is true: to avoid duplicate elements in a hashset, your own
classes must correctly override equals() and hashCode().

29. The difference between HashSet and LinkedHashSet is that LinkedHashSet
uses a linked list to store its elements, resulting in its iterator returning
elements in the order in which they were inserted.

30. The EnumSet class provides a Set implementation that is based on a bitset.

682 APPENDIX A: Solutions to Exercises

31. A sorted set is a set that maintains its elements in ascending order,
sorted according to their natural ordering or according to a comparator
that is supplied when the sorted set is created. Furthermore, the set’s
implementation class must implement the SortedSet interface.

32. A navigable set is a sorted set that can be iterated over in descending order
as well as ascending order and which can report closest matches for given
search targets.

33. The answer is false: HashSet is not an example of a sorted set. However,
TreeSet is an example of a sorted set.

34. A sorted set’s add() method would throw ClassCastException when you
attempt to add an element to the sorted set because the element’s class
doesn’t implement Comparable.

35. A queue is a collection in which elements are stored and retrieved in a
specific order. Most queues are categorized as “first-in, first out,” “last-in,
first-out,” or priority.

36. The answer is true: Queue’s element() method throws
NoSuchElementException when it’s called on an empty queue.

37. The PriorityQueue class provides an implementation of a priority queue,
which is a queue that orders its elements according to their natural ordering
or by a comparator provided when the queue is instantiated.

38. A map is a group of key/value pairs (also known as entries).

39. The TreeMap class provides a map implementation that is based on a
red-black tree. As a result, entries are stored in sorted order of their keys.

40. The HashMap class provides a map implementation that is based on a
hashtable data structure.

41. A hashtable uses a hash function to map keys to integer values.

42. Continuing from the previous exercise, the resulting integer values are known
as hash codes; they identify hashtable array elements, which are known as
buckets or slots.

43. A hashtable’s capacity refers to the number of buckets.

44. A hashtable’s load factor refers to the ratio of the number of stored entries
divided by the number of buckets.

45. The difference between HashMap and LinkedHashMap is that LinkedHashMap
uses a linked list to store its entries, resulting in its iterator returning entries in
the order in which they were inserted.

683APPENDIX A: Solutions to Exercises

46. The IdentityHashMap class provides a Map implementation that uses
reference equality (==) instead of object equality (equals()) when comparing
keys and values.

47. The EnumMap class provides a Map implementation whose keys are the
members of the same enum.

48. A sorted map is a map that maintains its entries in ascending order, sorted
according to the keys’ natural ordering or according to a comparator
that is supplied when the sorted map is created. Furthermore, the map’s
implementation class must implement the SortedMap interface.

49. A navigable map is a sorted map that can be iterated over in descending
order as well as ascending order and which can report closest matches for
given search targets.

50. The answer is true: TreeMap is an example of a sorted map.

51. The purpose of the Arrays class’s static <T> List<T> asList(T... array)
method is to return a fixed-size list backed by the specified array. (Changes
to the returned list “write through” to the array.)

52. The answer is false: binary search is faster than linear search.

53. You would use Collections’ static <T> Set<T> synchronizedSet(Set<T> s)
method to return a synchronized variation of a hashset.

54. The seven legacy collections-oriented types are Vector, Enumeration, Stack,
Dictionary, Hashtable, Properties, and BitSet.

55. Listing A-36 presents the JavaQuiz application that was called for in Chapter 9.

Listing A-36. How Much Do You Know About Java? Take the Quiz and Find Out!

import java.util.ArrayList;
import java.util.Iterator;
import java.util.List;

public class JavaQuiz
{
 private static class QuizEntry
 {
 private String question;
 private String[] choices;
 private char answer;

 QuizEntry(String question, String[] choices, char answer)
 {
 this.question = question;
 this.choices = choices;
 this.answer = answer;
 }

684 APPENDIX A: Solutions to Exercises

 String[] getChoices()
 {
 // Demonstrate returning a copy of the choices array to prevent clients
 // from directly manipulating (and possibly screwing up) the internal
 // choices array.
 String[] temp = new String[choices.length];
 System.arraycopy(choices, 0, temp, 0, choices.length);
 return temp;
 }

 String getQuestion()
 {
 return question;
 }

 char getAnswer()
 {
 return answer;
 }
 }

 static QuizEntry[] quizEntries =
 {
 new QuizEntry("What was Java's original name?",
 new String[] { "Oak", "Duke", "J", "None of the above" },
 'A'),
 new QuizEntry("Which of the following reserved words is also a literal?",
 new String[] { "for", "long", "true", "enum" },
 'C'),
 new QuizEntry("The conditional operator (?:) resembles which statement?",
 new String[] { "switch", "if-else", "if", "while" },
 'B')
 };

 public static void main(String[] args)
 {
 // Populate the quiz list.
 List<QuizEntry> quiz = new ArrayList<QuizEntry>();
 for (QuizEntry entry: quizEntries)
 quiz.add(entry);
 // Perform the quiz.
 System.out.println("Java Quiz");
 System.out.println("---------\n");
 Iterator<QuizEntry> iter = quiz.iterator();
 while (iter.hasNext())
 {
 QuizEntry qe = iter.next();
 System.out.println(qe.getQuestion());
 String[] choices = qe.getChoices();
 for (int i = 0; i < choices.length; i++)
 System.out.println(" " + (char) ('A' + i) + ": " + choices[i]);
 int choice = -1;

685APPENDIX A: Solutions to Exercises

 while (choice < 'A' || choice > 'A' + choices.length)
 {
 System.out.print("Enter choice letter: ");
 try
 {
 choice = System.in.read();
 // Remove trailing characters up to and including the newline
 // to avoid having these characters automatically returned in
 // subsequent System.in.read() method calls.
 while (System.in.read() != '\n');
 choice = Character.toUpperCase((char) choice);
 }
 catch (java.io.IOException ioe)
 {
 }
 }
 if (choice == qe.getAnswer())
 System.out.println("You are correct!\n");
 else
 System.out.println("You are not correct!\n");
 }
 }
}

56. (int) (f ^ (f >>> 32)) is used instead of (int) (f ^ (f >> 32)) in the hash
code generation algorithm because >>> always shifts a 0 to the right, which
doesn’t affect the hash code, whereas >> shifts a 0 or a 1 to the right (whatever
value is in the sign bit), which affects the hash code when a 1 is shifted.

57. Listing A-37 presents the FrequencyDemo application that was called for in
Chapter 9.

Listing A-37. Reporting the Frequency of Last Command-Line Argument Occurrences in the Previous
Command-Line Arguments

import java.util.Collections;
import java.util.LinkedList;
import java.util.List;

public class FrequencyDemo
{
 public static void main(String[] args)
 {
 List<String> listOfArgs = new LinkedList<String>();
 String lastArg = (args.length == 0) ? null : args[args.length - 1];
 for (int i = 0; i < args.length - 1; i++)
 listOfArgs.add(args[i]);
 System.out.println("Number of occurrences of " + lastArg + " = " +
 Collections.frequency(listOfArgs, lastArg));
 }
}

686 APPENDIX A: Solutions to Exercises

Chapter 10: Exploring Additional Utility APIs
1. A task is an object whose class implements the Runnable interface

(a runnable task) or the Callable interface (a callable task).

2. An executor is an object whose class directly or indirectly implements the
Executor interface, which decouples task submission from task-execution
mechanics.

3. The Executor interface focuses exclusively on Runnable, which means that
there is no convenient way for a runnable task to return a value to its caller
(because Runnable’s run() method doesn’t return a value); Executor doesn’t
provide a way to track the progress of executing runnable tasks, cancel
an executing runnable task, or determine when the runnable task finishes
execution; Executor cannot execute a collection of runnable tasks; and
Executor doesn’t provide a way for an application to shut down an executor
(much less to properly shut down an executor).

4. Executor’s limitations are overcome by providing the ExecutorService
interface.

5. The differences existing between Runnable’s run() method and Callable’s
call() method are as follows: run() cannot return a value, whereas call()
can return a value; and run() cannot throw checked exceptions, whereas
call() can throw checked exceptions.

6. The answer is false: you can throw checked and unchecked exceptions from
Callable’s call() method but can only throw unchecked exceptions from
Runnable’s run() method.

7. A future is an object whose class implements the Future interface. It
represents an asynchronous computation and provides methods for
canceling a task, for returning a task’s value, and for determining whether or
not the task has finished.

8. The Executors class’s newFixedThreadPool() method creates a thread pool
that reuses a fixed number of threads operating off of a shared unbounded
queue. At most, nThreads threads are actively processing tasks. If additional
tasks are submitted when all threads are active, they wait in the queue for
an available thread. If any thread terminates because of a failure during
execution before the executor shuts down, a new thread will take its place
when needed to execute subsequent tasks. The threads in the pool will exist
until the executor is explicitly shut down.

9. A synchronizer is a class that facilitates a common form of synchronization.

687APPENDIX A: Solutions to Exercises

10. Four commonly used synchronizers are countdown latches, cyclic barriers,
exchangers, and semaphores. A countdown latch lets one or more threads
wait at a “gate” until another thread opens this gate, at which point these
other threads can continue. A cyclic barrier lets a group of threads wait for
each other to reach a common barrier point. An exchanger lets a pair of
threads exchange objects at a synchronization point. A semaphore maintains
a set of permits for restricting the number of threads that can access a
limited resource.

11. The concurrency-oriented extensions to the Collections Framework provided
by the Concurrency Utilities are ArrayBlockingQueue, BlockingDeque,
BlockingQueue, ConcurrentHashMap, ConcurrentMap, ConcurrentNavigableMap,
ConcurrentLinkedQueue, ConcurrentSkipListMap, ConcurrentSkipListSet,
CopyOnWriteArrayList, CopyOnWriteArraySet, DelayQueue,
LinkedBlockingDeque, LinkedBlockingQueue, PriorityBlockingQueue, and
SynchronousQueue.

12. A lock is an instance of a class that implements the Lock interface, which
provides more extensive locking operations than can be achieved via the
synchronized reserved word. Lock also supports a wait/notification mechanism
through associated Condition objects.

13. The biggest advantage that Lock objects hold over the implicit locks that are
obtained when threads enter critical sections (controlled via the synchronized
reserved word) is their ability to back out of an attempt to acquire a lock.

14. An atomic variable is an instance of a class that encapsulates a single
variable and supports lock-free, thread-safe operations on that variable, for
example, AtomicInteger.

15. The Date class describes a date in terms of a long integer that is relative
to the Unix epoch.

16. The Formatter class is an interpreter for printf()-style format strings.
This class provides support for layout justification and alignment; common
formats for numeric, string, and date/time data; and more. Commonly used
Java types (e.g., byte and BigDecimal) are supported.

17. Instances of the Random class generate sequences of random numbers by
starting with a special 48-bit value that is known as a seed. This value is
subsequently modified by a mathematical algorithm, which is known as a
linear congruential generator.

18. The Scanner class parses an input stream of characters into primitive types,
strings, and big integers/decimals under the control of regular expressions.

19. You call one of Scanner’s “hasNext” methods to determine if a character
sequence represents an integer or some other kind of value before scanning
that sequence.

688 APPENDIX A: Solutions to Exercises

20. Two differences between ZipFile and ZipInputStream are ZipFile allows
random access to ZIP entries, whereas ZipInputStream allows sequential
access; and ZipFile internally caches ZIP entries for improved performance,
whereas ZipInputStream doesn’t cache entries.

21. Listing A-38 presents the ZipList application that was called for in Chapter 10.

Listing A-38. Listing Archive Contents

import java.io.FileInputStream;
import java.io.IOException;

import java.util.Date;

import java.util.zip.ZipEntry;
import java.util.zip.ZipInputStream;

public class ZipList
{
 public static void main(String[] args) throws IOException
 {
 if (args.length != 1)
 {
 System.err.println("usage: java ZipList zipfile");
 return;
 }
 ZipInputStream zis = null;
 try
 {
 zis = new ZipInputStream(new FileInputStream(args[0]));
 ZipEntry ze;
 while ((ze = zis.getNextEntry()) != null)
 {
 System.out.println(ze.getName());
 System.out.println(" Compressed Size: " + ze.getCompressedSize());
 System.out.println(" Uncompressed Size: " + ze.getSize());
 if (ze.getTime() != -1)
 System.out.println(" Modification Time: " + new Date(ze.getTime()));
 System.out.println();
 zis.closeEntry();
 }
 }
 catch (IOException ioe)
 {
 System.err.println("I/O error: " + ioe.getMessage());
 }
 finally
 {
 if (zis != null)
 try

689APPENDIX A: Solutions to Exercises

 {
 zis.close();
 }
 catch (IOException ioe)
 {
 assert false; // shouldn't happen in this context
 }
 }
 }
}

Chapter 11: Performing Classic I/O
1. The purpose of the File class is to offer access to the underlying platform’s

available filesystem(s).

2. Instances of the File class contain the pathnames of files and directories
that may or may not exist in their filesystems.

3. File’s listRoots() method returns an array of File objects denoting the root
directories (roots) of available filesystems.

4. A path is a hierarchy of directories that must be traversed to locate a file or a
directory. A pathname is a string representation of a path; a platform-dependent
separator character (e.g., the Windows backslash [\] character) appears
between consecutive names.

5. The difference between an absolute pathname and a relative pathname is
as follows: an absolute pathname is a pathname that starts with the root
directory symbol, whereas a relative pathname is a pathname that doesn’t
start with the root directory symbol; it’s interpreted via information taken from
some other pathname.

6. You obtain the current user (also known as working) directory by specifying
System.getProperty("user.dir").

7. A parent pathname is a string that consists of all pathname components
except for the last name.

8. Normalize means to replace separator characters with the default
name-separator character so that the pathname is compliant with the
underlying filesystem.

9. You obtain the default name-separator character by accessing File’s
separator and separatorChar class fields. The first field stores the character
as a char and the second field stores it as a String.

10. A canonical pathname is a pathname that’s absolute and unique and is
formatted the same way every time.

690 APPENDIX A: Solutions to Exercises

11. The difference between File’s getParent() and getName() methods is that
getParent() returns the parent pathname and getName() returns the last
name in the pathname’s name sequence.

12. The answer is false: File’s exists() method determines whether or not a file
or directory exists.

13. A normal file is a file that’s not a directory and satisfies other platform-dependent
criteria: it’s not a symbolic link or named pipe, for example. Any nondirectory
 file created by a Java application is guaranteed to be a normal file.

14. File’s lastModified() method returns the time that the file denoted by this
File object’s pathname was last modified or 0 when the file doesn’t exist or
an I/O error occurred during this method call. The returned value is measured
in milliseconds since the Unix epoch (00:00:00 GMT, January 1, 1970).

15. The answer is true: File’s list() method returns an array of Strings where
each entry is a filename rather than a complete path.

16. The difference between the FilenameFilter and FileFilter interfaces is as
follows: FilenameFilter declares a single boolean accept(File dir, String
name) method, whereas FileFilter declares a single boolean accept(String
pathname) method. Either method accomplishes the same task of accepting
(by returning true) or rejecting (by returning false) the inclusion of the file or
directory identified by the argument(s) in a directory listing.

17. The answer is false: File’s createNewFile() method checks for file existence
and creates the file when it doesn’t exist in a single operation that’s atomic
with respect to all other filesystem activities that might affect the file.

18. The default temporary directory where File’s createTempFile(String,
String) method creates temporary files can be located by reading the
java.io.tmpdir system property.

19. You ensure that a temporary file is removed when the virtual machine ends
normally (it doesn’t crash and the power isn’t lost) by registering the temporary
file for deletion through a call to File’s deleteOnExit() method.

20. You would accurately compare two File objects by first calling File’s
getCanonicalFile() method on each File object and then comparing the
returned File objects.

21. The purpose of the RandomAccessFile class is to create and/or open files for
random access in which a mixture of write and read operations can occur
until the file is closed.

22. The purpose of the "rwd" and "rws" mode arguments is to ensure than any
writes to a file located on a local storage device are written to the device,
which guarantees that critical data isn’t lost when the system crashes. No
guarantee is made when the file doesn’t reside on a local device.

691APPENDIX A: Solutions to Exercises

23. A file pointer is a cursor that identifies the location of the next byte to write or
read. When an existing file is opened, the file pointer is set to its first byte at
offset 0. The file pointer is also set to 0 when the file is created.

24. The answer is false: when you call RandomAccessFile’s seek(long) method
to set the file pointer’s value, and if this value is greater than the length of the
file, the file’s length doesn’t change. The file length will only change by writing
after the offset has been set beyond the end of the file.

25. A flat file database is a single file organized into records and fields. A record
stores a single entry (e.g., a part in a parts database) and a field stores a
single attribute of the entry (e.g., a part number).

26. A stream is an ordered sequence of bytes of arbitrary length. Bytes flow over
an output stream from an application to a destination and flow over an input
stream from a source to an application.

27. The purpose of OutputStream’s flush() method is to write any buffered
output bytes to the destination. If the intended destination of this output
stream is an abstraction provided by the underlying platform (e.g., a file),
flushing the stream only guarantees that bytes previously written to the
stream are passed to the underlying platform for writing; it doesn’t guarantee
that they’re actually written to a physical device such as a disk drive.

28. The answer is true: OutputStream’s close() method automatically flushes
the output stream. If an application ends before close() is called, the output
stream is automatically closed and its data is flushed.

29. The purpose of InputStream’s mark(int) and reset() methods is to reread a
portion of a stream. mark(int) marks the current position in this input stream.
A subsequent call to reset() repositions this stream to the last marked
position so that subsequent read operations reread the same bytes. Don’t
forget to call markSupported() to find out if the subclass supports mark()
and reset().

30. You would access a copy of a ByteArrayOutputStream instance’s internal
byte array by calling ByteArrayOutputStream’s toByteArray() method.

31. The answer is false: FileOutputStream and FileInputStream don’t provide
internal buffers to improve the performance of write and read operations.

32. You would use PipedOutputStream and PipedInputStream to communicate
data between a pair of executing threads.

33. A filter stream is a stream that buffers, compresses/uncompresses, encrypts/
decrypts, or otherwise manipulates an input stream’s byte sequence before it
reaches its destination.

692 APPENDIX A: Solutions to Exercises

34. Two streams are chained together when a stream instance is passed to
another stream class’s constructor.

35. You improve the performance of a file output stream by chaining a
BufferedOutputStream instance to a FileOutputStream instance and
calling the BufferedOutputStream instance’s write() methods so that
data is buffered before flowing to the file output stream. You improve the
performance of a file input stream by chaining a BufferedInputStream
instance to a FileInputStream instance so that data flowing from a file input
stream is buffered before being returned from the BufferedInputStream
instance by calling this instance’s read() methods.

36. DataOutputStream and DataInputStream support FileOutputStream and
FileInputStream by providing methods to write and read primitive-type
values and strings in a platform-independent way. In contrast,
FileOutputStream and FileInputStream provide methods for writing/reading
bytes and arrays of bytes only.

37. Object serialization is a virtual machine mechanism for serializing object state
into a stream of bytes. Its deserialization counterpart is a virtual machine
mechanism for deserializing this state from a byte stream.

38. The three forms of serialization and deserialization that Java supports
are default serialization and deserialization, custom serialization and
deserialization, and externalization.

39. The purpose of the Serializable interface is to tell the virtual machine that
it’s okay to serialize objects of the implementing class.

40. When the serialization mechanism encounters an object whose
class doesn’t implement Serializable, it throws an instance of the
NotSerializableException class.

41. The three stated reasons for Java not supporting unlimited serialization are
as follows: security, performance, and objects not amenable to serialization.

42. You initiate serialization by creating an ObjectOutputStream instance and
calling its writeObject() method. You initialize deserialization by creating an
ObjectInputStream instance and calling its readObject() method.

43. The answer is false: class fields are not automatically serialized.

44. The purpose of the transient reserved word is to mark instance fields that
don’t participate in default serialization and default deserialization.

45. The deserialization mechanism causes readObject() to throw an instance of
the InvalidClassException class when it attempts to deserialize an object
whose class has changed.

693APPENDIX A: Solutions to Exercises

46. The deserialization mechanism detects that a serialized object’s class has
changed as follows: Every serialized object has an identifier. The deserialization
mechanism compares the identifier of the object being deserialized with the
serialized identifier of its class (all serializable classes are automatically given
unique identifiers unless they explicitly specify their own identifiers) and causes
InvalidClassException to be thrown when it detects a mismatch.

47. You can add an instance field to a class and avoid trouble when deserializing
an object that was serialized before the instance field was added by
introducing a long serialVersionUID = long integer value; declaration into
the class. The long integer value must be unique and is known as a stream
unique identifier (SUID). You can use the JDK’s serialver tool to help with
this task.

48. You customize the default serialization and deserialization mechanisms without
using externalization by declaring private void writeObject(ObjectOutputStream)
and void readObject(ObjectInputStream) methods in the class.

49. You tell the serialization and deserialization mechanisms to serialize or
deserialize the object’s normal state before serializing or deserializing additional
data items by first calling ObjectOutputStream’s defaultWriteObject()
method in writeObject(ObjectOutputStream) and by first calling
ObjectInputStream’s defaultReadObject() method in readObject(ObjectInputStream).

50. Externalization differs from default and custom serialization and deserialization
in that it offers complete control over the serialization and deserialization tasks.

51. A class indicates that it supports externalization by implementing the
Externalizable interface instead of Serializable and by declaring void
writeExternal(ObjectOutput) and void readExternal(ObjectInput in)
methods instead of void writeObject(ObjectOutputStream) and void
readObject(ObjectInputStream) methods.

52. The answer is true: during externalization, the deserialization mechanism
throws InvalidClassException with a “no valid constructor” message when
it doesn’t detect a public noargument constructor.

53. The difference between PrintStream’s print() and println() methods is
that the print() methods don’t append a line terminator to their output,
whereas the println() methods append a line terminator.

54. PrintStream’s noargument void println() method outputs the line.separator
system property’s value to ensure that lines are terminated in a portable manner
(e.g., a carriage return followed by a newline/line feed on Windows or only a
newline/line feed on Unix/Linux).

694 APPENDIX A: Solutions to Exercises

55. Java’s stream classes are not good at streaming characters because bytes
and characters are two different things: a byte represents an 8-bit data item
and a character represents a 16-bit data item. Also, byte streams have no
knowledge of character sets and their character encodings.

56. Java provides writer and reader classes as the preferred alternative to stream
classes when it comes to character I/O.

57. The answer is false: Reader doesn’t declare an available() method.

58. The purpose of the OutputStreamWriter class is to serve as a bridge
between an incoming sequence of characters and an outgoing stream of
bytes. Characters written to this writer are encoded into bytes according
to the default or specified character encoding. The purpose of the
InputStreamReader class is to serve as a bridge between an incoming stream
of bytes and an outgoing sequence of characters. Characters read from
this reader are decoded from bytes according to the default or specified
character encoding.

59. You identify the default character encoding by reading the value of the
file.encoding system property.

60. The purpose of the FileWriter class is to conveniently connect to the
underlying file output stream using the default character encoding. The
purpose of the FileReader class is to conveniently connect to the underlying
file input stream using the default character encoding.

61. Listing A-39 presents the Touch application that was called for in Chapter 11.

Listing A-39. Setting a File or Directory’s Timestamp to the Current Time

import java.io.File;

import java.util.Date;

public class Touch
{
 public static void main(String[] args)
 {
 if (args.length != 1)
 {
 System.err.println("usage: java Touch pathname");
 return;
 }
 new File(args[0]).setLastModified(new Date().getTime());
 }
}

695APPENDIX A: Solutions to Exercises

62. Listing A-40 presents the Copy application that was called for in Chapter 11.

Listing A-40. Copying a Source File to a Destination File with Buffered I/O

import java.io.BufferedInputStream;
import java.io.BufferedOutputStream;
import java.io.FileInputStream;
import java.io.FileNotFoundException;
import java.io.FileOutputStream;
import java.io.IOException;

public class Copy
{
 public static void main(String[] args)
 {
 if (args.length != 2)
 {
 System.err.println("usage: java Copy srcfile dstfile");
 return;
 }
 BufferedInputStream bis = null;
 BufferedOutputStream bos = null;
 try
 {
 FileInputStream fis = new FileInputStream(args[0]);
 bis = new BufferedInputStream(fis);
 FileOutputStream fos = new FileOutputStream(args[1]);
 bos = new BufferedOutputStream(fos);
 int b; // I chose b instead of byte because byte is a reserved word.
 while ((b = bis.read()) != -1)
 bos.write(b);
 }
 catch (FileNotFoundException fnfe)
 {
 System.err.println(args[0] + " could not be opened for input, or " +
 args[1] + " could not be created for output");
 }
 catch (IOException ioe)
 {
 System.err.println("I/O error: " + ioe.getMessage());
 }
 finally
 {
 if (bis != null)
 try
 {
 bis.close();
 }
 catch (IOException ioe)
 {
 assert false; // shouldn't happen in this context
 }

696 APPENDIX A: Solutions to Exercises

 if (bos != null)
 try
 {
 bos.close();
 }
 catch (IOException ioe)
 {
 assert false; // shouldn't happen in this context
 }
 }
 }
}

63. Listing A-41 presents the Split application that was called for in Chapter 11.

Listing A-41. Splitting a Large File into Numerous Smaller Part Files

import java.io.BufferedInputStream;
import java.io.BufferedOutputStream;
import java.io.File;
import java.io.FileInputStream;
import java.io.FileOutputStream;
import java.io.IOException;

public class Split
{
 static final int FILESIZE = 1400000;
 static byte[] buffer = new byte[FILESIZE];

 public static void main(String[] args)
 {
 if (args.length != 1)
 {
 System.err.println("usage: java Split pathname");
 return;
 }
 File file = new File(args[0]);
 long length = file.length();
 int nWholeParts = (int) (length / FILESIZE);
 int remainder = (int) (length % FILESIZE);
 System.out.printf("Splitting %s into %d parts%n", args[0],
 (remainder == 0) ? nWholeParts : nWholeParts + 1);
 BufferedInputStream bis = null;
 BufferedOutputStream bos = null;
 try
 {
 FileInputStream fis = new FileInputStream(args[0]);
 bis = new BufferedInputStream(fis);
 for (int i = 0; i < nWholeParts; i++)
 {
 bis.read(buffer);
 System.out.println("Writing part " + i);

697APPENDIX A: Solutions to Exercises

 FileOutputStream fos = new FileOutputStream("part" + i);
 bos = new BufferedOutputStream(fos);
 bos.write(buffer);
 bos.close();
 bos = null;
 }
 if (remainder != 0)
 {
 int br = bis.read(buffer);
 if (br != remainder)
 {
 System.err.println("Last part mismatch: expected " + remainder
 + " bytes");
 System.exit(0);
 }
 System.out.println("Writing part " + nWholeParts);
 FileOutputStream fos = new FileOutputStream("part" + nWholeParts);
 bos = new BufferedOutputStream(fos);
 bos.write(buffer, 0, remainder);
 }
 }
 catch (IOException ioe)
 {
 ioe.printStackTrace();
 }
 finally
 {
 if (bis != null)
 try
 {
 bis.close();
 }
 catch (IOException ioe)
 {
 assert false; // shouldn't happen in this context
 }
 if (bos != null)
 try
 {
 bos.close();
 }
 catch (IOException ioe)
 {
 assert false; // shouldn't happen in this context
 }
 }
 }
}

698 APPENDIX A: Solutions to Exercises

64. Listing A-42 presents the CircleInfo application that was called for in
Chapter 11.

Listing A-42. Reading Lines of Text from Standard Input That Represent Circle Radii and Outputting
Circumference and Area Based on the Current Radius

import java.io.BufferedReader;
import java.io.InputStreamReader;
import java.io.IOException;

public class CircleInfo
{
 public static void main(String[] args) throws IOException
 {
 InputStreamReader isr = new InputStreamReader(System.in);
 BufferedReader br = new BufferedReader(isr);
 while (true)
 {
 System.out.print("Enter circle's radius: ");
 String str = br.readLine();
 double radius;
 try
 {
 radius = Double.valueOf(str).doubleValue();
 if (radius <= 0)
 System.err.println("radius must not be 0 or negative");
 else
 {
 System.out.println("Circumference: " + Math.PI * 2.0 * radius);
 System.out.println("Area: " + Math.PI * radius * radius);
 System.out.println();
 }
 }
 catch (NumberFormatException nfe)
 {
 System.err.println("not a number: " + nfe.getMessage());
 }
 }
 }
}

Chapter 12: Accessing Networks
1. A network is a group of interconnected nodes that can be shared among the

network’s users.

2. An intranet is a network located within an organization, and an internet is a
network connecting organizations to each other.

699APPENDIX A: Solutions to Exercises

3. Intranets and internets often use TCP/IP to communicate between nodes.
Transmission Control Protocol (TCP) is a connection-oriented protocol, User
Datagram Protocol (UDP) is a connectionless protocol, and Internet Protocol
(IP) is the basic protocol over which TCP and UDP perform their tasks.

4. A host is a computer-based TCP/IP node.

5. A socket is an endpoint in a communications link between two processes.

6. A socket is identified by an IP address that identifies the host and by a port
number that identifies the process running on that host.

7. An IP address is a 32-bit or 128-bit unsigned integer that uniquely identifies a
network host or some other network node.

8. A packet is an addressable message chunk. Packets are often referred to as
IP datagrams.

9. A socket address is comprised of an IP address and a port number.

10. The InetAddress subclasses that are used to represent IPv4 and IPv6
addresses are Inet4Address and Inet6Address.

11. The loopback interface is a software-based network interface where outgoing
data loops back as incoming data.

12. The answer is false: in network byte order, the most significant byte comes first.

13. The local host is represented by hostname localhost or by an IP address
that’s commonly expressed as 127.0.0.1 (IPv4) or ::1 (IPv6).

14. A socket option is a parameter for configuring socket behavior.

15. Socket options are described by constants that are declared in the
SocketOptions interface.

16. The answer is false: you don’t set a socket option by calling the void
setOption(int optID, Object value) method. Instead, you call one of the
type-safe socket option methods that are declared in a Socket-suffixed class.

17. Sockets based on the Socket class are commonly referred to as stream
sockets because Socket is associated with the InputStream and
OutputStream classes.

18. In the context of a Socket instance, binding makes a client socket address
available to a server socket so that a server process can communicate with
the client process via the server socket.

19. A proxy is a host that sits between an intranet and the Internet for security
purposes. Java represents proxy settings via instances of the java.net.Proxy class.

700 APPENDIX A: Solutions to Exercises

20. The answer is false: the ServerSocket() constructor creates an unbound
server socket.

21. The difference between the DatagramSocket and MulticastSocket classes is
as follows: DatagramSocket lets you perform UDP-based communications
between a pair of hosts, whereas MulticastSocket lets you perform UDP-based
communications between many hosts.

22. A datagram packet is an array of bytes associated with an instance of the
DatagramPacket class.

23. The difference between unicasting and multicasting is as follows: unicasting
is the act of a server sending a message to a single client, whereas multicasting
is the act of a server sending a message to multiple clients.

24. A URL is a character string that specifies where a resource (e.g., a web page)
is located on a TCP/IP-based network (e.g., the Internet). Also, it provides the
means to retrieve that resource.

25. A URN is a character string that names a resource and doesn’t provide a way
to access that resource (the resource might not be available).

26. The answer is true: URLs and URNs are also URIs.

27. The URL(String s) constructor throws MalformedURLException when you
pass null to s.

28. The equivalent of openStream() is to execute openConnection().getInputStream().

29. The answer is false: you don’t need to invoke URLConnection’s void
setDoInput(boolean doInput) method with true as the argument before you
can input content from a web resource. The default setting is true.

30. When it encounters a space character, URLEncoder converts it to a plus sign.

31. The NetworkInterface class represents a network interface as a name and
a list of IP addresses assigned to this interface. Furthermore, it’s used to
identify the local interface on which a multicast group is joined.

32. A MAC address is an array of bytes containing a network interface’s
hardware address.

33. MTU stands for Maximum Transmission Unit. This size represents the
maximum length of a message that can fit into an IP datagram without
needing to fragment the message into multiple IP datagrams.

34. The answer is false: NetworkInterface’s getName() method returns a network
interface’s name (e.g., eth0 or lo), not a human-readable display name.

35. InterfaceAddress’s getNetworkPrefixLength() method returns the subnet
mask under IPv4.

701APPENDIX A: Solutions to Exercises

36. HTTP cookie (cookie for short) is a state object.

37. It’s preferable to store cookies on the client rather than on the server because
of the potential for millions of cookies (depending on a website’s popularity).

38. The four java.net types that are used to work with cookies are CookieHandler,
CookieManager, CookiePolicy, and CookieStore.

39. Listing A-43 presents the enhanced EchoClient application that was called
for in Chapter 12.

Listing A-43. Echoing Data to and Receiving It Back from a Server and Explicitly Closing the Socket

import java.io.BufferedReader;
import java.io.InputStream;
import java.io.InputStreamReader;
import java.io.IOException;
import java.io.OutputStream;
import java.io.OutputStreamWriter;
import java.io.PrintWriter;

import java.net.Socket;
import java.net.UnknownHostException;

public class EchoClient
{
 public static void main(String[] args)
 {
 if (args.length != 1)
 {
 System.err.println("usage : java EchoClient message");
 System.err.println("example: java EchoClient \"This is a test.\"");
 return;
 }
 Socket socket = null;
 try
 {
 socket = new Socket("localhost", 9999);
 OutputStream os = socket.getOutputStream();
 OutputStreamWriter osw = new OutputStreamWriter(os);
 PrintWriter pw = new PrintWriter(osw);
 pw.println(args[0]);
 pw.flush();
 InputStream is = socket.getInputStream();
 InputStreamReader isr = new InputStreamReader(is);
 BufferedReader br = new BufferedReader(isr);
 System.out.println(br.readLine());
 }
 catch (UnknownHostException uhe)
 {
 System.err.println("unknown host: " + uhe.getMessage());
 }

702 APPENDIX A: Solutions to Exercises

 catch (IOException ioe)
 {
 System.err.println("I/O error: " + ioe.getMessage());
 }
 finally
 {
 if (socket != null)
 try
 {
 socket.close();
 }
 catch (IOException ioe)
 {
 assert false; // shouldn't happen in this context
 }
 }
 }
}

40. Listing A-44 presents the enhanced EchoServer application that was called for in
Chapter 12.

Listing A-44. Receiving Data from and Echoing It Back to a Client and Explicitly Closing the Socket
After a Kill File Appears

import java.io.BufferedReader;
import java.io.File;
import java.io.InputStream;
import java.io.InputStreamReader;
import java.io.IOException;
import java.io.OutputStream;
import java.io.OutputStreamWriter;
import java.io.PrintWriter;

import java.net.ServerSocket;
import java.net.Socket;

public class EchoServer
{
 public static void main(String[] args)
 {
 System.out.println("Starting echo server...");
 ServerSocket ss = null;
 try
 {
 ss = new ServerSocket(9999);
 File file = new File("kill");
 while (!file.exists())
 {
 Socket s = ss.accept(); // waiting for client request
 try

703APPENDIX A: Solutions to Exercises

 {
 InputStream is = s.getInputStream();
 InputStreamReader isr = new InputStreamReader(is);
 BufferedReader br = new BufferedReader(isr);
 String msg = br.readLine();
 System.out.println(msg);
 OutputStream os = s.getOutputStream();
 OutputStreamWriter osw = new OutputStreamWriter(os);
 PrintWriter pw = new PrintWriter(osw);
 pw.println(msg);
 pw.flush();
 }
 catch (IOException ioe)
 {
 System.err.println("I/O error: " + ioe.getMessage());
 }
 finally
 {
 try
 {
 s.close();
 }
 catch (IOException ioe)
 {
 assert false; // shouldn't happen in this context
 }
 }
 }
 }
 catch (IOException ioe)
 {
 System.err.println("I/O error: " + ioe.getMessage());
 }
 finally
 {
 if (ss != null)
 try
 {
 ss.close();
 }
 catch (IOException ioe)
 {
 assert false; // shouldn't happen in this context
 }
 }
 }
}

704 APPENDIX A: Solutions to Exercises

Chapter 13: Migrating to New I/O
1. New I/O is an architecture that supports memory-mapped file I/O, readiness

selection, file locking, and more. This architecture consists of buffers,
channels, selectors, regular expressions, and charsets.

2. A buffer is an object that stores a fixed amount of data to be sent to or
received from an I/O service (a means for performing input/output).

3. A buffer’s four properties are capacity, limit, position, and mark.

4. When you invoke Buffer’s array() method on a buffer backed by a read-only
array, this method throws ReadOnlyBufferException.

5. When you invoke Buffer’s flip() method on a buffer, the limit is set to the
current position and then the position is set to zero. When the mark is
defined, it’s discarded. The buffer is now ready to be drained.

6. When you invoke Buffer’s reset() method on a buffer where a mark has not
been set, this method throws InvalidMarkException.

7. The answer is false: buffers are not thread-safe.

8. The classes that extend the abstract Buffer class are ByteBuffer, CharBuffer,
DoubleBuffer, FloatBuffer, IntBuffer, LongBuffer, and ShortBuffer.
Furthermore, this package includes MappedByteBuffer as an abstract
ByteBuffer subclass.

9. You create a byte buffer by invoking one of its allocate(), allocateDirect(),
or wrap() class methods.

10. A view buffer is a buffer that manages another buffer’s data.

11. A view buffer is created by calling a Buffer subclass’s duplicate() method.

12. You create a read-only view buffer by calling a Buffer subclass method such
as ByteBuffer asReadOnlyBuffer() or CharBuffer asReadOnlyBuffer().

13. ByteBuffer’s methods for storing a single byte in a byte buffer are ByteBuffer
put(int index, byte b) and ByteBuffer put(byte b). ByteBuffer’s
methods for fetching a single byte from a byte buffer are byte get(int index)
method and byte get().

14. Attempting to use the relative put() method or the relative get() method
when the current position is greater than or equal to the limit causes
BufferOverflowException or BufferUnderflowException to occur.

15. The equivalent of executing buffer.flip(); is to execute
buffer.limit(buffer.position()).position(0);.

16. The answer is false: calling flip() twice doesn’t return you to the original
state. Instead, the buffer has a zero size.

705APPENDIX A: Solutions to Exercises

17. The difference between Buffer’s clear() and reset() methods is as
follows: the clear() method marks a buffer as empty, whereas reset()
changes the buffer’s current position to the previously set mark or throws
InvalidMarkException when there’s no previously set mark.

18. ByteBuffer’s compact() method copies all bytes between the current position
and the limit to the beginning of the buffer. The byte at index p = position()
is copied to index 0, the byte at index p + 1 is copied to index 1, and so on
until the byte at index limit() - 1 is copied to index n = limit() - 1 - p.
The buffer’s current position is then set to n + 1 and its limit is set to its
capacity. The mark, when defined, is discarded.

19. The purpose of the ByteOrder class is to help you deal with byte-order issues
when writing/reading multibyte values to/from a multibyte buffer.

20. A direct byte buffer is a byte buffer that interacts with channels and native
code to perform I/O. The direct byte buffer attempts to store byte elements in
a memory area that a channel uses to perform direct (raw) access via native
code that tells the operating system to drain or fill the memory area directly.

21. You obtain a direct byte buffer by invoking ByteBuffer’s allocateDirect()
method.

22. A channel is an object that represents an open connection to a hardware
device, a file, a network socket, an application component, or another entity
that’s capable of performing write, read, and other I/O operations. Channels
efficiently transfer data between byte buffers and I/O service sources or
destinations.

23. The capabilities that the Channel interface provides are closing a channel (via
the close() method) and determining whether or not a channel is open (via the
isOpen()) method.

24. The three interfaces that directly extend Channel are WritableByteChannel,
ReadableByteChannel, and InterruptibleChannel.

25. The answer is true: a channel that implements InterruptibleChannel is
asynchronously closeable.

26. The two ways to obtain a channel are to invoke a Channels class method, such
as WritableByteChannel newChannel(OutputStream outputStream), and to
invoke a channel method on a classic I/O class, such as RandomAccessFile ’s
FileChannel getChannel() method.

27. Scatter/gather I/O is the ability to perform a single I/O operation across
multiple buffers.

28. The ScatteringByteChannel and GatheringByteChannel interfaces are
provided for achieving scatter/gather I/O.

706 APPENDIX A: Solutions to Exercises

29. A file channel is a channel to an underlying file.

30. The answer is false: file channels support scatter/gather I/O.

31. FileChannel provides the MappedByteBuffer map(FileChannel.MapMode mode,
long position, long size) method for mapping a region of a file into memory.

32. The fundamental difference between FileChannel’s lock() and tryLock()
methods is that the lock() methods can block and the tryLock() methods
never block.

33. A regular expression (also known as a regex or regexp) is a string-based
pattern that represents the set of strings that match this pattern.

34. Instances of the Pattern class represent patterns via compiled regexes.
Regexes are compiled for performance reasons; pattern matching via
compiled regexes is much faster than if the regexes were not compiled.

35. Pattern’s compile() methods throw instances of the PatternSyntaxException
class when they discover illegal syntax in their regular expression arguments.

36. Instances of the Matcher class attempt to match compiled regexes against
input text.

37. The difference between Matcher’s matches() and lookingAt() methods is
that unlike matches(), lookingAt() doesn’t require the entire region to be
matched.

38. A character class is a set of characters appearing between [and].

39. There are six kinds of character classes: simple, negation, range, union,
intersection, and subtraction.

40. A capturing group saves a match’s characters for later recall during pattern
matching.

41. A zero-length match is a match of zero length in which the start and end
indexes are equal.

42. A quantifier is a numeric value implicitly or explicitly bound to a pattern.
Quantifiers are categorized as greedy, reluctant, or possessive.

43. The difference between a greedy quantifier and a reluctant quantifier is that
a greedy quantifier attempts to find the longest match, whereas a reluctant
quantifier attempts to find the shortest match.

44. Possessive and greedy quantifiers differ in that a possessive quantifier only
makes one attempt to find the longest match, whereas a greedy quantifier
can make multiple attempts.

45. Listing A-45 presents the enhanced Copy application that was called for in
Chapter 13.

707APPENDIX A: Solutions to Exercises

Listing A-45. Copying a File via a Byte Buffer and a File Channel

import java.io.FileInputStream;
import java.io.FileNotFoundException;
import java.io.FileOutputStream;
import java.io.IOException;

import java.nio.ByteBuffer;

import java.nio.channels.FileChannel;

public class Copy
{
 public static void main(String[] args)
 {
 if (args.length != 2)
 {
 System.err.println("usage: java Copy srcfile dstfile");
 return;
 }
 FileChannel fcSrc = null;
 FileChannel fcDest = null;
 try
 {
 FileInputStream fis = new FileInputStream(args[0]);
 fcSrc = fis.getChannel();
 FileOutputStream fos = new FileOutputStream(args[1]);
 fcDest = fos.getChannel();
 ByteBuffer buffer = ByteBuffer.allocateDirect(2048);
 while ((fcSrc.read(buffer)) != -1)
 {
 buffer.flip();
 while (buffer.hasRemaining())
 fcDest.write(buffer);
 buffer.clear();
 }
 }
 catch (FileNotFoundException fnfe)
 {
 System.err.println(args[0] + " could not be opened for input, or " +
 args[1] + " could not be created for output");
 }
 catch (IOException ioe)
 {
 System.err.println("I/O error: " + ioe.getMessage());
 }
 finally
 {
 if (fcSrc != null)
 try

708 APPENDIX A: Solutions to Exercises

 {
 fcSrc.close();
 }
 catch (IOException ioe)
 {
 assert false; // shouldn't happen in this context
 }

 if (fcDest != null)
 try
 {
 fcDest.close();
 }
 catch (IOException ioe)
 {
 assert false; // shouldn't happen in this context
 }
 }
 }
}

46. Listing A-46 presents the ReplaceText application that was called for in
Chapter 13.

Listing A-46. Replacing All Matches of the Pattern with Replacement Text

import java.util.regex.Matcher;
import java.util.regex.Pattern;
import java.util.regex.PatternSyntaxException;

public class ReplaceText
{
 public static void main(String[] args)
 {
 if (args.length != 3)
 {
 System.err.println("usage: java ReplaceText text oldText newText");
 return;
 }
 try
 {
 Pattern p = Pattern.compile(args[1]);
 Matcher m = p.matcher(args[0]);
 String result = m.replaceAll(args[2]);
 System.out.println(result);
 }
 catch (PatternSyntaxException pse)
 {
 System.err.println(pse);
 }
 }
}

709APPENDIX A: Solutions to Exercises

Chapter 14: Accessing Databases
1. A database is an organized collection of data.

2. A relational database is a database that organizes data into tables that can
be related to each other.

3. Two other database categories are hierarchical databases and object-oriented
databases.

4. A database management system is a set of programs that enables you to store,
modify, and extract information from a database. It also provides users with tools
to add, delete, access, modify, and analyze data stored in one location.

5. Java DB is a distribution of Apache’s open-source Derby product, which is
based on IBM’s Cloudscape RDBMS code base.

6. The answer is false: Java DB’s embedded driver causes the database engine
to run in the same virtual machine as the application.

7. setEmbeddedCP adds derby.jar and derbytools.jar to the classpath so that
you can access Java DB’s embedded driver from your application.

8. The answer is false: you run Java DB’s sysinfo command-line tool to view
the Java environment/Java DB configuration.

9. SQLite is a very simple and popular RDBMS that implements a self-contained,
serverless, zero-configuration, transactional SQL database engine and is
considered to be the most widely deployed database engine in the world.

10. Manifest typing is the ability to store any value of any data type into any
column regardless of the declared type of that column.

11. SQLite provides the sqlite3 tool for accessing and modifying SQLite databases.

12. JDBC is an API for communicating with RDBMSs in an RDBMS-independent manner.

13. A data source is a data-storage facility ranging from a simple file to a
complex relational database managed by an RDBMS.

14. A JDBC driver implements the java.sql.Driver interface.

15. The answer is false: there are four kinds of JDBC drivers.

16. A type three JDBC driver doesn’t depend on native code and communicates
with a middleware server via an RDBMS-independent protocol. The
middleware server then communicates the client’s requests to the data source.

17. JDBC provides the java.sql.DriverManager class and the
javax.sql.DataSource interface for communicating with a data source.

18. You obtain a connection to a Java DB data source via the embedded driver
by passing a URL of the form jdbc:derby:databaseName;URLAttributes to
one of DriverManager’s getConnection() methods.

710 APPENDIX A: Solutions to Exercises

19. The answer is false: int getErrorCode() returns a vendor-specific error code.

20. A SQL state error code is a five-character string consisting of a two-character
class value followed by a three-character subclass value.

21. The difference between SQLNonTransientException and
SQLTransientException is as follows: SQLNonTransientException describes
failed operations that cannot be retried without changing application source
code or some aspect of the data source, and SQLTransientException
describes failed operations that can be retried immediately.

22. JDBC’s three statement types are Statement, PreparedStatement, and
CallableStatement.

23. The Statement method that you call to execute an SQL SELECT statement is
ResultSet executeQuery(String sql).

24. A result set’s cursor provides access to a specific row of data.

25. The SQL FLOAT type maps to Java’s double type.

26. A prepared statement represents a precompiled SQL statement.

27. The answer is true: CallableStatement extends PreparedStatement.

28. A stored procedure is a list of SQL statements that perform a specific task.

29. You call a stored procedure by first obtaining a CallableStatement
implementation instance (via one of Connection’s prepareCall()
methods) that’s associated with an escape clause, by next executing
CallableStatement methods such as void setInt(String parameterName,
int x) to pass arguments to escape clause parameters, and by finally
invoking the boolean execute() method that CallableStatement inherits from
its PreparedStatement superinterface.

30. An escape clause is RDBMS-independent syntax.

31. Metadata is data about data.

32. Metadata includes a list of catalogs, base tables, views, indexes, schemas,
and additional information.

33. Listing A-47 presents the enhanced JDBCDemo application that was called for
in Chapter 14.

Listing A-47. Outputting Database Metadata for the SQLite or Java DB Embedded Driver

import java.sql.Connection;
import java.sql.DatabaseMetaData;
import java.sql.DriverManager;
import java.sql.ResultSet;
import java.sql.SQLException;
import java.sql.Statement;

711APPENDIX A: Solutions to Exercises

public class JDBCDemo
{
 final static String URL1 = "jdbc:derby:employee;create=true";
 final static String URL2 = "jdbc:sqlite:employee";

 public static void main(String[] args)
 {
 String url = null;
 if (args.length != 1)
 {
 System.err.println("usage 1: java JDBCDemo javadb");
 System.err.println("usage 2: java JDBCDemo sqlite");
 return;
 }
 if (args[0].equals("javadb"))
 url = URL1;
 else
 if (args[0].equals("sqlite"))
 url = URL2;
 else
 {
 System.err.println("invalid command-line argument");
 return;
 }
 Connection con = null;
 try
 {
 if (args[0].equals("sqlite"))
 Class.forName("org.sqlite.JDBC");
 con = DriverManager.getConnection(url);
 dump(con.getMetaData());
 }
 catch (ClassNotFoundException cnfe)
 {
 System.err.println("unable to load sqlite driver");
 }
 catch (SQLException sqlex)
 {
 while (sqlex != null)
 {
 System.err.println("SQL error : " + sqlex.getMessage());
 System.err.println("SQL state : " + sqlex.getSQLState());
 System.err.println("Error code: " + sqlex.getErrorCode());
 System.err.println("Cause: " + sqlex.getCause());
 sqlex = sqlex.getNextException();
 }
 }
 finally
 {
 if (con != null)
 try

712 APPENDIX A: Solutions to Exercises

 {
 con.close();
 }
 catch (SQLException sqle)
 {
 sqle.printStackTrace();
 }
 }
 }

 static void dump(DatabaseMetaData dbmd) throws SQLException
 {
 System.out.println("DB Major Version = " + dbmd.getDatabaseMajorVersion());
 System.out.println("DB Minor Version = " + dbmd.getDatabaseMinorVersion());
 System.out.println("DB Product = " + dbmd.getDatabaseProductName());
 System.out.println("Driver Name = " + dbmd.getDriverName());
 System.out.println("Numeric function names for escape clause = " +
 dbmd.getNumericFunctions());
 System.out.println("String function names for escape clause = " +
 dbmd.getStringFunctions());
 System.out.println("System function names for escape clause = " +
 dbmd.getSystemFunctions());
 System.out.println("Time/date function names for escape clause = " +
 dbmd.getTimeDateFunctions());
 System.out.println("Catalog term: " + dbmd.getCatalogTerm());
 System.out.println("Schema term: " + dbmd.getSchemaTerm());
 System.out.println();
 System.out.println("Catalogs");
 System.out.println("--------");
 ResultSet rsCat = dbmd.getCatalogs();
 while (rsCat.next())
 System.out.println(rsCat.getString("TABLE_CAT"));
 System.out.println();
 System.out.println("Schemas");
 System.out.println("-------");
 ResultSet rsSchem = dbmd.getSchemas();
 while (rsSchem.next())
 System.out.println(rsSchem.getString("TABLE_SCHEM"));
 System.out.println();
 System.out.println("Schema/Table");
 System.out.println("------------");
 rsSchem = dbmd.getSchemas();
 while (rsSchem.next())
 {
 String schem = rsSchem.getString("TABLE_SCHEM");
 ResultSet rsTab = dbmd.getTables(null, schem, "%", null);
 while (rsTab.next())
 System.out.println(schem + " " + rsTab.getString("TABLE_NAME"));
 }
 }
}

713

Appendix B
Four of a Kind

Application development isn’t an easy task. If you don’t plan carefully before you develop an
application, you’ll probably waste your time and money as you endeavor to create it, and waste your
users’ time and money when it doesn’t meet their needs.

Caution It’s extremely important to test your software carefully. You could face a lawsuit if
malfunctioning software causes financial harm to its users.

In this appendix, I present one technique for developing applications efficiently. I present this
technique in the context of a Java application that lets you play a simple card game called Four of a
Kind against the computer.

Understanding Four of a Kind
Before sitting down at the computer and writing code, you need to fully understand the problem
domain that you are trying to model via that code. In this case, the problem domain is Four of a Kind,
and you want to understand how this card game works.

Two to four players play Four of a Kind with a standard 52-card deck. The object of the game is to
be the first player to put down four cards that have the same rank (four aces, for example), which
wins the game.

The game begins by shuffling the deck and placing it face down. Each player takes a card from the
top of the deck. The player with the highest ranked card (king is highest) deals four cards to each
player, starting with the player to the dealer’s left. The dealer then starts its turn.

The player examines its cards to determine which cards are optimal for achieving four of a kind. The
player then throws away the least helpful card on a discard pile and picks up another card from the
top of the deck. (If each card has a different rank, the player randomly selects a card to throw away.)
If the player has four of a kind, the player puts down these cards (face up) and wins the game.

714 APPENDIX B: Four of a Kind

Modeling Four of a Kind in Pseudocode
Now that you understand how Four of a Kind works, you can begin to model this game. You will
not model the game in Java source code because you would get bogged down in too many details.
Instead, you will use pseudocode for this task.

Pseudocode is a compact and informal high-level description of the problem domain. Unlike the
previous description of Four of a Kind, the pseudocode equivalent is a step-by-step recipe for
solving the problem. Check out Listing B-1.

Listing B-1. Four of a Kind Pseudocode for Two Players (Human and Computer)

 1. Create a deck of cards and shuffle the deck.
 2. Create empty discard pile.
 3. Have each of the human and computer players take a card from the top of the deck.
 4. Designate the player with the highest ranked card as the current player.
 5. Return both cards to the bottom of the deck.
 6. The current player deals four cards to each of the two players in alternating fashion, with the

first card being dealt to the other player.
 7. The current player examines its current cards to see which cards are optimal for achieving four

of a kind. The current player throws the least helpful card onto the top of the discard pile.
 8. The current player picks up the deck's top card. If the current player has four of a kind, it

puts down its cards and wins the game.
 9. Designate the other player as the current player.
10. If the deck has no more cards, empty the discard pile to the deck and shuffle the deck.
11. Repeat at step 7.

Deriving Listing B-1’s pseudocode from the previous description is the first step in achieving an
application that implements Four of a Kind. This pseudocode performs various tasks including
decision making and repetition.

Despite being a more useful guide to understanding how Four of a Kind works, Listing B-1 is
too high level for translation to Java. Therefore, you must refine this pseudocode to facilitate the
translation process. Listing B-2 presents this refinement.

Listing B-2. Refined Four of a Kind Pseudocode for Two Players (Human and Computer)

 1. deck = new Deck()
 2. deck.shuffle()
 3. discardPile = new DiscardPile()
 4. hCard = deck.deal()
 5. cCard = deck.deal()
 6. if hCard.rank() == cCard.rank()
 6.1. deck.putBack(hCard)
 6.2. deck.putBack(cCard)
 6.3. deck.shuffle()
 6.4. Repeat at step 4
 7. curPlayer = HUMAN
 7.1. if cCard.rank() > hCard.rank()
 7.1.1. curPlayer = COMPUTER
 8. deck.putBack(hCard)

715APPENDIX B: Four of a Kind

 9. deck.putBack(cCard)
10. if curPlayer == HUMAN
 10.1. for i = 0 to 3
 10.1.1. cCards[i] = deck.deal()
 10.1.2. hCards[i] = deck.deal()
 else
 10.2. for i = 0 to 3
 10.2.1. hCards[i] = deck.deal()
 10.2.2. cCards[i] = deck.deal()
11. if curPlayer == HUMAN
 11.01. output(hCards)
 11.02. choice = prompt("Identify card to throw away")
 11.03. discardPile.setTopCard(hCards[choice])
 11.04. hCards[choice] = deck.deal()
 11.05. if isFourOfAKind(hCards)
 11.05.1. output("Human wins!")
 11.05.2. putDown(hCards)
 11.05.3. output("Computer's cards:")
 11.05.4. putDown(cCards)
 11.05.5. End game
 11.06. curPlayer = COMPUTER
 else
 11.07. choice = leastDesirableCard(cCards)
 11.08. discardPile.setTopCard(cCards[choice])
 11.09. cCards[choice] = deck.deal()
 11.10. if isFourOfAKind(cCards)
 11.10.1. output("Computer wins!")
 11.10.2. putDown(cCards)
 11.10.3. End game
 11.11. curPlayer = HUMAN
12. if deck.isEmpty()
 12.1. if discardPile.topCard() != null
 12.1.1. deck.putBack(discardPile.getTopCard())
 12.1.2. Repeat at step 12.1.
 12.2. deck.shuffle()
13. Repeat at step 11.

In addition to being longer than Listing B-1, Listing B-2 shows the refined pseudocode becoming
more like Java. For example, Listing B-2 reveals Java expressions (such as new Deck(), to create a
Deck object), operators (such as ==, to compare two values for equality), and method calls (such as
deck.isEmpty(), to call deck’s isEmpty() method to return a Boolean value indicating whether [true]
or not [false] the deck identified by deck is empty of cards).

Converting Pseudocode to Java Code
Now that you’ve had a chance to absorb Listing B-2’s Java-like pseudocode, you’re ready to
examine the process of converting that pseudocode to Java source code. This process consists of a
couple of steps.

716 APPENDIX B: Four of a Kind

The first step in converting Listing B-2’s pseudocode to Java involves identifying important
components of the game’s structure and implementing these components as classes, which I
formally introduced in Chapter 3.

Apart from the computer player (which is implemented via game logic), the important components
are card, deck, and discard pile. I represent these components via Card, Deck, and DiscardPile
classes. Listing B-3 presents Card.

Listing B-3. Merging Suits and Ranks into Cards

/**
 * Simulating a playing card.
 *
 * @author Jeff Friesen
 */

public enum Card
{
 ACE_OF_CLUBS(Suit.CLUBS, Rank.ACE),
 TWO_OF_CLUBS(Suit.CLUBS, Rank.TWO),
 THREE_OF_CLUBS(Suit.CLUBS, Rank.THREE),
 FOUR_OF_CLUBS(Suit.CLUBS, Rank.FOUR),
 FIVE_OF_CLUBS(Suit.CLUBS, Rank.FIVE),
 SIX_OF_CLUBS(Suit.CLUBS, Rank.SIX),
 SEVEN_OF_CLUBS(Suit.CLUBS, Rank.SEVEN),
 EIGHT_OF_CLUBS(Suit.CLUBS, Rank.EIGHT),
 NINE_OF_CLUBS(Suit.CLUBS, Rank.NINE),
 TEN_OF_CLUBS(Suit.CLUBS, Rank.TEN),
 JACK_OF_CLUBS(Suit.CLUBS, Rank.JACK),
 QUEEN_OF_CLUBS(Suit.CLUBS, Rank.QUEEN),
 KING_OF_CLUBS(Suit.CLUBS, Rank.KING),
 ACE_OF_DIAMONDS(Suit.DIAMONDS, Rank.ACE),
 TWO_OF_DIAMONDS(Suit.DIAMONDS, Rank.TWO),
 THREE_OF_DIAMONDS(Suit.DIAMONDS, Rank.THREE),
 FOUR_OF_DIAMONDS(Suit.DIAMONDS, Rank.FOUR),
 FIVE_OF_DIAMONDS(Suit.DIAMONDS, Rank.FIVE),
 SIX_OF_DIAMONDS(Suit.DIAMONDS, Rank.SIX),
 SEVEN_OF_DIAMONDS(Suit.DIAMONDS, Rank.SEVEN),
 EIGHT_OF_DIAMONDS(Suit.DIAMONDS, Rank.EIGHT),
 NINE_OF_DIAMONDS(Suit.DIAMONDS, Rank.NINE),
 TEN_OF_DIAMONDS(Suit.DIAMONDS, Rank.TEN),
 JACK_OF_DIAMONDS(Suit.DIAMONDS, Rank.JACK),
 QUEEN_OF_DIAMONDS(Suit.DIAMONDS, Rank.QUEEN),
 KING_OF_DIAMONDS(Suit.DIAMONDS, Rank.KING),
 ACE_OF_HEARTS(Suit.HEARTS, Rank.ACE),
 TWO_OF_HEARTS(Suit.HEARTS, Rank.TWO),
 THREE_OF_HEARTS(Suit.HEARTS, Rank.THREE),
 FOUR_OF_HEARTS(Suit.HEARTS, Rank.FOUR),
 FIVE_OF_HEARTS(Suit.HEARTS, Rank.FIVE),
 SIX_OF_HEARTS(Suit.HEARTS, Rank.SIX),
 SEVEN_OF_HEARTS(Suit.HEARTS, Rank.SEVEN),
 EIGHT_OF_HEARTS(Suit.HEARTS, Rank.EIGHT),

717APPENDIX B: Four of a Kind

 NINE_OF_HEARTS(Suit.HEARTS, Rank.NINE),
 TEN_OF_HEARTS(Suit.HEARTS, Rank.TEN),
 JACK_OF_HEARTS(Suit.HEARTS, Rank.JACK),
 QUEEN_OF_HEARTS(Suit.HEARTS, Rank.QUEEN),
 KING_OF_HEARTS(Suit.HEARTS, Rank.KING),
 ACE_OF_SPADES(Suit.SPADES, Rank.ACE),
 TWO_OF_SPADES(Suit.SPADES, Rank.TWO),
 THREE_OF_SPADES(Suit.SPADES, Rank.THREE),
 FOUR_OF_SPADES(Suit.SPADES, Rank.FOUR),
 FIVE_OF_SPADES(Suit.SPADES, Rank.FIVE),
 SIX_OF_SPADES(Suit.SPADES, Rank.SIX),
 SEVEN_OF_SPADES(Suit.SPADES, Rank.SEVEN),
 EIGHT_OF_SPADES(Suit.SPADES, Rank.EIGHT),
 NINE_OF_SPADES(Suit.SPADES, Rank.NINE),
 TEN_OF_SPADES(Suit.SPADES, Rank.TEN),
 JACK_OF_SPADES(Suit.SPADES, Rank.JACK),
 QUEEN_OF_SPADES(Suit.SPADES, Rank.QUEEN),
 KING_OF_SPADES(Suit.SPADES, Rank.KING);

 private Suit suit;

 /**
 * Return <code>Card</code>'s suit.
 *
 * @return <code>CLUBS</code>, <code>DIAMONDS</code>, <code>HEARTS</code>,
 * or <code>SPADES</code>
 */

 public Suit suit()
 {
 return suit;
 }

 private Rank rank;

 /**
 * Return <code>Card</code>'s rank.
 *
 * @return <code>ACE</code>, <code>TWO</code>, <code>THREE</code>,
 * <code>FOUR</code>, <code>FIVE</code>, <code>SIX</code>,
 * <code>SEVEN</code>, <code>EIGHT</code>, <code>NINE</code>,
 * <code>TEN</code>, <code>JACK</code>, <code>QUEEN</code>,
 * <code>KING</code>.
 */

 public Rank rank()
 {
 return rank;
 }

718 APPENDIX B: Four of a Kind

 Card(Suit suit, Rank rank)
 {
 this.suit = suit;
 this.rank = rank;
 }

 /**
 * A card's suit is its membership.
 *
 * @author Jeff Friesen
 */

 public enum Suit
 {
 CLUBS, DIAMONDS, HEARTS, SPADES
 }

 /**
 * A card's rank is its integer value.
 *
 * @author Jeff Friesen
 */

 public enum Rank
 {
 ACE, TWO, THREE, FOUR, FIVE, SIX, SEVEN, EIGHT, NINE, TEN, JACK, QUEEN,
 KING
 }
}

Listing B-3 begins with a Javadoc comment that’s used to briefly describe the subsequently declared
Card class and identify this class’s author. (I briefly introduced Javadoc comments in Chapter 2.)

Note One feature of Javadoc comments is the ability to embed HTML tags. These tags specify
different kinds of formatting for sections of text within these comments. For example, <code> and
</code> specify that their enclosed text is to be formatted as a code listing. Later in this appendix,
you’ll learn how to convert these comments into HTML documentation.

Card is an example of an enum, which is a special kind of class that I discussed in Chapter 6. If you
haven’t read that chapter, think of Card as a place to create and store Card objects that identify all
52 cards that make up a standard deck.

Card declares a nested Suit enum. (I discussed nesting in Chapter 5.) A card’s suit denotes its
membership. The only legal Suit values are CLUBS, DIAMONDS, HEARTS, and SPADES.

Card also declares a nested Rank enum. A card’s rank denotes its value: ACE, TWO, THREE, FOUR, FIVE,
SIX, SEVEN, EIGHT, NINE, TEN, JACK, QUEEN, and KING are the only legal Rank values.

719APPENDIX B: Four of a Kind

A Card object is created when Suit and Rank objects are passed to its constructor. (I discussed
constructors in Chapter 3.) For example, KING_OF_HEARTS(Suit.HEARTS, Rank.KING) combines
Suit.HEARTS and Rank.KING into KING_OF_HEARTS.

Card provides a rank() method for returning a Card’s Rank object. Similarly, Card provides a suit()
method for returning a Card’s Suit object. For example, KING_OF_HEARTS.rank() returns Rank.KING,
and KING_OF_HEARTS.suit() returns Suit.HEARTS.

Listing B-4 presents the Java source code to the Deck class, which implements a deck of 52 cards.

Listing B-4. Pick a Card, Any Card

import java.util.ArrayList;
import java.util.Collections;
import java.util.List;

/**
 * Simulate a deck of cards.
 *
 * @author Jeff Friesen
 */

public class Deck
{
 private Card[] cards = new Card[]
 {
 Card.ACE_OF_CLUBS,
 Card.TWO_OF_CLUBS,
 Card.THREE_OF_CLUBS,
 Card.FOUR_OF_CLUBS,
 Card.FIVE_OF_CLUBS,
 Card.SIX_OF_CLUBS,
 Card.SEVEN_OF_CLUBS,
 Card.EIGHT_OF_CLUBS,
 Card.NINE_OF_CLUBS,
 Card.TEN_OF_CLUBS,
 Card.JACK_OF_CLUBS,
 Card.QUEEN_OF_CLUBS,
 Card.KING_OF_CLUBS,
 Card.ACE_OF_DIAMONDS,
 Card.TWO_OF_DIAMONDS,
 Card.THREE_OF_DIAMONDS,
 Card.FOUR_OF_DIAMONDS,
 Card.FIVE_OF_DIAMONDS,
 Card.SIX_OF_DIAMONDS,
 Card.SEVEN_OF_DIAMONDS,
 Card.EIGHT_OF_DIAMONDS,
 Card.NINE_OF_DIAMONDS,
 Card.TEN_OF_DIAMONDS,
 Card.JACK_OF_DIAMONDS,
 Card.QUEEN_OF_DIAMONDS,
 Card.KING_OF_DIAMONDS,

720 APPENDIX B: Four of a Kind

 Card.ACE_OF_HEARTS,
 Card.TWO_OF_HEARTS,
 Card.THREE_OF_HEARTS,
 Card.FOUR_OF_HEARTS,
 Card.FIVE_OF_HEARTS,
 Card.SIX_OF_HEARTS,
 Card.SEVEN_OF_HEARTS,
 Card.EIGHT_OF_HEARTS,
 Card.NINE_OF_HEARTS,
 Card.TEN_OF_HEARTS,
 Card.JACK_OF_HEARTS,
 Card.QUEEN_OF_HEARTS,
 Card.KING_OF_HEARTS,
 Card.ACE_OF_SPADES,
 Card.TWO_OF_SPADES,
 Card.THREE_OF_SPADES,
 Card.FOUR_OF_SPADES,
 Card.FIVE_OF_SPADES,
 Card.SIX_OF_SPADES,
 Card.SEVEN_OF_SPADES,
 Card.EIGHT_OF_SPADES,
 Card.NINE_OF_SPADES,
 Card.TEN_OF_SPADES,
 Card.JACK_OF_SPADES,
 Card.QUEEN_OF_SPADES,
 Card.KING_OF_SPADES
 };

 private List<Card> deck;

 /**
 * Create a <code>Deck</code> of 52 <code>Card</code> objects. Shuffle
 * these objects.
 */

 public Deck()
 {
 deck = new ArrayList<Card>();
 for (int i = 0; i < cards.length; i++)
 {
 deck.add(cards[i]);
 cards[i] = null;
 }
 Collections.shuffle(deck);
 }

 /**
 * Deal the <code>Deck</code>'s top <code>Card</code> object.
 *
 * @return the <code>Card</code> object at the top of the
 * <code>Deck</code>
 */

721APPENDIX B: Four of a Kind

 public Card deal()
 {
 return deck.remove(0);
 }

 /**
 * Return an indicator of whether or not the <code>Deck</code> is empty.
 *
 * @return true if the <code>Deck</code> contains no <code>Card</code>
 * objects; otherwise, false
 */

 public boolean isEmpty()
 {
 return deck.isEmpty();
 }

 /**
 * Put back a <code>Card</code> at the bottom of the <code>Deck</code>.
 *
 * @param card <code>Card</code> object being put back
 */

 public void putBack(Card card)
 {
 deck.add(card);
 }

 /**
 * Shuffle the <code>Deck</code>.
 */

 public void shuffle()
 {
 Collections.shuffle(deck);
 }
}

Deck initializes a private cards array to all 52 Card objects. Because it’s easier to implement Deck via
a list that stores these objects, Deck’s constructor creates this list and adds each Card object to the
list. (I discussed List and ArrayList in Chapter 9.)

Deck also provides deal(), isEmpty(), putBack(), and shuffle() methods to deal a single Card from
the Deck (the Card is physically removed from the Deck), determine whether or not the Deck is empty,
put a Card back into the Deck, and shuffle the Deck’s Cards.

Listing B-5 presents the source code to the DiscardPile class, which implements a discard pile on
which players can throw away a maximum of 52 cards.

722 APPENDIX B: Four of a Kind

Listing B-5. A Garbage Dump for Cards

import java.util.ArrayList;
import java.util.List;

/**
 * Simulate a pile of discarded cards.
 *
 * @author Jeff Friesen
 */

public class DiscardPile
{
 private Card[] cards;
 private int top;

 /**
 * Create a <code>DiscardPile</code> that can accommodate a maximum of 52
 * <code>Card</code>s. The <code>DiscardPile</code> is initially empty.
 */

 public DiscardPile()
 {
 cards = new Card[52]; // Room for entire deck on discard pile (should
 // never happen).
 top = -1;
 }

 /**
 * Return the <code>Card</code> at the top of the <code>DiscardPile</code>.
 *
 * @return <code>Card</code> object at top of <code>DiscardPile</code> or
 * null if <code>DiscardPile</code> is empty
 */

 public Card getTopCard()
 {
 if (top == -1)
 return null;
 Card card = cards[top];
 cards[top--] = null;
 return card;
 }

 /**
 * Set the <code>DiscardPile</code>'s top card to the specified
 * <code>Card</code> object.
 *
 * @param card <code>Card</code> object being thrown on top of the
 * <code>DiscardPile</code>
 */

723APPENDIX B: Four of a Kind

 public void setTopCard(Card card)
 {
 cards[++top] = card;
 }

 /**
 * Identify the top <code>Card</code> on the <code>DiscardPile</code>
 * without removing this <code>Card</code>.
 *
 * @return top <code>Card</code>, or null if <code>DiscardPile</code> is
 * empty
 */

 public Card topCard()
 {
 return (top == -1) ? null : cards[top];
 }
}

DiscardPile implements a discard pile on which to throw Card objects. It implements the discard
pile via a stack metaphor: the last Card object thrown on the pile sits at the top of the pile and is the
first Card object to be removed from the pile.

This class stores its stack of Card objects in a private cards array. I found it convenient to specify
52 as this array’s storage limit because the maximum number of Cards is 52. (Game play will never
result in all Cards being stored in the array.)

Along with its constructor, DiscardPile provides getTopCard(), setTopCard(), and topCard()
methods to remove and return the stack’s top Card, store a new Card object on the stack as its top
Card, and return the top Card without removing it from the stack.

The constructor demonstrates a single-line comment, which starts with the // character sequence.
This comment documents that the cards array has room to store the entire Deck of Cards. I formally
introduced single-line comments in Chapter 2.

The second step in converting Listing B-2’s pseudocode to Java involves introducing a FourOfAKind
class whose main() method contains the Java code equivalent of this pseudocode. Listing B-6
presents FourOfAKind.

Listing B-6. FourOfAKind Application Source Code

/**
 * <code>FourOfAKind</code> implements a card game that is played between two
 * players: one human player and the computer. You play this game with a
 * standard 52-card deck and attempt to beat the computer by being the first
 * player to put down four cards that have the same rank (four aces, for
 * example), and win.
 *
 * <p>
 * The game begins by shuffling the deck and placing it face down. Each
 * player takes a card from the top of the deck. The player with the highest
 * ranked card (king is highest) deals four cards to each player starting

724 APPENDIX B: Four of a Kind

 * with the other player. The dealer then starts its turn.
 *
 * <p>
 * The player examines its cards to determine which cards are optimal for
 * achieving four of a kind. The player then throws away one card on a
 * discard pile and picks up another card from the top of the deck. If the
 * player has four of a kind, the player puts down these cards (face up) and
 * wins the game.
 *
 * @author Jeff Friesen
 * @version 1.0
 */

public class FourOfAKind
{
 /**
 * Human player
 */

 final static int HUMAN = 0;

 /**
 * Computer player
 */

 final static int COMPUTER = 1;

 /**
 * Application entry point.
 *
 * @param args array of command-line arguments passed to this method
 */

 public static void main(String[] args)
 {
 System.out.println("Welcome to Four of a Kind!");
 Deck deck = new Deck(); // Deck automatically shuffled
 DiscardPile discardPile = new DiscardPile();
 Card hCard;
 Card cCard;
 while (true)
 {
 hCard = deck.deal();
 cCard = deck.deal();
 if (hCard.rank() != cCard.rank())
 break;
 deck.putBack(hCard);
 deck.putBack(cCard);
 deck.shuffle(); // prevent pathological case where every successive
 } // pair of cards have the same rank
 int curPlayer = HUMAN;
 if (cCard.rank().ordinal() > hCard.rank().ordinal())

725APPENDIX B: Four of a Kind

 curPlayer = COMPUTER;
 deck.putBack(hCard);
 hCard = null;
 deck.putBack(cCard);
 cCard = null;
 Card[] hCards = new Card[4];
 Card[] cCards = new Card[4];
 if (curPlayer == HUMAN)
 for (int i = 0; i < 4; i++)
 {
 cCards[i] = deck.deal();
 hCards[i] = deck.deal();
 }
 else
 for (int i = 0; i < 4; i++)
 {
 hCards[i] = deck.deal();
 cCards[i] = deck.deal();
 }
 while (true)
 {
 if (curPlayer == HUMAN)
 {
 showHeldCards(hCards);
 int choice = 0;
 while (choice < 'A' || choice > 'D')
 {
 choice = prompt("Which card do you want to throw away (A, B, " +
 "C, D)? ");
 switch (choice)
 {
 case 'a': choice = 'A'; break;
 case 'b': choice = 'B'; break;
 case 'c': choice = 'C'; break;
 case 'd': choice = 'D';
 }
 }
 discardPile.setTopCard(hCards[choice - 'A']);
 hCards[choice - 'A'] = deck.deal();
 if (isFourOfAKind(hCards))
 {
 System.out.println();
 System.out.println("Human wins!");
 System.out.println();
 putDown("Human's cards:", hCards);
 System.out.println();
 putDown("Computer's cards:", cCards);
 return; // Exit application by returning from main()
 }
 curPlayer = COMPUTER;
 }

726 APPENDIX B: Four of a Kind

 else
 {
 int choice = leastDesirableCard(cCards);
 discardPile.setTopCard(cCards[choice]);
 cCards[choice] = deck.deal();
 if (isFourOfAKind(cCards))
 {
 System.out.println();
 System.out.println("Computer wins!");
 System.out.println();
 putDown("Computer's cards:", cCards);
 return; // Exit application by returning from main()
 }
 curPlayer = HUMAN;
 }
 if (deck.isEmpty())
 {
 while (discardPile.topCard() != null)
 deck.putBack(discardPile.getTopCard());
 deck.shuffle();
 }
 }
 }

 /**
 * Determine if the <code>Card</code> objects passed to this method all
 * have the same rank.
 *
 * @param cards array of <code>Card</code> objects passed to this method
 *
 * @return true if all <code>Card</code> objects have the same rank;
 * otherwise, false
 */

 static boolean isFourOfAKind(Card[] cards)
 {
 for (int i = 1; i < cards.length; i++)
 if (cards[i].rank() != cards[0].rank())
 return false;
 return true;
 }

 /**
 * Identify one of the <code>Card</code> objects that is passed to this
 * method as the least desirable <code>Card</code> object to hold onto.
 *
 * @param cards array of <code>Card</code> objects passed to this method
 *
 * @return 0-based rank (ace is 0, king is 13) of least desirable card
 */

727APPENDIX B: Four of a Kind

 static int leastDesirableCard(Card[] cards)
 {
 int[] rankCounts = new int[13];
 for (int i = 0; i < cards.length; i++)
 rankCounts[cards[i].rank().ordinal()]++;
 int minCount = Integer.MAX_VALUE;
 int minIndex = -1;
 for (int i = 0; i < rankCounts.length; i++)
 if (rankCounts[i] < minCount && rankCounts[i] != 0)
 {
 minCount = rankCounts[i];
 minIndex = i;
 }
 for (int i = 0; i < cards.length; i++)
 if (cards[i].rank().ordinal() == minIndex)
 return i;
 return 0; // Needed to satisfy compiler (should never be executed)
 }

 /**
 * Prompt the human player to enter a character.
 *
 * @param msg message to be displayed to human player
 *
 * @return integer value of character entered by user.
 */

 static int prompt(String msg)
 {
 System.out.print(msg);
 try
 {
 int ch = System.in.read();
 // Erase all subsequent characters including terminating \n newline
 // so that they do not affect a subsequent call to prompt().
 while (System.in.read() != '\n');
 return ch;
 }
 catch (java.io.IOException ioe)
 {
 }
 return 0;
 }

 /**
 * Display a message followed by all cards held by player. This output
 * simulates putting down held cards.
 *
 * @param msg message to be displayed to human player
 * @param cards array of <code>Card</code> objects to be identified
 */

728 APPENDIX B: Four of a Kind

 static void putDown(String msg, Card[] cards)
 {
 System.out.println(msg);
 for (int i = 0; i < cards.length; i++)
 System.out.println(cards[i]);
 }

 /**
 * Identify the cards being held via their <code>Card</code> objects on
 * separate lines. Prefix each line with an uppercase letter starting with
 * <code>A</code>.
 *
 * @param cards array of <code>Card</code> objects to be identified
 */

 static void showHeldCards(Card[] cards)
 {
 System.out.println();
 System.out.println("Held cards:");
 for (int i = 0; i < cards.length; i++)
 if (cards[i] != null)
 System.out.println((char) ('A' + i) + ". " + cards[i]);
 System.out.println();
 }
}

Listing B-6 follows the steps outlined by and expands on Listing B-2’s pseudocode. Because of the
various comments, I don’t have much to say about this listing. However, there are a couple of items
that deserve mention:

 Card’s nested Rank enum stores a sequence of 13 Rank objects beginning
with ACE and ending with KING. These objects cannot be compared directly
via > to determine which object has the greater rank. However, their integer-
based ordinal (positional) values can be compared by calling the Rank object’s
ordinal() method. For example, Card.ACE_OF_SPADES.rank().ordinal() returns
0 because ACE is located at position 0 within Rank’s list of Rank objects, and
Card.KING_OF_CLUBS.rank().ordinal() returns 12 because KING is located at
the last position in this list.

The leastDesirableCard() method counts the ranks of the Cards in the array of
four Card objects passed to this method and stores these counts in a rankCounts
array. For example, given two of clubs, ace of spades, three of clubs, and ace
of diamonds in the array passed to this method, rankCounts identifies one two,
two aces, and one three. This method then searches rankCounts from smallest
index (representing ace) to largest index (representing king) for the first smallest
nonzero count (there might be a tie, as in one two and one three)—a zero count
represents no Cards having that rank in the array of Card objects. Finally, the
method searches the array of Card objects to identify the object whose rank
ordinal matches the index of the smallest nonzero count and returns the index of
this Card object.This behavior implies that the least desirable card is always the

729APPENDIX B: Four of a Kind

smallest ranked card. For example, given two of spades, three of diamonds, five
of spades, and nine of clubs, two of spades is least desirable because it has the
smallest rank.

Also, when there are multiple cards of the same rank, and when this rank is
smaller than the rank of any other card in the array, this method will choose the
first (in a left-to-right manner) of the multiple cards having the same rank as the
least desirable card. For example, given (in this order) two of spades, two of
hearts, three of diamonds, and jack of hearts, two of spades is least desirable
because it’s the first card with the smallest rank. However, when the rank of the
multiple cards isn’t the smallest, another card with the smallest rank is chosen
as least desirable.

The JDK provides a javadoc tool that extracts all Javadoc comments from one or more source files
and generates a set of HTML files containing this documentation in an easy-to-read format. These
files serve as the program’s documentation.

For example, suppose that the current directory contains Card.java, Deck.java, DiscardPile.java,
and FourOfAKind.java. To extract all of the Javadoc comments that appear in these files, specify the
following command:

javadoc *.java

The javadoc tool responds by outputting the following messages:

Loading source file Card.java...
Loading source file Deck.java...
Loading source file DiscardPile.java...
Loading source file FourOfAKind.java...
Constructing Javadoc information...
Standard Doclet version 1.7.0_06
Building tree for all the packages and classes...
Generating \Card.html...
Generating \Card.Rank.html...
Generating \Card.Suit.html...
Generating \Deck.html...
Generating \DiscardPile.html...
Generating \FourOfAKind.html...
Generating \package-frame.html...
Generating \package-summary.html...
Generating \package-tree.html...
Generating \constant-values.html...
Building index for all the packages and classes...
Generating \overview-tree.html...
Generating \index-all.html...
Generating \deprecated-list.html...
Building index for all classes...
Generating \allclasses-frame.html...
Generating \allclasses-noframe.html...
Generating \index.html...
Generating \help-doc.html...

730 APPENDIX B: Four of a Kind

javadoc defaults to generating HTML-based documentation for public classes and public/protected
members of classes. You learned about public classes and public/protected members of classes
in Chapter 3.

For this reason, FourOfAKind’s documentation reveals only the public main() method. It doesn’t
reveal isFourOfAKind() and the other package-private methods. If you want to include these
methods in the documentation, you must specify -package with javadoc:

javadoc -package *.java

Figure B-1. Viewing the entry-point page in the generated Javadoc for FourOfAKind and supporting classes

Note The standard class library’s documentation from Oracle was also generated by javadoc and
adheres to the same format.

Furthermore, it generates a series of files, including the index.html entry-point file. If you point your
web browser to this file, you should see a page that is similar to the page shown in Figure B-1.

731APPENDIX B: Four of a Kind

Compiling, Running, and Distributing FourOfAKind
Unlike Chapter 1’s DumpArgs and EchoText applications, which each consist of one source file,
FourOfAKind consists of Card.java, Deck.java, DiscardPile.java, and FourOfAKind.java. You can
compile all four source files via the following command line:

javac FourOfAKind.java

The javac tool launches the Java compiler, which recursively compiles the source files of the various
classes it encounters during compilation. Assuming successful compilation, you should end up with
six classfiles in the current directory.

Tip You can compile all Java source files in the current directory by specifying javac *.java.

After successfully compiling FourOfAKind.java and the other three source files, specify the following
command line to run this application:

java FourOfAKind

In response, you see an introductory message and the four cards that you are holding. The following
output reveals a single session:

Welcome to Four of a Kind!

Held cards:
A. SIX_OF_CLUBS
B. QUEEN_OF_DIAMONDS
C. SIX_OF_HEARTS
D. SIX_OF_SPADES

Which card do you want to throw away (A, B, C, D)? B

Held cards:
A. SIX_OF_CLUBS
B. NINE_OF_HEARTS
C. SIX_OF_HEARTS
D. SIX_OF_SPADES

Which card do you want to throw away (A, B, C, D)? B

Held cards:
A. SIX_OF_CLUBS
B. FOUR_OF_DIAMONDS
C. SIX_OF_HEARTS
D. SIX_OF_SPADES

732 APPENDIX B: Four of a Kind

Which card do you want to throw away (A, B, C, D)? B

Held cards:
A. SIX_OF_CLUBS
B. KING_OF_HEARTS
C. SIX_OF_HEARTS
D. SIX_OF_SPADES

Which card do you want to throw away (A, B, C, D)? B

Held cards:
A. SIX_OF_CLUBS
B. QUEEN_OF_CLUBS
C. SIX_OF_HEARTS
D. SIX_OF_SPADES

Which card do you want to throw away (A, B, C, D)? B

Held cards:
A. SIX_OF_CLUBS
B. KING_OF_DIAMONDS
C. SIX_OF_HEARTS
D. SIX_OF_SPADES

Which card do you want to throw away (A, B, C, D)? B

Held cards:
A. SIX_OF_CLUBS
B. TWO_OF_HEARTS
C. SIX_OF_HEARTS
D. SIX_OF_SPADES

Which card do you want to throw away (A, B, C, D)? B

Held cards:
A. SIX_OF_CLUBS
B. FIVE_OF_DIAMONDS
C. SIX_OF_HEARTS
D. SIX_OF_SPADES

Which card do you want to throw away (A, B, C, D)? B

Held cards:
A. SIX_OF_CLUBS
B. JACK_OF_CLUBS
C. SIX_OF_HEARTS
D. SIX_OF_SPADES

733APPENDIX B: Four of a Kind

Which card do you want to throw away (A, B, C, D)? B

Held cards:
A. SIX_OF_CLUBS
B. TWO_OF_SPADES
C. SIX_OF_HEARTS
D. SIX_OF_SPADES

Which card do you want to throw away (A, B, C, D)? B

Human wins!

Human's cards:
SIX_OF_CLUBS
SIX_OF_DIAMONDS
SIX_OF_HEARTS
SIX_OF_SPADES

Computer's cards:
SEVEN_OF_HEARTS
TEN_OF_HEARTS
SEVEN_OF_CLUBS
SEVEN_OF_DIAMONDS

Although Four of a Kind isn’t much of a card game, you might decide to share the FourOfAKind
application with a friend. However, if you forget to include even one of the application’s five
supporting classfiles, your friend will not be able to run the application.

You can overcome this problem by bundling FourOfAKind’s six classfiles into a single JAR (Java
ARchive) file, which is a ZIP file that contains a special directory and the .jar file extension. You can
then distribute this single JAR file to your friend.

The JDK provides the jar tool for working with JAR files. To bundle all six classfiles into a JAR file
named FourOfAKind.jar, you could specify the following command line, where c tells jar to create a
JAR file and f identifies the JAR file’s name:

jar cf FourOfAKind.jar *.class

After creating the JAR file, try to run the application via the following command line:

java -jar FourOfAKind.jar

Instead of the application running, you’ll receive an error message having to do with the java
application launcher tool not knowing which of the JAR file’s six classfiles is the main classfile (the
file whose class’s main() method executes first).

You can provide this knowledge via a text file that’s merged into the JAR file’s manifest, a special file
named MANIFEST.MF that stores information about the contents of a JAR file and is stored in the JAR
file’s META-INF directory. Consider Listing B-7.

734 APPENDIX B: Four of a Kind

Note Now that you’ve finished this book, you’re ready to dig into Android app development. Check out
Apress’s Beginning Android and Android Recipes books for guidance. After you’ve learned some app
development basics, perhaps you might consider transforming Four of a Kind into an Android app.

Listing B-7. Identifying the Application’s Main Class

Main-Class: FourOfAKind

Listing B-7 tells java which of the JAR’s classfiles is the main classfile. (You must leave a blank line
after Main-Class: FourOfAKind.)

The following command line, which creates FourOfAKind.jar, includes m and the name of the text
field providing manifest content:

jar cfm FourOfAKind.jar manifest *.class

This time, java -jar FourOfAKind.jar succeeds and the application runs because java is able to
identify FourOfAKind as the main classfile.

735

 A
Absolute pathname, 689
accessEnclosingClass(), 154, 158
Additive operators, 40
Aligning Binary Strings, 287
AmericanRobin class, 656
American Standard Code for Information

Interchange (ASCII), 21
Android platform, 5
Annotations, declaration

developer() element, 212
dueDate() element, 212
id() element, 212
meta-annotations, 213
shuffle() method, 211
Stub annotation type, 211
stubbed-out method, 211
value() element, 212–213

Appendable out() method, 428
ArithmeticException

object, 44
run() method, 296

arraycopy() method, 317
Array index operator, 41
ArrayIndexOutOfBoundsException, 41, 267
Array initializers, 32
ArrayList, 218
ArrayList class, 681
ArrayStoreException, 232–234
Array type, 28, 220
AssertionError, 198, 206
Assertions, design-by-contract

class invariants, 205
postconditions, 204
preconditions, 202

Assignment operators, 41
Assignment statements, 46
available() method, 694

 B
Big-endian order, 574
Binary search, 683
Bitwise operators, 41
Bloch’s algorithm, 381
Boolean booleanValue(), 280
boolean equals(Object o), 280
Boolean expression, 48, 646
boolean isInfinite(double d) class, 676
boolean isInfinite() method, 283
Boolean literal, 31
boolean nextBoolean() method, 431
booleanValue() method, 281
Break and labeled break statements, 56
Buckets, 682
BufferedInputStream, 692
BufferedOutputStream, 692
BufferedReader class, 536
BufferOverflowException, 704
Buffers, creation

allocation and wrapping, 567
Buffer subclass’s duplicate()

method, 568
ByteBuffer allocateDirect(int

capacity), 566
ByteBuffer allocate(int

capacity), 566
ByteBuffer object, 567
ByteBuffer wrap, 566–567
read-only view buffer, 569
view buffer, 568–569

BufferUnderflowException, 704
ByteArrayOutputStream, 691
ByteBuffer

allocateDirect() method, 575
class, 565
subclass, 704

Byte(byte value), 286

Index

Index736

Bytecode, 4
ByteOrder class, 705
ByteOrder order() method, 574
Byte(String s), 286

 C
CallableStatement methods, 710
CannotConnectException class, 663
Canonical pathname, 689
Card class, 718
C/C++ features, 2–3
Channels

file
exception, 589
FileChannel position(long offset), 586
FileInputStream’s getChannel()

method, 583
FileLock lock(), 584
FileLock tryLock(), 586
FileOutputStream’s getChannel()

method, 583
int read(ByteBuffer buffer), 586
int write(ByteBuffer buffer), 587
long position(), 586
long size(), 586
main() method, 587–588
MappedByteBuffer map, 585
memory-mapped file I/O, 583
method, 585–586
output, 588
pointer, 583
question mark, 588
single command-line argument, 588
void force(boolean metadata), 584

Scatter/Gather I/O
definition, 580
direct byte buffer, 582
GatheringByteChannel, 582
main() method, 581–582
output, 582
ReadFileScatter() function, 580
read() method, 581
System.out.printf() method, 582
WritableByteChannel, 582
WriteFileGather() function, 580
write() method, 581

Channel superinterface’s close() method, 577

Character
class, 706
class methods, 676
encodings, 511–512
literal, 31
sets, 511–512

CircleInfo application, 698
ClassCastExceptions, 217–220, 234, 682
Classes and objects

arrays
gradeLetters, 99
ragged array, 102
syntactic sugar initializer, 100
temperatures array, 101

constructor parameters and local variables
declaring parameters, 68
differences, 68
expression value, 65
Image class, 65
java Image, 67
main() method, 67
noargument constructor, 68
PNG, 67
redundant code, 66

declaring and accessing instance fields
bytecode, 72
Car class, 70
Car object, 70
Car’s numDoors, 71
class’s constructor(s), 71

hiding information
Client code, 87
Employee class declaration, 85–86
implementation, 85
interface, 84
PrivateAccess class, 88
revising implementation, 86

Classfiles, 4, 171, 206, 733–734
Classic I/O API

file/directory
accept() method, 458–459
boolean canExecute() method, 455
boolean canRead() method, 455
boolean canWrite() method, 455
boolean exists() method, 455
boolean isDirectory(), 455
boolean isFile() method, 455

Index 737

boolean isHidden() method, 455
File[] listFiles(FileFilter filter) method, 457
File[] listFiles(FilenameFilter filter)

method, 457
File[] listFiles() method, 457
FilenameFilter interface, 457
long lastModified() method, 455
long length() method, 455
overloaded listFiles() methods, 459
overloaded list() methods, 457
String[] list(FilenameFilter filter)

method, 457
String[] list() method, 457

input stream
boolean markSupported() method, 477
BufferedInputStream, 493–494
classes, 475
DataInputStream, 494–496
FileInputStream, 479–481
FilterInputStream, 485
hierarchy, 474
JAR file, 475
Java packages, 475
methods, 477
object serialization and

deserialization, 496
PipedInputStream, 482–485
PrintStream, 510–511

output stream
BufferedOutputStream, 493–494
ByteArrayOutputStream, 478–479
classes, 475
DataOutputStream, 494–496
FileOutputStream, 479–481
FilterOutputStream, 485
hierarchy, 474
JAR file, 475
Java packages, 475
methods, 476
object serialization and

deserialization, 496
PipedOutputStream, 482–485
PrintStream, 510–511

pathname
absolute and abstract pathnames, 451
canonical pathname, 454
command-line argument, 454

empty abstract pathname, 451
empty pathname, 455
file/directory information, 456
file methods, learning, 453
java PathnameInfo, 454
parent and child pathnames, 452
relative pathname, 451
strings, 450–451
UNC pathnames, 451
Unix/Linux platform, 450
Windows platform, 450

RandomAccessFile
append() method, 470
boolean valid() method, 466
char readChar() method, 464
concrete java.io.RandomAccessFile

class, 462
FileDescriptor getFD() method, 464
FileDescriptor’s sync() method, 466
File file, String mode, 462
file pointer, 463
flat file database, 466–472
getFD() method, 465
int read(byte[] b) method, 464
int readInt() method, 464
int read() method, 464
int skipBytes(int n) method, 465
long getFilePointer() method, 464
long length() method, 464
metadata, 463
numRecs() method, 470
raf field, 470
RandomAccessFile’s close()

method, 470
read() method, 471
“r,” “rw,” “rws,” or “rwd” mode

argument, 463
select() method, 470
String pathname, String mode, 462
update() method, 470
void close() method, 464
void seek(long pos) method, 464
void setLength(long newLength)

method, 465
void sync() method, 466
void write(byte[] b) method, 465
void writeChars(String s) method, 465

Index738

void write(int b) method, 465
void writeInt(int i) method, 465
write() method, 471

writers and readers
character encodings, 511–512
character sets, 511–512
code points, 511
FileReader, 516–521
FileWriter, 516–521
vs. InputStream, 514
InputStreamReader, 514–516
vs. OutputStream, 514
OutputStreamWriter, 514–516
overview, 512–514

Classloader, 4, 171
Classpath, 171
clear() method, 705
Client socket’s close() method, 532
Cloneable interface, 652
clone() method, 241
CloneNotSupportedException, 652
Collection, 679
Collections Framework

ArrayDeque, 372–373
ArrayList class, 341–342, 681
arrays

binary search, 395
linear search, 394–395
static int binarySearch method, 394
static <T> List<T> asList method, 394
static void fill method, 394
static void sort method, 394
static <T> void sort method, 394

boolean addAll method, 331, 338
boolean add method, 331
boolean containsAll method, 331
boolean contains method, 331
boolean equals method, 331
boolean isEmpty() method, 332
boolean offerFirst method, 369
boolean offerLast method, 369
boolean offer method, 369
boolean removeAll method, 332
boolean removeFirstOccurrence

method, 370
boolean removeLastOccurrence

method, 371

boolean remove method, 332
boolean retainAll method, 332
collections class

birds class, 396–397
“empty” class methods, 396
emptyList() method, 397
toString() method, 397

E element() method, 369
E getFirst() method, 369
E getLast() method, 369
E get method, 338
E peekFirst() method, 370
E peekLast() method, 370
E peek() method, 370
E pollFirst() method, 370
E pollLast() method, 370
E poll() method, 370
E pop() method, 370
equivalent methods, 371
E removeFirst() method, 370
E removeLast() method, 371
E remove() method, 338, 370
E set method, 338
examine method, 371
generic type, 368
insert method, 371
integer indexes, 337
int hashCode() method, 332
int indexOf method, 338
int lastIndexOf method, 338
int size() method, 332
iterable interface

boolean hasNext() method, 334
col.iterator() method, 334
E next() method, 334
hasNext() method, 334
for loop statement, 335
void remove() method, 334

Iterator<E> descendingIterator() method, 368
Iterator<E> iterator() method, 332
legacy collection APIs

BitSet, 398–399
dictionary and hashtable class, 398
Oracle’s and Google’s BitSet

classes, 401
properties, 398
stack and vector class, 398
variable-length bitsets, 399–401

Classic I/O API (cont.)

Index 739

LinkedList class, 342–344, 681
ListIterator, 681
ListIterator<E> listIterator(int index)

method, 338
ListIterator<E> listIterator() method, 338
ListIterator methods, 339–340
List<E> subList method, 339
maps

boolean containsKey method, 373
boolean containsValue method, 373
boolean equals method, 373, 376
boolean isEmpty() method, 374
Collection<V> values() method, 374
Colorful enum, 375
colorMap, 376
definition, 682
entrySet() method, 376
EnumMap class, 683
generic type, 373
HashMap class, 378, 682
hashtable, 682
IdentityHashMap class, 683
int hashCode() method, 374, 376
int size() method, 374
K getKey() method, 376
navigable map, 683
Set<Map.Entry<K,V>> entrySet()

method, 373
sorted map, 683
TreeMap class, 377–378, 682
V get method, 373
V getValue() method, 376
void clear() method, 373
void putAll method, 374
V put method, 374
V remove method, 374
V setValue method, 376

navigable maps
generic type, 390
K ceilingKey method, 390
K floorKey method, 391
K higherKey method, 391
K lowerKey method, 392
Map.Entry<K,V> ceilingEntry

method, 390
Map.Entry<K,V> firstEntry(), 391
Map.Entry<K,V> floorEntry method, 391
Map.Entry<K,V> higherEntry method, 391

Map.Entry<K,V> lastEntry() method, 391
Map.Entry<K,V> lowerEntry method, 391
Map.Entry<K,V> pollFirstEntry()

method, 392
Map.Entry<K,V> pollLastEntry()

method, 392
NavigableMap<K,V> descending

Map(), 391
NavigableMap<K,V> headMap

method, 391
NavigableMap<K,V> subMap

method, 392
NavigableMap<K,V> tailMap

method, 392
NavigableSet<K> descending

KeySet(), 390
NavigableSet<K> navigableKeySet()

method, 392
System.out.println(“Map = ” + nm);

method, 393
tree map, 392–393

navigable sets
closest-match methods, 363
E ceiling method, 361
E floor method, 361
E higher method, 361
E lower method, 361
E pollFirst() method, 361
E pollLast() method, 362
generic type, 361
integers, 362–363
Iterator<E> descendingIterator()

method, 361
NavigableSet<E> descendingSet()

method, 361
NavigableSet<E> headSet method, 361
NavigableSet<E> tailSet method, 362
pollFirst() method, 363
pollLast() method, 363
TreeSet, 361

node, 681
Object[] toArray() method, 332
queues

boolean add method, 364
boolean offer method, 364
definition, 682
E element() method, 364
element() method, 682

Index740

empty queue, 682
E peek() method, 364
E poll() method, 364
E remove() method, 364
FIFO, 364
generic type, 364
LIFO, 364
NELEM elements, 368
offer() method, 365
priority queue, 364
PriorityQueue class, 365–368, 682

remove method, 371
sequence, 681
sets

add() method, 682
definition, 681
EnumSet class, 350, 681
HashSet class, 346, 681
navigable set, 682
sorted set, 682
TreeSet class, 344–346, 681

sorted maps
Collection<V> values() method, 389
Comparator<? super K>

comparator(), 388
K firstKey(), 388
K lastKey(), 388
office supply names and quantities, 389
Set<Map.Entry<K,V>> entrySet()

method, 388
Set<K> keySet() method, 388
SortedMapDemo, 390
SortedMap<K, V> headMap method, 388
SortedMap<K, V> subMap method, 388
SortedMap<K, V> tailMap method, 389
toString() methods, 388

sorted sets
ClassCastException instance, 358
class implement Comparable, 358
closed range/closed interval, 356
comparator() method, 356
Comparator<? super E> comparator()

method, 354
compareTo() method, 359
Contract-Compliant Employee

Class, 359–360
Custom Employee Class, 357

documentation, 353
E first() method, 354
E last() method, 354
fruit and vegetable names, 355–356
generic type, 353
headSet() method, 356
list-based range view, 354–355
open range/open interval, 357
ordering, 359
size, 356
SortedSetDemo, 356
SortedSet<E> headSet(E toElement)

method, 354
SortedSet<E> subSet(E fromElement,

E toElement) method, 354
SortedSet<E> tailSet(E fromElement)

method, 354
SortedSet’s contract, 359
tailSet() method, 356
toString() methods, 353
TreeSet, 353

subList() method, 340, 681
<T> T[] toArray method, 333
view, 681
void addFirst method, 368
void addLast method, 368
void add method, 337
void clear() method, 331
void push method, 370

ColoredPoint array, 233
compareTo() method, 241, 329
compile() methods, 706
Compile-time search, 171
Concrete parameterized type, 220
Concrete type, 220
Concurrency utilities

executors
callable tasks, 411
call() method, 416, 686
class methods, 413
definition, 408, 686
divide() method, 416
Euler’s number e, 414
ExecutionException, 416
ExecutorService methods, 409, 412
future, 686
Future’s methods, 411–412
get() method, 413

Collections Framework (cont.)

Index 741

IllegalArgumentException, 414
interface limitations, 408, 686
isDone() method, 416
main() method, 415
newFixedThreadPool() method, 415, 686
nThreads, 414, 686
RejectedExecutionException, 408
run() method, 686
runnable, 408
shutdownNow(), 416
submit() method, 413
task decoupling, 408
TimeUnit, 411

synchronizers
atomic variables, 425, 687
await() method, 419
BlockingDeque, 420
BlockingQueue, 420–422
ConcurrentLinkedQueue, 420
ConcurrentMap, 420
ConcurrentNavigableMap, 420
ConcurrentSkipListSet, 420
CopyOnWriteArrayList, 420
CopyOnWriteArraySet, 420
countdown latch, 417
CountDownLatch class, 417–419
countDown() method, 419
cyclic barrier, 417
definition, 686
exchanger, 417
locks, 422, 687
NTHREADS, 419
run() method, 419
semaphore, 417
types, 687

Conditional operators, 42
Connection’s DatabaseMetaData

getMetaData() method, 633
Console class, 663
Constant interfaces, 177–178
Continue and labeled continue statements, 58
Control-flow invariants, 201
CookieHandler class, 555
CookieHandler getDefault() class method, 555
CookieManager class, 556
Copy application, 695, 706
copyList() class method, 229–231
Countdown latch, 687

CountingThreads application, 678
createNewFile() method, 690
createTempFile(String, String)

method, 690
currentTimeMillis() class

method, 317, 426
Custom deserialization, 692
Custom serialization, 692
Cyclic barrier, 687

 D
Database, 709
Database management system, 709
DatagramPacket

class, 536–539, 541, 700
int getLength() method, 542

DatagramSocket class, 537–539, 700
DatagramSocketImpl class, 530
DataInputStream, 692
DataOutputStream, 692
Data source, 709
Date class, 687
Deck class, 214, 719
Default deserialization, 692
defaultReadObject() method, 693
Default serialization, 692
defaultWriteObject() method, 693
DeflaterOutputStream superclass, 436
deleteOnExit() method, 690
denomValue() method, 237–238
Deprecated annotation, 666
DERBY_HOME, 608
Deserialization, 692
DigitsToWords application, 674
@Documented-annotated annotation

types, 215
DomesticCanary class, 656
Double(double value), 283
double nextGaussian() method, 431
Double’s equals() Method, 284
Double(String s), 283
doubleToIntBits() method, 284
doubleValue() method, 283
Double variable, 676
Do-while statement, 55
DriverManager’s getConnection()

methods, 616
DumpArgs application source code, 23

Index742

 E
EchoClient application, 533–535, 701
EchoServer application, 535–536, 702
empListArray, 234
Employee objects, 218
Employees database, 610
Empty queue, 682
Empty statement, 55
EnclosedClass, 227
Enumerated types, 234, 668
EnumMap class, 683
Enums

coins identification, 234
int constants, 235
String constants, 235
weekdays identification, 235

EnumSet class, 681
enumType method, 241
equals() method, 241, 284
Escape clause, 710
Escape sequences, 30
EVDump application, 679
Exceptions

cleanup
closing files after handling, 191
closing files before handling, 192
compilation, 192
Copy application class, 192
printStackTrace(), 193

handling
ArithmeticException, 187
catch block, 187
multiple types, 188
rethrowing, 190
try statement, 187

source code
custom exception classes, 183
error codes vs. objects, 180
throwable class hierarchy, 180

throwing
convert() method, 184–185
IllegalArgumentException, 186
NullPointerException, 186
throws clauses, 186
throw statements, 185–186

Exchanger, 687
exec(String program) method, 677

Executors, 686
ExecutorService, 413
exists() method, 690
Exploring threads

runnable and thread
ArithmeticException, 296
boolean isAlive(), 290
boolean isDaemon(), 290
boolean isInterrupted(), 290
counting threads pair, 291
java.lang.ArithmeticException, 296
join() method, 294
main() method, 291
multilevel feedback queue, 293
operating system, 292
operating system’s threading

architecture, 289
refactors, 293
run() method, 289
setUncaughtExceptionHandler(), 297
static boolean interrupted(), 290
static Thread currentThread(), 290
static void sleep(long time), 290
String getName(), 290
thd.setUncaughtException

Handler(uceh), 298
ThreadGroup getThreadGroup()

method, 295
Thread’s isAlive() method, 294
Thread.sleep(100), 294
Thread’s start() method, 291
Thread.State getState(), 290
Thread.UncaughtExceptionHandler, 296
uncaught exception handlers, 297
void interrupt(), 290
void join(), 290
void join(long millis), 290
void setDaemon(boolean isDaemon), 290
void setName(String threadName), 290
void start(), 290
worker thread, 294

thread synchronization
getNextID() method, 301
Husband thread, 300
isStopped() method, 304
java.lang.Object’s wait() method, 305
lack-of-synchronization, 301
lock, 301

Index 743

main() method, 303
multiprocessor/multicore machine, 303
notifyAll() method, 305
notify() method, 305
Problematic Checking Account, 298
producer-consumer relationship, 306
static boolean holdsLock(Object o)

method, 301
static synchronized int getNextID(), 302
StoppableThread, 303
stopThread() method, 304
thread Communication, 304
Thread.sleep() method, 300
Wife thread, 300

Externalization, 692–693

 F
File channel, 706
File class, 664, 689
file.encoding system property, 694
FileFilter, 690
FileInputStream, 691–692
FilenameFilter, 458, 690
FileNotFoundException, 188–189
File objects, 690
FileOutputStream, 691–692
File pointer, 691
FileReader class, 694
Filesystems, 689
FileWriter class, 694
Filter stream, 691
finalize() method, 241
First-in, first-out (FIFO) queue, 364
Flat file database, 691
Float(double value), 283
Float(float value), 283
Floating-point literal, 31
Floating-point value, 574
float nextFloat() method, 431
Float’s equals() method, 284
Float(String s), 283
floatToIntBits() method, 284
flush() method, 691
Formatter class, 428, 687
forName() class method, 216
forName() method, 216
For statement, 52
FrequencyDemo application, 685

 G
GatheringByteChannel interface, 581–582, 705
G2D class, 661
getAndIncrement() method, 426
getAnnotation() method, 216
getBoolean(), 281
getCanonicalFile() method, 690
getClass() method, 241
getCookieStore() method, 556–557
getDeclaringClass() method, 241
getErrorStream(), 322
getExistingFormat() method, 184
getExpectedFormat() method, 184
getInputStream() method, 322, 677
getMethods() method, 216
getName() method, 218, 690, 700
getNetworkPrefixLength() method, 700
getNextID() method, 301, 426
getParent() method, 690
getRadius() method, 654
Google, 5
Greedy quantifier, 706

 H
hashCode() method, 241, 284, 653
Hash codes, 682
HashMap class, 682
HashSet class, 681
hasNext() method, 218
“hasNext” methods, 687
Hierarchical databases, 709
HTTP cookie, 701
HttpURLConnection, 547
Huffman coding, 402
HyperText Transfer Protocol (HTTP), 543

 I
IdentityHashMap class, 683
If-else statement, 48
If statement, 47
IllegalArgumentException, 186, 548
index.html documentation, 24
InetAddress, 528–529
InetSocketAddress class, 529
InheritableThreadLocal, 677
InputStream class, 699

Index744

InputStream getErrorStream(), 320
InputStream getInputStream(), 321
InputStreamReader class, 536, 694
int availableProcessors(), 319
int compareTo(Boolean b), 280
int constants, 668
Integer, 5
Integer(int value), 286
Integer literal, 31
Integer-oriented methods, 286
Integer(String s), 286
Internal invariants, 200
Internet, 525, 698–699
Internet Protocol (IP), 525, 699

address, 699
datagram, 552

Internet Protocol Version 4
(IPv4) address, 526

Internet Protocol Version 6
(IPv6) address, 526

InterruptibleChannel, 705
int exitValue(), 320
int getDatabaseMajorVersion()

method, 635
int getDatabaseMinorVersion()

methods, 635
int getErrorCode(), 616
int hashCode(), 280
int nextInt(int n) method, 431
int nextInt() method, 431
Intranet, 525, 698–699
int waitFor(), 321
InvalidClassException class, 692–693
InvalidMarkException, 704
InvalidMediaFormatException class, 184, 188
IOException, 188–190, 618, 677
IP. See Internet Protocol (IP)
isAnnotationPresent() method, 216
isBlank() method, 58
isCompatibleWith(), 273
isNegative() method, 281
isSorted() method, 205
isStopped() method, 304
Iterator interface, 165
iterator() method, 219
Iterator object, 166
Iterator<Throwable> iterator(), 616

 J, K
JarURLConnection, 547
Java, 1, 5–6

API
classic I/O, 17
collections, 17
concurrency utilities, 17
database, 18
language features, 17
language-oriented tasks, 17
networking, 18
New I/O, 18

EE, 5
inheritance

clone() method, 652
composition, 653
equals() method, 652
finalize() method, 653
immutable class, 651
implementation, 651–653
== operator, 652
overriding, 651
shallow vs. deep copying, 652
String class, 652
superclass, 651–652
toString() method, 653

interface
and abstract classes, 654
AmericanRobin class, 656
Animal class, 655, 657
Bird class, 655
Countable interface, 657
declaration, 654
DomesticCanary class, 656
feature, 654
Fish class, 656
hierarchy, 654
implementation, 654
inheritance, 654
marker, 654
RainbowTrout class, 656
refactored Animal Class, 658
SockeyeSalmon class, 657

language types
array, 28
integer, 26

Index 745

primitive, 26
user-defined types, 28

ME, 5
polymorphism

abstract class, 654
abstract methods, 654
covariant return type, 654
downcasting, 654
instanceof operator, 654
subtype, 653
supertype operation, 653

SE, 5
javac RuntimeDemo.java, 320
javac SystemDemo.java, 317
javac tool, 644
Java DataBase Connectivity (JDBC)

exception
application, 617
IOException, 618
SQLException, 616, 618, 620

metadata
catalogs, 633
Connection’s DatabaseMetaData

getMetaData() method, 633
dump() method, 635
Employee Data Source, 633
EMPLOYEES, 636
function escape clause, 635
int getDatabaseMajorVersion()

method, 635
int getDatabaseMinorVersion()

methods, 635
RDBMS, 633
ResultSet getCatalogs() method, 635
ResultSet getSchemas() method, 635
ResultSet getTables, 635
String getCatalogTerm() method, 635
String getSchemaTerm() method, 635
SYS schema stores, 636

statements
EMPLOYEES table, 620
executeQuery() method, 623
int executeUpdate(String sql), 620
ResultSet executeQuery(String sql), 620
ResultSet’s boolean next() method, 623
SQL statements, 620
SQL type/Java type mappings, 623

Javadoc comment, 23

java DumpArgs Curly Moe Larry, 9
java.io.InputStream, 314
java.io.tmpdir system property, 690
java.lang.ArithmeticException, 296
java.lang.NumberFormatException, 283
java.lang.Object’s clone() method, 207
java.lang.Object’s wait() method, 305
java.lang package system classes, 677
java.lang.UnsupportedOperationException, 563
java.nio.channels.FileChannel class, 583
java.nio.channels.ScatteringByteChannel

interface, 581
java.nio.HeapByteBuffer class, 566
java.nio.ReadOnlyBufferException, 563
JavaQuiz application, 683
Java Runtime Environment (JRE), 6
Java SE Development Kit (JDK), 6
java.util.concurrent.ThreadFactory, 414
JDBCDemo application, 710
JDK’s javadoc tool, 24
join() method, 294

 L
Language features

cloning
Date and Employee classes, 115
deep copying/ deep cloning, 114
shallow copying/ shallow cloning, 113

equality
hashCode() method, 118
identity check, 116
instanceof operator, 118
nonnull object references, 116
Point Objects, 117

extending classes
describe() method, 110
implementation inheritance, 111
inheriting member declarations, 107
“is-a” relationship, 106
multiple implementation inheritance, 111
@Override annotation, 111
overriding method, 109
superclass constructor, 108
System.out.println() method, 108

implementation inheritance
appointment calendar class, 122
encapsulation, 122

Index746

forwarding methods, 125
fragile base class problem, 124
logging behavior, 123
wrapper class, 126

implementing interfaces
colliding interfaces, 143
drawable interface, 140
fillable interface, 143

upcasting and late binding
array upcasting, 130
Circle class, 127
ColoredPoint array, 131
early binding, 130
graphics application’s Point and

Circle Classes, 128
Graphics Class, 130

Last-in, first-out (LIFO) queue, 364
lastModified() method, 690
Learning statement

decision statements
if-else statement, 48
if statement, 47
switch statement, 50

loop statements
do-while statement, 55
empty statement, 55
for statement, 52
while statement, 53

Linear congruential generator, 430
Linear search, 683
line.separator, 318
LinkedHashMap, 682
LinkedHashSet, 681
LinkedList class, 681
List interface, 219
ListIterator, 681
list() method, 690
List of Employee, 227, 229
List of Object, 227–228
List of String, 227–229
listRoots() method, 689
Little-endian order, 574
Local class, 659
lockInterruptibly() method, 422
lock() methods, 706
LoggerFactory class, 662
Logger interface, 180

Logical operators, 43
long freeMemory(), 319
Long integer value, 501, 693
Long(long value), 286
long maxMemory(), 319
long nextLong() method, 431
Long(String s), 286
long totalMemory(), 319
lookingAt() method, 706
Loops, 3
Loop statements, 51

 M
MAC address, 700
main() method, 23
Manifest typing, 709
MappedByteBuffer map, 585
mark(int) method, 691
Matcher class, 706
matches() method, 706
Math APIs

BigDecimal
balance field, 255
constructors and methods, 257
discountPercent, 260
floating-point-based invoice

calculations, 256
format() method, 257
InvoiceCalc application, 255
invoice calculations, 259–260
invoiceSubtotal, 260
NumberFormat getCurrencyInstance()

method, 256
ONE, TEN, and ZERO constants, 257
RoundingMode constants, 259
salesTaxPercent, 260
setScale() method, 260
subtotalBeforeTax, 260
toString() methods, 260

BigInteger
constructors and methods, 261
factorial() method, 262–264
int, 263
ONE, TEN, and ZERO constants, 261
two’s complement format, 261

MathContext instance, 416
Maximum Transmission Unit (MTU), 700

Language features (cont.)

Index 747

MAX_VALUE, 282
Member access operator, 43
Memory-leaking stack, 97
MergeArrays, 206
Meta-annotations, 213
Metadata, 710
MIN_VALUE, 282
Multicast group address, 540
Multicasting, 540, 700
MulticastSocket class, 700
MulticastSocket’s void joinGroup

(InetAddress mcastaddr) method, 542
Multiplicative operators, 44
MultiPrint application, 677

 N
name() method, 241
Native code, 4
Natural ordering, 328–329
NavigableSet<E> subSet method, 362
NEGATIVE_INFINITY, 283
Nested classes

anonymous classes
ACDemo class, 162
declaration and instantiation, 162
definition, 161
File and FilenameFilter classes, 163
Speakable interface, 163
Speaker class, 162

nonstatic member classes
declaration, 158
EnclosedClass, 158
EnclosingClass, 158
instance method, 158
list compiling, 161
ToDoArray instance, 159
ToDo class, 159
ToDoLlist, 161

static member classes
class and instance methods, 154
declaration, 154
Double and Float, 155–156
EnclosedClass, 154
EnclosingClass, 154
list compiling, 157
Rectangle, 155–156

Network Interface Card (NIC), 527
NetworkInterface class, 700

Networks
InterfaceAddress

enumeration, 553
getInterfaceAddresses() method, 552
methods, 552
NetInfo, 554

NetworkInterface
enumeration, 551, 553
getMTU() method, 552
methods, 549
NetInfo, 552

sockets
accept() method, 533
address, 528
binding, 531, 699
byte-oriented output stream, 536
client-side socket creation, 530
datagram packets, 536–539, 700
DatagramSocket class, 537–539, 700
definition, 699
EchoClient’s source code, 533
EchoServer’s source code, 535
InetAddress, 699
input and output stream, 531
IP address, 526, 699
IP datagrams, 526
java.lang.Thread object, 533
java.net package, 528
local host, 699
loopback interface, 699
MulticastSocket class, 540, 700
network management software, 527
options, 529, 699
packet, 699
port number, 526
proxy, 531, 699
server-side socket creation, 532
socket address, 529, 699
stream sockets, 530, 699
TCP, 527
UDP, 528
unicasting vs. multicasting, 700
void close() method, 535
void flush() method, 534

URL
definition, 543
URLConnection, 543
URLEncoder and URLDecoder, 547–548

Index748

New I/O (NIO), 561
boundary matchers and zer-length

matches, 595
character classes, 593–594, 706
definition, 589
int flags(), 589
left-to-right order, 592
line terminator, 593
Located message, 592
matcher, 591
Matcher class, 706
Matcher matcher(CharSequence input), 589
metacharacter, 593
Pattern class, 706
pattern method, 589–590
Pattern’s compile() methods, 590
PatternSyntaxException method, 590
practical, 598
quantifier, 596, 598, 706
source code application, 591–592
static boolean matches(String regex,

CharSequence input), 590
static Pattern compile(String regex), 589
static Pattern compile(String regex,

int flags), 589
static String quote(String s), 590
String pattern(), 590
String[] split(CharSequence input,

int limit), 590
String toString(), 590
zero-length match, 706

noargument void println() method, 693
Nonstatic member class, 659
Normal file, 690
Normalize, 689
NoSuchElementException, 682
NotConnectedException class, 663
NotSerializableException class, 692
nThreads, 414
NullPointerException, 186
NumberFormatException, 273, 286
Number superclass, 676

 O
objArray, 234
Object creation operator, 44
Object-oriented databases, 709

ObjectOutputStream, 692
Object serialization, 692
openConnection().getInputStream(), 700
openStream(), 700
== operator, 652
ordinal() method, 241
outputList()’s parameter type, 229
OutputStream class, 699
OutputStream getOutputStream()

method, 321, 531
OutputStreamWriter class, 536, 694
Override annotation, 666

 P
PackageInfo.class, 273, 275
Parent pathname, 689
p + arrayOffset(), 563
Parse command-line arguments, 285
parseDouble(), 285
parseFloat(), 285
Path, 689
Pattern class, 706
PipedInputStream, 691
PipedOutputStream, 691
Pointers, 3
Polymorphism, 126
Portable Network Graphics (PNG), 67
POSITIVE_INFINITY, 283
Possessive quantifier, 706
Precedence and associativity, 45
PreparedStatement, 624, 710
PreparedStatement superinterface, 710
Primitive type, 26
Primitive-type conversions, 33
println() methods, 693
printStackTrace() method, 186
PrintWriter, 536
PriorityQueue class, 682
Process methods, 320
Process object, 677
Producer-consumer relationship, 306
Protocol stack, 527
Pseudocode

Four of a Kind, 714–715
Java code conversion

Card class, 718
Deck class, 719

Index 749

enum, 718
merging suits and ranks, 716
process, 715

Pseudorandom numbers, 430, 671
Public noargument constructor, 693
put() and get() method, 569

 Q
Queue class, 223
QueueEmptyException class, 223
QueueFullException class, 223

 R
RainbowTrout class, 656
RandomAccessFile class, 690
Random class, 687
Random number generators, 430
ReadableByteChannel, 705
Reader classes, 694
readObject() method, 692
ReadOnlyBufferException, 569, 704
Recursive type bound, 226
ReentrantLock, 423
Refactored Animal class, 658
Reification, 232, 668
Relational database, 709
Relational operators, 44
Relative pathname, 689
Reluctant quantifier, 706
ReplaceText application, 708
ReportCreationException, 190
reset() method, 691, 705
ResultSet getSchemas() method, 635
ResultSet getTables, 635
Retention annotation type, 213
rnd() helper method, 203
RoundingMode constant, 672
run() method, 289, 296
RuntimeException, 182–183
Runtime.getRuntime().gc(), 319
Runtime methods, 320
Runtime search, 171

 S
Scanner class, 687
ScatteringByteChannel interface, 581, 705

ScheduledExecutorService, 413
SecurityManager getSecurityManager()

method, 316
seek(long) method, 691
Semaphore, 687
separatorChar class, 689
separator class, 689
Serialization, 692
ServerSocket() constructor, 700
ServerSocket’s Socket accept()

method, 532, 536
setCookiePolicy() method, 556
setUncaughtExceptionHandler(), 297
Shift operators, 45
Short(short value), 286
Short(String s), 286
SimpleApp derbyClient command line, 608
Simple expressions, 30
Simple Mail Transfer Protocol (SMTP)

process, 526
Single-line comments, 22
Slots, 682
SocketAddress, 529
SocketException, 537
SocketImpl class, 530
SocketOptions interface, 529–530, 699
Socket’s InputStream getInputStream()

method, 531
Socket’s void close() method, 531
SockeyeSalmon class, 657
SortedMap interface, 683
SortedShapesList class, 226
Split application, 696
split() method, 216
SQLException getNextException(), 616
SQLExceptions, 617
SQLNonTransientException, 710
SQLTransientException, 710
sqrt() method, 22
Stack class, 669
StackEmptyException class, 669
StackFullException class, 669
Statement method, 710
static boolean getBoolean(String name), 280
static boolean isDigit(char ch), 282
static boolean isInfinite(double d), 283
static boolean isInfinite(float f), 283
static boolean isLetter(char ch), 282

Index750

static boolean isLetterOrDigit(char ch), 282
static boolean isLowerCase(char ch), 282
static boolean isNaN(double d), 283
static boolean isNaN(float f), 283
static boolean isUpperCase(char ch), 282
static boolean isWhitespace(char ch), 282
static boolean parseBoolean(String s), 280
static Boolean valueOf(boolean b), 280
static Boolean valueOf(String s), 280
static char toLowerCase(char ch), 282
static char toUpperCase(char ch), 282
static double parseDouble(String s), 283
static float parseFloat(String s), 283
Static imports, 177
Static import statement, 660
static int floatToIntBits(float value), 283
static long doubleToLongBits(double value), 283
static String toBinaryString(int i), 286
static String toHexString(int i), 287
static String toOctalString(int i), 287
static String toString(boolean b), 280
static String toString(int i), 287
static synchronized int getNextID(), 302
StopCountingThreads application, 678
StoppableThread, 303
stopThread() method, 304
Stored procedure, 710
Stream, 691
Stream classes, 694
Stream unique identifier (SUID), 693
strictfp, 254–255
StrictMath, 254–255, 672
StringBuffer, 268, 270, 673
StringBuilder, 268, 270, 429
String getHeaderField(int n) method, 555
String getHeaderFieldKey(int n) method, 555
String getSQLState(), 616
StringIndexOutOfBoundsException, 267
String literal, 30
String object, 218
String toString(), 280
StubFinder application, 215
subList() method, 681
SuppressWarnings annotation, 666
Switch statement, 50
System.arraycopy(), 677
System.getProperty(“user.dir”), 689
System.out.print(), 53

 T
Target annotation type, 213
TempConversion enum, 239
Ternary operator, 34
TestLogger class, 664
thd.setUncaughtExceptionHandler(uceh), 298
ThreadGroup getThreadGroup() method, 295
Threads

methods, 290
synchronization

deadlock, 677
implementation, 676
long/double variables, 677
monitor-controlled critical section, 677
ThreadLocal class, 677
volatile, 677
wait() methods, 677

Thread’s currentThread() method, 291
Thread’s isAlive() method, 294
Thread’s start() method, 291
Thread.UncaughtExceptionHandler, 296
toAlignedBinaryString() method, 287
toBinaryString(), 287
toByteArray() method, 691
toDenomination() method, 237
toDenomValue() method, 238
ToDoArray class, 159
ToDoList class, 159, 165
Token constants, 239
toString() method, 238, 241, 317, 429, 653
Touch application, 694
Transient reserved word, 692
Transmission Control Protocol (TCP), 525, 699
TreeMap class, 682–683
TreeSet class, 681
tryLock() methods, 422, 706
Type parameter, 220

compareTo() method, 226
multiple upper bounds, 224
recursive type bound, 226
SortedShapesList class, 226
unbounded type parameters, 224

 U
Unary minus/plus operators, 45
UncheckedException, 182
Unicasting, 700

Index 751

Uniform Resource Identifiers (URIs), 543
Uniform Resource Locator (URL), 543
Uniform Resource Name (URN), 543
Universal Naming Convention (UNC)

pathname, 451
UnsupportedEncodingException, 548
URLConnection class, 544, 555
URLDecoder class, 543, 547–548
URLEncoder class, 543, 547–548, 700
URL’s Object getContent() method, 557
URL(String s) constructor, 700
UseCompass class, 671
User Datagram Protocol (UDP), 525, 699
User-defined type, 28

 V
values() method, 238–239, 242
Varargs methods/constructors, 80
View buffer, 704
void destroy(), 320
void nextBytes(byte[] bytes) method, 431
void run() method, 289
void setDoInput(boolean doInput) method, 700

void setNextException
(SQLException sqlex), 617

void setSecurityManager
(SecurityManager sm) method, 316

 W
While statement, 53
Wildcards, 221, 227
WritableByteChannel, 705
writeObject() method, 692
Writer classes, 694

 X, Y
Xerial project, 615

 Z
ZipException, 438
ZipFile class, 442, 688
ZipInputStream class, 439–440, 442, 688
ZipList application, 688
ZipOutputStream class, 436–437, 439

	Cover
	Title Page
	Copyright Page
	Dedication Page
	Contents at a Glance
	Table of Contents
	About the Author
	About the Technical Reviewers
	Acknowledgments
	Introduction
	Book Organization
	First Edition vs. Second Edition
	What Comes Next?

	Chapter 1 Getting Started With Java
	What Is Java?
	Java Is a Language
	Java Is a Platform
	Java SE, Java EE, Java ME, and Android

	Installing and Exploring the JDK
	Installing and Exploring the Eclipse IDE
	Overview of Java APIs
	Language-Support and Other Language-Oriented APIs
	Collections-Oriented APIs
	Additional Utility APIs
	Classic I/O APIs
	Networking APIs
	New I/O APIs
	Database APIs

	Summary

	Chapter 2 Learning Language Fundamentals
	Learning Comments
	Single-Line Comments
	Multiline Comments
	Javadoc Comments

	Learning Identifiers
	Learning Types
	Primitive Types
	User-Defined Types
	Array Types

	Learning Variables
	Learning Expressions
	Simple Expressions
	Compound Expressions
	Additive Operators
	Array Index Operator
	Assignment Operators
	Bitwise Operators
	Cast Operator
	Conditional Operators
	Equality Operators
	Logical Operators
	Member Access Operator
	Method Call Operator
	Multiplicative Operators
	Object Creation Operator
	Relational Operators
	Shift Operators
	Unary Minus/Plus Operators
	Precedence and Associativity

	Learning Statements
	Assignment Statements
	Decision Statements
	If Statement
	If-Else Statement
	Switch Statement

	Loop Statements
	For Statement
	While Statement
	Do-While Statement
	Looping Over the Empty Statement

	Break and Labeled Break Statements
	Continue and Labeled Continue Statements

	Summary

	Chapter 3 Discovering Classes and Objects
	Declaring Classes and Instantiating Objects
	Declaring Classes
	Instantiating Objects with the New Operator and a Constructor
	Specifying Constructor Parameters and Local Variables

	Encapsulating State and Behaviors
	Representing State via Fields
	Declaring and Accessing Instance Fields
	Declaring and Accessing Class Fields
	Declaring Read-Only Instance and Class Fields
	Reviewing Field-Access Rules

	Representing Behaviors via Methods
	Declaring and Invoking Instance Methods
	Chaining Together Instance Method Calls
	Declaring and Invoking Class Methods
	Passing Arguments to Methods
	Returning from a Method via the Return Statement
	Invoking Methods Recursively
	Overloading Methods
	Reviewing Method-Invocation Rules

	Hiding Information

	Initializing Classes and Objects
	Class Initializers
	Instance Initializers
	Initialization Order

	Collecting Garbage
	Revisiting Arrays
	Summary

	Chapter 4 Discovering Inheritance, Polymorphism, and Interfaces
	Building Class Hierarchies
	Extending Classes
	The Ultimate Superclass
	Cloning
	Equality
	Finalization
	Hash Codes
	String Representation

	Composition
	The Trouble with Implementation Inheritance

	Changing Form
	Upcasting and Late Binding
	Abstract Classes and Abstract Methods
	Downcasting and Runtime Type Identification
	Covariant Return Types

	Formalizing Class Interfaces
	Declaring Interfaces
	Implementing Interfaces
	Extending Interfaces
	Why Use Interfaces?

	Summary

	Chapter 5 Mastering Advanced Language Features Part 1
	Mastering Nested Types
	Static Member Classes
	Nonstatic Member Classes
	Anonymous Classes
	Local Classes
	Interfaces within Classes

	Mastering Packages
	What Are Packages?
	Package Names Must Be Unique

	The Package Statement
	The Import Statement
	Searching for Packages and Types
	Compile-Time Search
	Runtime Search

	Playing with Packages
	Packages and JAR Files

	Mastering Static Imports
	Mastering Exceptions
	What Are Exceptions?
	Representing Exceptions in Source Code
	Error Codes vs. Objects
	The Throwable Class Hierarchy
	Checked Exceptions vs. Runtime Exceptions

	Custom Exception Classes

	Throwing Exceptions
	Handling Exceptions
	Handling Multiple Exception Types
	Rethrowing Exceptions

	Performing Cleanup

	Summary

	Chapter 6 Mastering Advanced Language Features Part 2
	Mastering Assertions
	Declaring Assertions
	Using Assertions
	Internal Invariants
	Control-Flow Invariants
	Design-by-Contract
	Preconditions
	Postconditions
	Class Invariants

	Avoiding Assertions
	Enabling and Disabling Assertions

	Mastering Annotations
	Discovering Annotations
	Declaring Annotation Types and Annotating Source Code
	Using Meta-Annotations in Annotation Type Declarations

	Processing Annotations

	Mastering Generics
	Collections and the Need for Type Safety
	Generic Types
	Declaring and Using Your Own Generic Types
	Type Parameter Bounds
	Type Parameter Scope
	The Need for Wildcards

	Generic Methods
	Arrays and Generics

	Mastering Enums
	The Trouble with Traditional Enumerated Types
	The Enum Alternative
	Enhancing an Enum

	The Enum Class
	Extending the Enum Class

	Summary

	Chapter 7 Exploring the Basic APIs Part 1
	Exploring the Math APIs
	Math and StrictMath
	BigDecimal
	BigInteger

	Exploring String Management
	String
	StringBuffer and StringBuilder

	Obtaining Package Information
	Summary

	Chapter 8 Exploring the Basic APIs Part 2
	Exploring the Primitive Type Wrapper Classes
	Boolean
	Character
	Float and Double
	Integer, Long, Short, and Byte
	Number

	Exploring Threads
	Runnable and Thread
	Thread Synchronization

	Exploring System Capabilities
	System
	Runtime and Process

	Summary

	Chapter 9 Exploring the Collections Framework
	Exploring Collections Framework Fundamentals
	Comparable Versus Comparator
	Iterable and Collection
	Iterator and the Enhanced For Loop Statement
	Autoboxing and Unboxing

	Exploring Lists
	ArrayList
	LinkedList

	Exploring Sets
	TreeSet
	HashSet
	EnumSet

	Exploring Sorted Sets
	Exploring Navigable Sets
	Exploring Queues
	PriorityQueue

	Exploring Deques
	ArrayDeque

	Exploring Maps
	TreeMap
	HashMap
	IdentityHashMap
	EnumMap

	Exploring Sorted Maps
	Exploring Navigable Maps
	Exploring the Arrays and Collections Utility APIs
	Exploring the Legacy Collection APIs
	Summary

	Chapter 10 Exploring Additional Utility APIs
	Exploring the Concurrency Utilities
	Executors
	Synchronizers
	Concurrent Collections
	Locks
	Atomic Variables

	Exploring the Date Class
	Exploring the Formatter Class
	Exploring the Random Class
	Exploring the Scanner Class
	Exploring the ZIP and JAR APIs
	Exploring the ZIP API
	Writing Files to a ZIP Archive
	Reading Files from a ZIP Archive

	Exploring the JAR API

	Summary

	Chapter 11 Performing Classic I/O
	Working with the File API
	Working with the RandomAccessFile API
	Working with Streams
	Stream Classes Overview
	OutputStream and InputStream
	ByteArrayOutputStream and ByteArrayInputStream
	FileOutputStream and FileInputStream
	PipedOutputStream and PipedInputStream
	FilterOutputStream and FilterInputStream
	BufferedOutputStream and BufferedInputStream
	DataOutputStream and DataInputStream
	Object Serialization and Deserialization
	Default Serialization and Deserialization
	Custom Serialization and Deserialization
	Externalization

	PrintStream

	Working with Writers and Readers
	Writer and Reader Classes Overview
	Writer and Reader
	OutputStreamWriter and InputStreamReader
	FileWriter and FileReader

	Summary

	Chapter 12 Accessing Networks
	Accessing Networks via Sockets
	Socket Addresses
	Socket Options
	Socket and ServerSocket
	DatagramSocket and MulticastSocket

	Accessing Networks via URLs
	URL and URLConnection
	URLEncoder and URLDecoder

	Accessing Network Interfaces and Interface Addresses
	Managing Cookies
	Summary

	Chapter 13 Migrating to New I/O
	Working with Buffers
	Buffer and Its Children
	Buffers in Depth
	Buffer Creation
	Writing and Reading Buffers
	Flipping Buffers
	Marking Buffers
	Buffer Subclass Operations
	Byte Ordering
	Direct Byte Buffers

	Working with Channels
	Channel and Its Children
	Channels in Depth
	Scatter/Gather I/O
	File Channels

	Working With Regular Expressions
	Pattern, PatternSyntaxException, and Matcher
	Character Classes
	Capturing Groups
	Boundary Matchers and Zero-Length Matches
	Quantifiers
	Practical Regular Expressions

	Summary

	Chapter 14 Accessing Databases
	Introducing Java DB
	Java DB Installation and Configuration
	Java DB Demos
	Java DB Command-Line Tools

	Introducing SQLite
	Accessing Databases via JDBC
	Data Sources, Drivers, and Connections
	Exceptions
	Statements
	Statement and ResultSet
	PreparedStatement
	CallableStatement

	Metadata

	Summary

	Appendix A Solutions to Exercises
	Chapter 1: Getting Started with Java
	Chapter 2: Learning Language Fundamentals
	Chapter 3: Discovering Classes and Objects
	Chapter 4: Discovering Inheritance, Polymorphism, and Interfaces
	Chapter 5: Mastering Advanced Language Features Part 1
	Chapter 6: Mastering Advanced Language Features Part 2
	Chapter 7: Exploring the Basic APIs Part 1
	Chapter 8: Exploring the Basic APIs Part 2
	Chapter 9: Exploring the Collections Framework
	Chapter 10: Exploring Additional Utility APIs
	Chapter 11: Performing Classic I/O
	Chapter 12: Accessing Networks
	Chapter 13: Migrating to New I/O
	Chapter 14: Accessing Databases

	Appendix B Four of a Kind
	Understanding Four of a Kind
	Modeling Four of a Kind in Pseudocode
	Converting Pseudocode to Java Code
	Compiling, Running, and Distributing FourOfAKind

	Index

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (ISO Coated v2 300% \050ECI\051)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.4
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket false
 /DefaultRenderingIntent /Perceptual
 /DetectBlends true
 /DetectCurves 0.1000
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /Warning
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 150
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.40
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /Warning
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 150
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.40
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /Warning
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /PDFA1B:2005
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (sRGB IEC61966-2.1)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /CreateJDFFile false
 /Description <<
 /ARA <FEFF0633062A062E062F0645002006470630064700200627064406250639062F0627062F0627062A002006440625064606340627062100200648062B062706260642002000410064006F006200650020005000440046002006450646062706330628062900200644063906310636002006480637062806270639062900200648062B06270626064200200627064406230639064506270644002E00200020064A06450643064600200641062A062D00200648062B0627062606420020005000440046002006270644062A064A0020062A0645002006250646063406270626064706270020062806270633062A062E062F062706450020004100630072006F00620061007400200648002000410064006F00620065002000520065006100640065007200200036002E00300020064806450627002006280639062F0647002E>
 /BGR <FEFF04180437043F043E043B043704320430043904420435002004420435043704380020043D0430044104420440043E0439043A0438002C00200437043000200434043000200441044A0437043404300432043004420435002000410064006F00620065002000500044004600200434043E043A0443043C0435043D04420438002C0020043F043E04340445043E0434044F044904380020043704300020043D04300434043504360434043D043E00200440043004370433043B0435043604340430043D0435002004380020043F04350447043004420430043D04350020043D04300020043104380437043D0435044100200434043E043A0443043C0435043D04420438002E00200421044A04370434043004340435043D043804420435002000500044004600200434043E043A0443043C0435043D044204380020043C043E0433043004420020043404300020044104350020043E0442043204300440044F0442002004410020004100630072006F00620061007400200438002000410064006F00620065002000520065006100640065007200200036002E0030002004380020043F043E002D043D043E043204380020043204350440044104380438002E>
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e55464e1a65876863768467e5770b548c62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200036002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc666e901a554652d965874ef6768467e5770b548c52175370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200036002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /CZE <FEFF0054006f0074006f0020006e006100730074006100760065006e00ed00200070006f0075017e0069006a007400650020006b0020007600790074007600e101590065006e00ed00200064006f006b0075006d0065006e0074016f002000410064006f006200650020005000440046002000760068006f0064006e00fd006300680020006b0065002000730070006f006c00650068006c0069007600e9006d0075002000700072006f0068006c00ed017e0065006e00ed002000610020007400690073006b00750020006f006200630068006f0064006e00ed0063006800200064006f006b0075006d0065006e0074016f002e002000200056007900740076006f01590065006e00e900200064006f006b0075006d0065006e0074007900200050004400460020006c007a00650020006f007400650076015900ed007400200076002000610070006c0069006b0061006300ed006300680020004100630072006f006200610074002000610020004100630072006f006200610074002000520065006100640065007200200036002e0030002000610020006e006f0076011b006a016100ed00630068002e>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650067006e006500720020007300690067002000740069006c00200064006500740061006c006a006500720065007400200073006b00e60072006d007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200036002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000520065006100640065007200200036002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f00620065002000500044004600200061006400650063007500610064006f007300200070006100720061002000760069007300750061006c0069007a00610063006900f3006e0020006500200069006d0070007200650073006900f3006e00200064006500200063006f006e006600690061006e007a006100200064006500200064006f00630075006d0065006e0074006f007300200063006f006d00650072006300690061006c00650073002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200036002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /ETI <FEFF004b00610073007500740061006700650020006e0065006900640020007300e400740074006500690064002c0020006500740020006c0075007500610020005000440046002d0064006f006b0075006d0065006e00740065002c0020006d0069007300200073006f00620069007600610064002000e4007200690064006f006b0075006d0065006e00740069006400650020007500730061006c006400750073007600e400e4007200730065006b0073002000760061006100740061006d006900730065006b00730020006a00610020007000720069006e00740069006d006900730065006b0073002e00200020004c006f006f0064007500640020005000440046002d0064006f006b0075006d0065006e0074006500200073006100610062002000610076006100640061002000760061006900640020004100630072006f0062006100740020006a0061002000410064006f00620065002000520065006100640065007200200036002e00300020006a00610020007500750065006d006100740065002000760065007200730069006f006f006e00690064006500670061002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f006200650020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200036002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /GRE <FEFF03A703C103B703C303B903BC03BF03C003BF03B903AE03C303C403B5002003B103C503C403AD03C2002003C403B903C2002003C103C503B803BC03AF03C303B503B903C2002003B303B903B1002003BD03B1002003B403B703BC03B903BF03C503C103B303AE03C303B503C403B5002003AD03B303B303C103B103C603B1002000410064006F006200650020005000440046002003BA03B103C403AC03BB03BB03B703BB03B1002003B303B903B1002003B103BE03B903CC03C003B903C303C403B7002003C003C103BF03B203BF03BB03AE002003BA03B103B9002003B503BA03C403CD03C003C903C303B7002003B503C003B103B303B303B503BB03BC03B103C403B903BA03CE03BD002003B503B303B303C103AC03C603C903BD002E0020002003A403B1002003AD03B303B303C103B103C603B10020005000440046002003C003BF03C5002003B803B1002003B403B703BC03B903BF03C503C103B303B703B803BF03CD03BD002003B103BD03BF03AF03B303BF03C503BD002003BC03B50020004100630072006F006200610074002003BA03B103B9002000410064006F00620065002000520065006100640065007200200036002E0030002003BA03B103B9002003BD03B503CC03C403B503C103B503C2002003B503BA03B403CC03C303B503B903C2002E>
 /HEB <FEFF05D405E905EA05DE05E905D5002005D105E705D105D905E205D505EA002005D005DC05D4002005DB05D305D9002005DC05D905E605D505E8002005DE05E105DE05DB05D9002000410064006F006200650020005000440046002005D405DE05EA05D005D905DE05D905DD002005DC05EA05E605D505D205D4002005D505DC05D405D305E405E105D4002005D005DE05D905E005D505EA002005E905DC002005DE05E105DE05DB05D905DD002005E205E105E705D905D905DD002E0020002005E005D905EA05DF002005DC05E405EA05D505D7002005E705D505D105E605D90020005000440046002005D1002D0020004100630072006F006200610074002005D505D1002D002000410064006F006200650020005200650061006400650072002005DE05D205E805E105D400200036002E0030002005D505DE05E205DC05D4002E>
 /HRV <FEFF004F0076006500200070006F0073007400610076006B00650020006B006F00720069007300740069007400650020006B0061006B006F0020006200690073007400650020007300740076006F00720069006C0069002000410064006F00620065002000500044004600200064006F006B0075006D0065006E007400650020006B006F006A00690020007300750020007000720069006B006C00610064006E00690020007A006100200070006F0075007A00640061006E00200070007200650067006C006500640020006900200069007300700069007300200070006F0073006C006F0076006E0069006800200064006F006B0075006D0065006E006100740061002E0020005300740076006F00720065006E0069002000500044004600200064006F006B0075006D0065006E007400690020006D006F006700750020007300650020006F00740076006F007200690074006900200075002000700072006F006700720061006D0069006D00610020004100630072006F00620061007400200069002000410064006F00620065002000520065006100640065007200200036002E0030002000690020006E006F00760069006A0069006D0020007600650072007A0069006A0061006D0061002E>
 /HUN <FEFF0045007a0065006b006b0065006c0020006100200062006500e1006c006c00ed007400e10073006f006b006b0061006c002000fc007a006c00650074006900200064006f006b0075006d0065006e00740075006d006f006b0020006d00650067006200ed007a00680061007400f30020006d00650067006a0065006c0065006e00ed007400e9007300e900720065002000e900730020006e0079006f006d00740061007400e1007300e10072006100200061006c006b0061006c006d00610073002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740075006d006f006b006100740020006b00e90073007a00ed0074006800650074002e002000200041007a002000ed006700790020006c00e90074007200650068006f007a006f007400740020005000440046002d0064006f006b0075006d0065006e00740075006d006f006b00200061007a0020004100630072006f006200610074002000e9007300200061007a002000410064006f00620065002000520065006100640065007200200036002c0030002d0073002000e900730020006b00e9007301510062006200690020007600650072007a006900f3006900760061006c0020006e00790069007400680061007400f3006b0020006d00650067002e>
 /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF adatti per visualizzare e stampare documenti aziendali in modo affidabile. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 6.0 e versioni successive.)
 /JPN <FEFF30d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200036002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a3067306f30d530a930f330c8306e57cb30818fbc307f3092884c3044307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020be44c988b2c8c2a40020bb38c11cb97c0020c548c815c801c73cb85c0020bcf4ace00020c778c1c4d558b2940020b3700020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200036002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /LTH <FEFF004e006100750064006f006b0069007400650020016100690075006f007300200070006100720061006d006500740072007500730020006e006f0072011700640061006d0069002000730075006b0075007200740069002000410064006f00620065002000500044004600200064006f006b0075006d0065006e007400750073002c002000740069006e006b0061006d0075007300200076006500720073006c006f00200064006f006b0075006d0065006e00740061006d00730020006b006f006b0079006200690161006b006100690020007000650072017e0069016b007201170074006900200069007200200073007000610075007300640069006e00740069002e002000530075006b00750072007400750073002000500044004600200064006f006b0075006d0065006e007400750073002000670061006c0069006d006100200061007400690064006100720079007400690020007300750020004100630072006f006200610074002000690072002000410064006f00620065002000520065006100640065007200200036002e00300020006200650069002000760117006c00650073006e0117006d00690073002000760065007200730069006a006f006d00690073002e>
 /LVI <FEFF004c006900650074006f006a00690065007400200161006f00730020006900650073007400610074012b006a0075006d00750073002c0020006c0061006900200069007a0076006500690064006f00740075002000410064006f00620065002000500044004600200064006f006b0075006d0065006e007400750073002c0020006b006100730020007000690065006d01130072006f00740069002000640072006f01610061006900200075007a01460113006d0075006d006100200064006f006b0075006d0065006e0074007500200073006b00610074012b01610061006e0061006900200075006e0020006400720075006b010101610061006e00610069002e00200049007a0076006500690064006f0074006f0073002000500044004600200064006f006b0075006d0065006e00740075007300200076006100720020006100740076011300720074002c00200069007a006d0061006e0074006f006a006f0074002000700072006f006700720061006d006d00750020004100630072006f00620061007400200075006e002000410064006f00620065002000520065006100640065007200200036002e003000200076006100690020006a00610075006e0101006b0075002000760065007200730069006a0075002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken waarmee zakelijke documenten betrouwbaar kunnen worden weergegeven en afgedrukt. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 6.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000650072002000650067006e0065007400200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200036002e003000200065006c006c00650072002e>
 /POL <FEFF004b006f0072007a0079007300740061006a010500630020007a00200074007900630068002000750073007400610077006900650144002c0020006d006f017c006e0061002000740077006f0072007a0079010700200064006f006b0075006d0065006e00740079002000410064006f00620065002000500044004600200070006f007a00770061006c0061006a01050063006500200077002000730070006f007300f300620020006e00690065007a00610077006f0064006e0079002000770079015b0077006900650074006c00610107002000690020006400720075006b006f00770061010700200064006f006b0075006d0065006e007400790020006600690072006d006f00770065002e00200020005500740077006f0072007a006f006e006500200064006f006b0075006d0065006e0074007900200050004400460020006d006f017c006e00610020006f007400770069006500720061010700200077002000700072006f006700720061006d0061006300680020004100630072006f00620061007400200069002000410064006f0062006500200052006500610064006500720020007700200077006500720073006a006900200036002e00300020006f00720061007a002000770020006e006f00770073007a00790063006800200077006500720073006a00610063006800200074007900630068002000700072006f006700720061006d00f30077002e004b006f0072007a0079007300740061006a010500630020007a00200074007900630068002000750073007400610077006900650144002c0020006d006f017c006e0061002000740077006f0072007a0079010700200064006f006b0075006d0065006e00740079002000410064006f00620065002000500044004600200070006f007a00770061006c0061006a01050063006500200077002000730070006f007300f300620020006e00690065007a00610077006f0064006e0079002000770079015b0077006900650074006c00610107002000690020006400720075006b006f00770061010700200064006f006b0075006d0065006e007400790020006600690072006d006f00770065002e00200020005500740077006f0072007a006f006e006500200064006f006b0075006d0065006e0074007900200050004400460020006d006f017c006e00610020006f007400770069006500720061010700200077002000700072006f006700720061006d0061006300680020004100630072006f00620061007400200069002000410064006f0062006500200052006500610064006500720020007700200077006500720073006a006900200036002e00300020006f00720061007a002000770020006e006f00770073007a00790063006800200077006500720073006a00610063006800200074007900630068002000700072006f006700720061006d00f30077002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f00620065002000500044004600200061006400650071007500610064006f00730020007000610072006100200061002000760069007300750061006c0069007a006100e700e3006f002000650020006100200069006d0070007200650073007300e3006f00200063006f006e0066006900e1007600650069007300200064006500200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200036002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /RUM <FEFF005500740069006C0069007A00610163006900200061006300650073007400650020007300650074010300720069002000700065006E007400720075002000610020006300720065006100200064006F00630075006D0065006E00740065002000410064006F006200650020005000440046002000610064006500630076006100740065002000700065006E007400720075002000760069007A00750061006C0069007A006100720065002000640065002000EE006E00630072006500640065007200650020015F0069002000700065006E00740072007500200069006D007000720069006D006100720065006100200064006F00630075006D0065006E00740065006C006F007200200064006500200061006600610063006500720069002E00200044006F00630075006D0065006E00740065006C00650020005000440046002000630072006500610074006500200070006F00740020006600690020006400650073006300680069007300650020006300750020004100630072006F0062006100740020015F0069002000410064006F00620065002000520065006100640065007200200036002E003000200073006100750020007600650072007300690075006E006900200075006C0074006500720069006F006100720065002E>
 /RUS <FEFF04180441043F043E043B044C043704430439044204350020044D044204380020043F043004400430043C043504420440044B0020043F0440043800200441043E043704340430043D0438043800200434043E043A0443043C0435043D0442043E0432002000410064006F006200650020005000440046002C0020043F043E04340445043E0434044F04490438044500200434043B044F0020043D0430043404350436043D043E0433043E0020043F0440043E0441043C043E044204400430002004380020043F043504470430044204380020043104380437043D04350441002D0434043E043A0443043C0435043D0442043E0432002E00200421043E043704340430043D043D044B043500200434043E043A0443043C0435043D0442044B00200050004400460020043C043E0436043D043E0020043E0442043A0440044B0442044C002C002004380441043F043E043B044C04370443044F0020004100630072006F00620061007400200438002000410064006F00620065002000520065006100640065007200200036002E00300020043B04380431043E00200438044500200431043E043B043504350020043F043E04370434043D043804350020043204350440044104380438002E>
 /SKY <FEFF0054006900650074006f0020006e006100730074006100760065006e0069006100200073006c00fa017e006900610020006e00610020007600790074007600e100720061006e0069006500200064006f006b0075006d0065006e0074006f007600200076006f00200066006f0072006d00e100740065002000410064006f006200650020005000440046002c0020006b0074006f007200e90020007300fa002000760068006f0064006e00e90020006e0061002000730070006f013e00610068006c0069007600e90020007a006f006200720061007a006f00760061006e006900650020006100200074006c0061010d0020006f006200630068006f0064006e00fd0063006800200064006f006b0075006d0065006e0074006f0076002e002000200056007900740076006f00720065006e00e900200064006f006b0075006d0065006e0074007900200076006f00200066006f0072006d00e10074006500200050004400460020006a00650020006d006f017e006e00e90020006f00740076006f00720069016500200076002000700072006f006700720061006d00650020004100630072006f0062006100740020006100200076002000700072006f006700720061006d0065002000410064006f006200650020005200650061006400650072002c0020007600650072007a0069006900200036002e003000200061006c00650062006f0020006e006f007601610065006a002e>
 /SLV <FEFF005400650020006E006100730074006100760069007400760065002000750070006F0072006100620069007400650020007A00610020007500730074007600610072006A0061006E006A006500200064006F006B0075006D0065006E0074006F0076002000410064006F006200650020005000440046002C0020007000720069006D00650072006E006900680020007A00610020007A0061006E00650073006C006A006900760020006F0067006C0065006400200069006E0020007400690073006B0061006E006A006500200070006F0073006C006F0076006E0069006800200064006F006B0075006D0065006E0074006F0076002E0020005500730074007600610072006A0065006E006500200064006F006B0075006D0065006E0074006500200050004400460020006A00650020006D006F0067006F010D00650020006F00640070007200650074006900200073002000700072006F006700720061006D006F006D00610020004100630072006F00620061007400200069006E002000410064006F00620065002000520065006100640065007200200036002E003000200074006500720020006E006F00760065006A01610069006D0069002E>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002c0020006a006f0074006b006100200073006f0070006900760061007400200079007200690074007900730061007300690061006b00690072006a006f006a0065006e0020006c0075006f00740065007400740061007600610061006e0020006e00e400790074007400e4006d0069007300650065006e0020006a0061002000740075006c006f007300740061006d0069007300650065006e002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200036002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f60072002000740069006c006c006600f60072006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b007200690066007400650072002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200036002e00300020006f00630068002000730065006e006100720065002e>
 /TUR <FEFF0130015f006c006500200069006c00670069006c0069002000620065006c00670065006c006500720069006e0020006700fc00760065006e0069006c0069007200200062006900e70069006d006400650020006700f6007200fc006e007400fc006c0065006e006d006500730069006e0065002000760065002000790061007a0064013100720131006c006d006100730131006e006100200075007900670075006e002000410064006f006200650020005000440046002000620065006c00670065006c0065007200690020006f006c0075015f007400750072006d0061006b0020006900e70069006e00200062007500200061007900610072006c0061007201310020006b0075006c006c0061006e0131006e002e0020004f006c0075015f0074007500720075006c0061006e002000500044004600200064006f007300790061006c0061007201310020004100630072006f006200610074002000760065002000410064006f00620065002000520065006100640065007200200036002e003000200076006500200073006f006e00720061006b00690020007300fc007200fc006d006c0065007200690079006c00650020006100e70131006c006100620069006c00690072002e>
 /UKR <FEFF04120438043A043E0440043804410442043E043204430439044204350020044604560020043F043004400430043C043504420440043800200434043B044F0020044104420432043E04400435043D043D044F00200434043E043A0443043C0435043D044204560432002000410064006F006200650020005000440046002C0020043F044004380437043D043004470435043D0438044500200434043B044F0020043D0430043404560439043D043E0433043E0020043F0435044004350433043B044F04340443002004560020043404400443043A0443002004340456043B043E04320438044500200434043E043A0443043C0435043D044204560432002E0020042104420432043E04400435043D04560020005000440046002D0434043E043A0443043C0435043D044204380020043C043E0436043D04300020043204560434043A04400438043204300442043800200437043000200434043E043F043E043C043E0433043E044E0020043F0440043E043304400430043C04380020004100630072006F00620061007400200456002000410064006F00620065002000520065006100640065007200200036002E00300020044204300020043F04560437043D04560448043804450020043204350440044104560439002E>
 /ENU <FEFF004a006f0062006f007000740069006f006e007300200066006f00720020004100630072006f006200610074002000440069007300740069006c006c0065007200200039002000280039002e0034002e00350032003600330029002e000d00500072006f006400750063006500730020005000440046002000660069006c0065007300200077006800690063006800200061007200650020007500730065006400200066006f00720020006f006e006c0069006e0065002e000d0028006300290020003200300031003100200053007000720069006e006700650072002d005600650072006c0061006700200047006d006200480020>
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [595.276 841.890]
>> setpagedevice

