
Undergraduate Topics in Computer Science

Guide to Java

James T. Streib
Takako Soma

A Concise Introduction to Programming

Undergraduate Topics in Computer Science

Undergraduate Topics in Computer Science (UTiCS) delivers high-quality instructional content for
undergraduates studying in all areas of computing and information science. From core foundational and
theoretical material to final-year topics and applications, UTiCS books take a fresh, concise, and modern
approach and are ideal for self-study or for a one- or two-semester course. The texts are all authored by
established experts in their fields, reviewed by an international advisory board, and contain numerous
examples and problems. Many include fully worked solutions.

For further volumes:
http://www.springer.com/series/7592

James T. Streib • Takako Soma

Guide to Java

A Concise Introduction to Programming

James T. Streib
Department of Computer Science
Illinois College
Jacksonville, IL, USA

Takako Soma
Department of Computer Science
Illinois College
Jacksonville, IL, USA

ISSN 1863-7310 ISSN 2197-1781 (electronic)
Undergraduate Topics in Computer Science
ISBN 978-1-4471-6316-9 ISBN 978-1-4471-6317-6 (eBook)
DOI 10.1007/978-1-4471-6317-6
Springer London Heidelberg New York Dordrecht

Library of Congress Control Number: 2014931850

© Springer-Verlag London 2014
This work is subject to copyright. All rights are reserved by the Publisher, whether the whole or part of
the material is concerned, specifically the rights of translation, reprinting, reuse of illustrations,
recitation, broadcasting, reproduction on microfilms or in any other physical way, and transmission or
information storage and retrieval, electronic adaptation, computer software, or by similar or dissimilar
methodology now known or hereafter developed. Exempted from this legal reservation are brief excerpts
in connection with reviews or scholarly analysis or material supplied specifically for the purpose of being
entered and executed on a computer system, for exclusive use by the purchaser of the work. Duplication
of this publication or parts thereof is permitted only under the provisions of the Copyright Law of the
Publisher’s location, in its current version, and permission for use must always be obtained from
Springer. Permissions for use may be obtained through RightsLink at the Copyright Clearance Center.
Violations are liable to prosecution under the respective Copyright Law.
The use of general descriptive names, registered names, trademarks, service marks, etc. in this
publication does not imply, even in the absence of a specific statement, that such names are exempt
from the relevant protective laws and regulations and therefore free for general use.
While the advice and information in this book are believed to be true and accurate at the date of
publication, neither the authors nor the editors nor the publisher can accept any legal responsibility for
any errors or omissions that may be made. The publisher makes no warranty, express or implied, with
respect to the material contained herein.

Printed on acid-free paper

Springer is part of Springer Science+Business Media (www.springer.com)

Series Editor
Ian Mackie

Advisory Board
Samson Abramsky, University of Oxford, Oxford, UK
Karin Breitman, Pontifical Catholic University of Rio de Janeiro, Rio de Janeiro, Brazil
Chris Hankin, Imperial College London, London, UK
Dexter Kozen, Cornell University, Ithaca, USA
Andrew Pitts, University of Cambridge, Cambridge, UK
Hanne Riis Nielson, Technical University of Denmark, Kongens Lyngby, Denmark
Steven Skiena, Stony Brook University, Stony Brook, USA
Iain Stewart, University of Durham, Durham, UK

Preface

Purpose

The purpose of this text is to help the reader learn very quickly how to program

using the Java programming language. This is accomplished by concentrating on

the fundamentals, providing plenty of illustrations and examples, and using visual

contour diagrams to illustrate the object-oriented semantics of the language.

Comparison to Other Texts

There are a number of texts on the Java programming language. Some of these texts

provide plenty of examples and are very comprehensive, but unfortunately they

sometimes seem to cover too many details, which might make it difficult for a

beginning programmer to discern which points are the most relevant. There are also

other texts that attempt to provide a shortened introduction to the language, but it

seems that these texts might not provide the necessary examples and illustrations

and might be better suited for readers who have previous programming experience.

Need

This text attempts to fill the gap between the above two types of books. First, it

provides plenty of examples and concentrates primarily on the fundamentals of the

Java programming language so that the reader can stay focused on the key concepts.

Second, by concentrating on the fundamentals, it allows the text to be more concise

and yet still accessible to readers who have no prior programming experience. The

result is that the reader can learn the Java programming language very quickly and

also have a good foundation to learn more complex topics later.

v

Features of This Text

This text provides many examples and illustrations. It further has an early introduc-

tion to object-oriented programming and uses contour diagrams to illustrate various

object-oriented concepts. The contour model was originally developed by John

B. Johnson [1]. The model was elaborated on by Organick, Forsythe, and Plummer

to illustrate subprograms, parameter passing, and recursion in procedural and

functional languages [2]. The model seems quite adaptable to newer programming

methodologies such as object-oriented programming as illustrated in a paper by the

authors of this text [3]. As discussed in that paper, it was shown that the use of

contour diagrams can be an effective tool in helping one learn object-oriented

concepts in the Java programming language. By acquiring a good working model

of objects, there is less chance of possible misconceptions.

In many paragraphs of the text, questions are asked of the reader to help them

interact with the material and think about the subject matter just presented. Hope-

fully the reader will take a few moments to try to answer these questions on their

own before proceeding to the answer that immediately follows. To help further

reinforce concepts, each chapter has one or more complete programs to illustrate

many of the concepts presented and also to help readers learn how to write

programs on their own. In addition, for review and practice, there are summaries

and exercises provided at the end of each chapter. Further, in the appendices at the

end of the text, there are answers to selected exercises and a glossary of important

terms. A summary of these features is listed below:

• Stresses the fundamentals

• Provides many examples and illustrations

• Has an early introduction to objects

• Uses contour diagrams to illustrate object-oriented concepts

• Asks readers questions to help them interact with the material

• Has one or more complete programs in every chapter

• Provides chapter summaries

• Includes exercises at the end of each chapter, with selected answers in an

appendix

• Has a glossary of important terms

Overview of the Chapters

This text first allows the reader to understand a simple program with the appropriate

input, processing, and output, followed by an early introduction to objects. It then

looks at selection and iteration structures followed by more object-oriented

concepts. Next, strings and arrays are examined. This is followed by recursion,

inheritance and polymorphism, and elementary files. The appendices include infor-

mation on graphical input/output, exception processing, Javadoc, a glossary, and

vi Preface

answers to selected exercises. Lastly there are references and useful websites and an

index. The following provides a brief synopsis of the chapters and appendices:

• Chapter 1 provides an introduction to variables, input/output, and arithmetic

operations.

• Chapter 2 introduces objects and contour diagrams.

• Chapter 3 explains selection structures.

• Chapter 4 shows how iteration structures work.

• Chapter 5 revisits object-oriented concepts.

• Chapter 6 introduces string variables and processing.

• Chapter 7 illustrates arrays and array processing.

• Chapter 8 examines recursion.

• Chapter 9 explores inheritance and polymorphism.

• Chapter 10 discusses elementary files.

• Appendix A gives an introduction to graphical input/output.

• Appendix B discusses elementary exception processing.

• Appendix C presents the basics of Javadoc.

• Appendix D lists a glossary of key terms.

• Appendix E provides answers to selected exercises.

Scope

As mentioned previously, this text concentrates on the fundamentals of the Java

programming language such as input/output, object-oriented programming, arith-

metic and logic instructions, control structures, strings, arrays including elementary

sorting and searching, recursion, and files. As a result, it might not cover all the

details that are found in some other texts, and if necessary, these topics can be

supplemented by the instructor or reader, or covered in a subsequent text and/or

second semester course.

Audience

This text is intended primarily for readers who have not had any previous program-

ming experience; however, this does not preclude its use by others who have

programmed previously. It can serve as a text in an introductory programming

course, as an introduction to a second language in a practicum course, as a

supplement in a course on the concepts of programming languages, or as a self-

study guide in either academe or industry. Although no prior programming is

assumed, it is recommended that readers have the equivalent of an introduction to

functions course that includes trigonometry which will help with problem solving

and understanding the examples presented in the text.

Preface vii

Acknowledgments

The authors would like to thank the reviewers Mark E. Bollman of Albion College,

James W. Chaffee of the University of Iowa, Naomi E. Hahn of Illinois College,

Carroll W. Morrow of Augustana College, and Curt M. White of DePaul Univer-

sity. Also, the authors would like to acknowledge the students of Illinois College

who have read and used various sections of the text in the classroom. On a personal

note, James Streib would like to acknowledge his father William J. Streib for their

numerous conversations, and thank his wife Kimberly A. Streib and son Daniel

M. Streib for their continued patience. Takako Soma would like to thank her family

and friends, near and far.

Note that Java is a registered trademark of Oracle and/or its affiliates and that

Windows is a registered trademark of Microsoft Corporation in the United States

and/or other countries.

Feedback

The possibility of errors exist in any text, therefore any corrections, comments, or

suggestions are welcome and can be sent to the authors via the e-mail addresses

below. In addition to copies of the complete programs presented in the text, any

significant corrections can be found at the website below.

Website: http://www.jtstreib.com/GuideJavaProgramming.html

Illinois College James T. Streib

Jacksonville, IL, USA james.streib@jtstreib.com

October 21, 2013 Takako Soma

tsoma@mail.ic.edu

viii Preface

http://www.jtstreib.com/GuideJavaProgramming.html

Contents

1 Variables, Input/Output, and Arithmetic . 1

1.1 Introduction . 1

1.2 Java Skeleton . 5

1.3 Variables and Constants . 6

1.4 Assignment Statements . 10

1.5 Output . 13

1.6 Input . 20

1.7 Arithmetic Statements . 22

1.8 Comments . 29

1.9 Program Design . 30

1.10 Complete Program: Implementing a Simple Program 33

1.11 Summary . 36

1.12 Exercises (Items Marked with an * Have Solutions

in Appendix E) . 36

2 Objects: An Introduction . 39

2.1 Introduction . 39

2.2 Classes and Objects . 40

2.3 Public and Private Data Members . 41

2.4 Value-Returning Methods . 42

2.5 Void Methods and Parameters . 42

2.6 Creating Objects and Invoking Methods 44

2.7 Contour Diagrams . 45

2.8 Constructors . 50

2.9 Multiple Objects and Classes . 53

2.10 Universal Modeling Language (UML) Class Diagrams 60

2.11 Complete Program: Implementing a Simple Class

and Client Program . 62

2.12 Summary . 63

2.13 Exercises (Items Marked with an * Have Solutions

in Appendix E) . 65

ix

3 Selection Structures . 69

3.1 Introduction . 69

3.2 If-Then Structure . 69

3.3 If-Then-Else Structure . 75

3.4 Nested If Structures . 78

3.4.1 If-Then-Else-If Structure . 78

3.4.2 If-Then-If Structure . 80

3.4.3 Dangling Else Problem . 82

3.5 Logical Operators . 86

3.6 Case Structure . 93

3.7 Complete Programs: Implementing Selection Structures 98

3.7.1 Simple Program . 98

3.7.2 Program with Objects . 101

3.8 Summary . 103

3.9 Exercises (Items Marked with an * Have Solutions

in Appendix E) . 103

4 Iteration Structures . 107

4.1 Introduction . 107

4.2 Pretest Indefinite Loop Structure . 108

4.2.1 Count-Controlled Indefinite Iteration Structure 109

4.2.2 Sentinel Controlled Loop . 116

4.3 Posttest Indefinite Loop Structure . 120

4.4 Definite Iteration Loop Structure . 124

4.5 Nested Iteration Structures . 127

4.6 Potential Problems . 129

4.7 Complete Programs: Implementing Iteration Structures 130

4.7.1 Simple Program . 131

4.7.2 Program with Objects . 133

4.8 Summary . 138

4.9 Exercises (Items Marked with an * Have Solutions

in Appendix E) . 138

5 Objects: Revisited . 143

5.1 Sending an Object to a Method . 143

5.2 Returning an Object from a Method . 146

5.3 Overloaded Constructors and Methods 148

5.4 Use of the Reserved Word this . 153

5.5 Class Constants, Variables, and Methods 157

5.5.1 Local, Instance, and Class Constants 157

5.5.2 Local, Instance, and Class Variables 162

5.5.3 Class Methods . 165

5.6 Complete Programs: Implementing Objects 167

5.6.1 Program Focusing on Overloaded Methods 167

5.6.2 Program Focusing on Class Data Members

and Class Methods . 175

x Contents

5.7 Summary . 179

5.8 Exercises (Items Marked with an * Have Solutions

in Appendix E) . 179

6 Strings . 185

6.1 Introduction . 185

6.2 String Class . 185

6.3 String Concatenation . 186

6.4 Methods in String Class . 188

6.4.1 The length Method . 188

6.4.2 The indexOf Method . 188

6.4.3 The substring Method . 189

6.4.4 Comparison of Two String Objects 191

6.4.5 The equalsIgnoreCase Method 194

6.4.6 The charAt Method . 195

6.5 The toString Method . 196

6.6 Complete Program: Implementing String Objects 198

6.7 Summary . 200

6.8 Exercises (Items Marked with an * Have Solutions

in Appendix E) . 201

7 Arrays . 203

7.1 Introduction . 203

7.2 Array Declaration . 203

7.3 Array Access . 205

7.4 Input, Output, Simple Processing, and Methods 206

7.4.1 Input . 207

7.4.2 Output . 210

7.4.3 Simple Processing . 211

7.4.4 Passing an Array to and from a Method 212

7.5 Reversing an Array . 213

7.6 Searching an Array . 218

7.6.1 Sequential Search . 218

7.6.2 Binary Search . 219

7.6.3 Elementary Analysis . 221

7.7 Sorting an Array . 221

7.7.1 Simplified Bubble Sort . 222

7.7.2 Modified Bubble Sort . 224

7.8 Two-Dimensional Arrays . 225

7.8.1 Declaration, Creation, and Initialization 226

7.8.2 Input and Output . 228

7.8.3 Processing Data . 229

7.8.4 Passing a Two-Dimensional Array to

and from a Method . 232

7.8.5 Asymmetrical Two-Dimensional Arrays 234

7.9 Arrays of Objects . 236

Contents xi

7.10 Complete Program: Implementing an Array 238

7.11 Summary . 242

7.12 Exercises (Items Marked with an * Have Solutions

in Appendix E) . 242

8 Recursion . 245

8.1 Introduction . 245

8.2 The Power Function . 245

8.3 Stack Frames . 253

8.4 Fibonacci Numbers . 254

8.5 Complete Program: Implementing Recursion 264

8.6 Summary . 266

8.7 Exercises (Items Marked with an * Have Solutions

in Appendix E) . 266

9 Objects: Inheritance and Polymorphism . 267

9.1 Inheritance . 267

9.2 Protected Variables and Methods . 276

9.3 Abstract Classes . 277

9.4 Polymorphism . 278

9.5 Complete Program: Implementing Inheritance

and Polymorphism . 284

9.6 Summary . 288

9.7 Exercises (Items Marked with an * Have Solutions

in Appendix E) . 289

10 Elementary File Input and Output . 293

10.1 Introduction . 293

10.2 File Input . 293

10.3 File Output . 298

10.4 File Input and Output Using an Array 300

10.5 Specifying the File Location . 303

10.6 Complete Programs: Implementing File Input and Output 305

10.6.1 Matrix Multiplication . 305

10.6.2 Sorting Data in a File . 307

10.7 Summary . 309

10.8 Exercises (Items Marked with an * Have Solutions

in Appendix E) . 309

Appendix A Simple Graphical Input and Output 311

A.1 Message Dialog Boxes . 311

A.2 Input Dialog Boxes . 312

A.3 Converting String Input from Input Dialog Boxes

to Numbers . 314

A.4 Confirmation Dialog Boxes . 316

A.5 Option Dialog Boxes . 317

xii Contents

Appendix B Exceptions . 321

B.1 Exception Class and Error Class . 321

B.2 Handling an Exception . 322

B.3 Throwing Exceptions and Multiple catch Blocks 325

B.4 Checked and Unchecked Exceptions . 330

Appendix C Javadoc Comments . 335

C.1 Javadoc . 335

C.2 More Javadoc Tags . 338

C.3 Generating Javadoc Documentation from a Command Line 339

Appendix D Glossary . 341

Appendix E Answers to Selected Exercises . 345

References and Useful Websites . 353

Index . 355

Contents xiii

Variables, Input/Output, and Arithmetic 1

1.1 Introduction

As many readers may already know from using applications software such as

word processing, a computer system is composed of two major parts: hardware
and software. The hardware is the physical computer that includes five basic

components: the central processing unit (CPU), the random access memory

(RAM) or just memory for short, input (typically a keyboard), output (typically a

monitor), and storage (often a disk) as shown in Fig. 1.1.

In order for computer hardware to perform, it is necessary that it has a software.

Essentially, software (often called a program) is the set of instructions that tells

the computer what to do and when to do it. A program is typically loaded from

storage into the computer’s RAM for subsequent execution in the computer’s CPU.

As the program executes or runs, it will typically ask the user to input data which

will also be stored in RAM, the program will then process the data, and various

results will be output to the monitor. This input, process, output sequence is

sometimes abbreviated as IPO.
The only type of instruction a computer can actually understand is low-level

machine language, where different types of CPUs can have different machine

languages. Machine language is made up of ones and zeros, which makes program-

ming in machine language very tedious and error prone. An alternative to using

machine language is assembly language which is also a low-level language that

uses mnemonics (or abbreviations) and is easier to use than ones and zeros [4].

However, if the only language that the computer can directly understand is machine

language, how does the computer understand assembly language? The answer is

that the assembly language is converted into machine language by another program

called an assembler (see Fig. 1.2). Note that there is a one-to-one correspondence

between assembly language and machine language, and for every assembly

language instruction, there is typically only one machine language instruction.

However, even though assembly language is easier to program in than machine

language, different types of CPUs can also have different types of assembly

J.T. Streib and T. Soma, Guide to Java: A Concise Introduction to Programming,
Undergraduate Topics in Computer Science, DOI 10.1007/978-1-4471-6317-6_1,
© Springer-Verlag London 2014

1

languages, so the assembly language of one machine can be different from that

of another machine.

The solution to making programming easier and allow programs to be used on

different machines is through the use of high-level languages which are more

English-like and math-like. One of the first high-level programming languages

was FORTRAN (FORmula TRANslation), which was developed in the early

1950s to help solve mathematical problems. There have been a number of high-

level languages developed since that time to meet the needs of many different users.

Some of these include COBOL (COmmon Business Oriented Language) developed

in the 1950s for the business world, BASIC (Beginners All-purpose Symbolic

Instruction Code) developed in the 1960s for beginning programmers, Pascal in

the 1970s previously used for teaching computer science students, C in the 1970s

for systems programming, and C++ in the 1980s for object-oriented programming.

The program needed to convert or translate a high-level language to a low-level

language is either a compiler or an interpreter. Although there is a one-to-one

correspondence between assembly language and machine language, there is a one-

to-many correspondence between a high-level language and a low-level language.

This means that for one high-level language instruction, there can be many

low-level assembly or machine language instructions. Even though different

CPUs need different compilers or interpreters to convert a particular high-level

language into the appropriate machine language, compliers and interpreters allow

the same high-level language to be used on different CPUs.

The difference between a compiler and an interpreter is that a compiler will

translate the high-level language instructions for the entire program to the

corresponding machine language for subsequent execution, whereas an inter-

preter will translate and then execute each instruction one at a time. Further, a

compiler might translate directly to machine language, or it might translate the

Input Output

Storage

CPU

RAM

Fig. 1.1 Computer hardware

High-Level
Language

Assembly
Language

Machine
Language

AssemblerCompiler
Fig. 1.2 Assemblers and

compilers

2 1 Variables, Input/Output, and Arithmetic

high-level language to assembly language, and then let an assembler convert the

assembly language program to machine language as shown in Fig. 1.2. Once the

machine language is created, it is subsequently loaded into the computer’s RAM

and executed by the CPU.

As mentioned above, an interpreter works slightly differently than a compiler.

Instead of converting an entire high-level program into machine language all at

once and then executing the machine language, an interpreter converts one line

of the high-level program to machine language and then immediately executes

the machine language instructions before proceeding on with the converting and

executing of the next high-level instruction (see Fig. 1.3). The result is that

compiler-generated code executes faster than interpreted code because the program

does not need to be converted each time it is executed. However, interpreters

might be more convenient in an education or development environment because

of the many modifications that are made to a program which require a program to

be converted each time a change is made.

The Java programming language was developed at Sun MicroSystems (which is

now a subsidiary of Oracle Corporation) and was released in 1995. The intent of the

language was for portability on the World Wide Web. It does not contain some of

the features of C++ (such as operator overloading and multiple inheritance, where

overloading and inheritance will be discussed in Chaps. 5 and 9), so it is an easier

language to learn. Object-Oriented Programming (OOP) is a programming meth-

odology that makes it more convenient to reuse software as will be discussed

further in Chaps. 2, 5, and 9. Although no prior programming experience is

necessary to learn Java in this text, programmers with experience in C or C++

will recognize a number of similarities between Java and these languages. Con-

versely, programmers learning Java first will also notice a number of similarities

should they subsequently learn C or C++. The reason for this similarity between

these languages is that both Java and C++ are based on C.

Instruction1

Instruction2

Instruction3

10101010
01010101

00110011
11101110

00001111
11110000

Instruction1

Instruction2

Instruction3

10101010
01010101

00110011
11101110

00001111
11110000

Compiler

High-Level High-LevelMachine Machine

1. Translate all the instructions

2. Then execute all the machine
 instructions

Interpreter

1. Translate one instruction at a time

2. And then execute only the corresponding
 machine instructions

Fig. 1.3 Compilers and interpreters

1.1 Introduction 3

http://dx.doi.org/10.1007/978-1-4471-6317-6_5
http://dx.doi.org/10.1007/978-1-4471-6317-6_9
http://dx.doi.org/10.1007/978-1-4471-6317-6_2
http://dx.doi.org/10.1007/978-1-4471-6317-6_5
http://dx.doi.org/10.1007/978-1-4471-6317-6_9

Java is somewhat unique in that it uses both a compiler and an interpreter

to convert the high-level instructions to machine language. A compiler is used to

convert the Java instructions into an intermediate-level language known as

bytecode, and then the bytecode is converted into machine language using an

interpreter. The advantage of using both a compiler and an interpreter is that most

of the translation process can be done by the compiler, and when bytecode is sent to

different types of machines, it can be translated by an interpreter into the machine

language of the particular type of machine the code needs to be run on (see Fig. 1.4).

Note that just as there can be a one-to-many relationship between high-level and

low-level instructions, there can be a one-to-many relationship between Java and

bytecode. However, unlike the one-to-one relationship between assembly language

and machine language, there can be a one-to-many relationship between bytecode

and machine language, depending on the machine for which the bytecode is being

interpreted.

When learning a new programming language, one should distinguish between

the syntax and the semantics of a program. Simply stated, the syntax is the grammar

of the language, and the semantics is the meaning or what each instruction does.

To explain further, syntax is the spelling of the individual words, where the

semicolons go, and so on. If mistakes are made, the compiler will detect what are

known as syntax errors, generate messages to the programmer, and the program

will not be compiled or executed. Although syntax is very important, there is a

tendency for first-time programmers to spend too much time learning syntax to

avoid syntax errors. However, there must be equal time spent on semantics to

ensure that the program does what the programmer intended it to do. Even though

there might not be any syntax errors, there can be what are called execution errors

Instruction1

Instruction2

Instruction3

Bytecode
Bytecode

Bytecode

Bytecode
Bytecode

10101010
01010101

00110011
11101110

00001111
11110000

Compiler

Java Bytecode Machine

1. Translate all the Java instructions

Interpreter

2. Then translate one bytecode
 instruction at a time

3. And then execute only the corresponding
 machine instructions

Fig. 1.4 Java instructions, bytecode, and machine language

4 1 Variables, Input/Output, and Arithmetic

or run-time errors, such as division by zero. When these types of errors occur,

the appropriate error messages are generated and execution stops. Even worse,

there can also be logic errors, which are mistakes in the logic of the program

and the program does not do what was intended. The unfortunate aspect of logic

errors is that they do not produce any error messages which can make them

extremely difficult to find and fix. The process of finding and fixing logic errors is

known as debugging. When learning to program, one must be attentive not only to

the syntax of the language but also to the semantics of the language. Both are

stressed in this text, and with time and practice, a beginning programmer can get

better at both.

1.2 Java Skeleton

Probably the best way to understand a programming language is to start right away

with a sample program. Although the following program does not do anything,

it will serve as a skeleton to add instructions in the future and provide a starting

point to understand the basic layout of a Java program. At first the program in

Fig. 1.5 might look a bit intimidating, but examining and discussing each of the

statements should help one understand it better. Although some of the descriptions

discussed below might be a little advanced and confusing now, it helps to realize

that each of the words in the program has an important purpose and each of them

will be discussed later in detail throughout the text. As one learns more about Java

and starts to fill in the skeleton with other instructions, it will become less

intimidating.

The first line in the program begins with the reserved word class. A reserved
word is one that has a special meaning in a program and cannot have its meaning

changed by the programmer nor used for identifiers (or names) of packages, classes,

variables, or methods. A package is like a folder in which classes can be stored.

A class is a definition of a group of objects that includes data members (places to

store data) and methods (places to put the program logic). Although classes and

objects will be discussed further in Chap. 2, for now think of a class as a blueprint

for a house and the houses built from the blueprint as objects. The word Skeleton
is a name of the class that is provided by the programmer. Usually class names

begin with a capital letter. Braces are used to identify blocks of code and data and

require matching opening and closing braces. The entire definition of the class,

Skeleton, should be placed between the first opening brace and the last closing

brace.

Fig. 1.5 Java skeleton

program

1.2 Java Skeleton 5

http://dx.doi.org/10.1007/978-1-4471-6317-6_2

This class has one method definition starting on the second line. Typically the

method is indented to improve the readability of the program. The first three words in

the second line are reserved words. The word public is one of the access or

visibility modifiers which will also be discussed further in Chap. 2. The main
method is always defined using public visibility, so that the program can be

executed by the interpreter. The word static means this is a class method, and

the main method is always declared static so that it can be executed without

creating an object of the class as will be discussed further in Chap. 5. The word void
means that main is a non-value-returning method as will be discussed further in

Chap. 2. Next, the word main is the name of the method. When a program is run, the

system will search for the mainmethod and start executing instructions in the main
method first. Inside of the parentheses after the name of the method, parameters are

listed along with their types to allow the method to receive values as will be discussed

further in Chap. 2. The mainmethod has a parameter called args which is an array

of type String, and the square brackets indicate args is an array where strings and

arrays will be discussed further in Chaps. 6 and 7, respectively. The definition of

the main method starts with an opening brace and ends with a closing brace. Inside

the braces, a sequence of instructions would be placed.

For now, the method does not have any instructions other than a comment line.

Comments will not be compiled and executed when the program is run. They are

used to make programs easier for other programmers to understand. Comments can

start with // symbols and continue to the end of the line, or be placed between /*
and */ symbols. The // symbols are used for a single-line comment, and /* and

*/ are used when the comments run over multiple lines. The above program should

compile without any syntax errors and run without any execution errors, except

it does not do anything.

Again the above description should give the reader some insight into the

meaning of various words in the skeleton program. As should be noticed, there

were several references to subsequent chapters. What might be helpful to the reader

is to return to this section later after reading the subsequent chapters and see that

the above is more understandable. For now it should be understood that each of

the words has a particular meaning and that the program serves as a skeleton in

which to insert code as will be done in the following sections.

1.3 Variables and Constants

One of the first things that need to be added to the skeleton are memory locations

so that data can be stored, and another name for a memory location is a variable.
Since the contents of the memory location can vary, just as a variable in mathe-

matics, these two terms can be used interchangeably.

In order to understand variables and how data is stored in memory, it is

oftentimes very helpful to draw a picture of the memory location. A memory

location can be thought of as a mailbox that has two main parts. One part is the

6 1 Variables, Input/Output, and Arithmetic

http://dx.doi.org/10.1007/978-1-4471-6317-6_2
http://dx.doi.org/10.1007/978-1-4471-6317-6_5
http://dx.doi.org/10.1007/978-1-4471-6317-6_2
http://dx.doi.org/10.1007/978-1-4471-6317-6_2
http://dx.doi.org/10.1007/978-1-4471-6317-6_6
http://dx.doi.org/10.1007/978-1-4471-6317-6_7

contents, which includes the letters that are inside the mailbox, and the other is

the address of the mailbox as shown in Fig. 1.6.

The address of the mailbox is usually a number, like the address of a memory

location in a computer. At the machine language level, the address is in ones and

zeros, just like the machine language instructions mentioned in the first section of

this chapter. However, using numbers to represent the address of a memory location

can be quite confusing, especially if there are hundreds of memory locations in a

program. Instead it is helpful to use characters to form names, called symbolic
addressing, to make it easier to remember what data is stored in what memory

location as shown in Fig. 1.7. In this example, the name number is used to describe

the contents of the corresponding memory location. This is one of the primary

advantages of using assembly language over machine language, and this is also true

of all high-level languages including Java.

Instead of a three-dimensional representation of a mailbox to represent a mem-

ory location, it is much easier to draw a two-dimensional representation. Further,

instead of using ones and zeros to represent the contents of the memory location, it

is easier to use the decimal number system to represent values as follows:

0number

Although not as crucial in high-level languages (like Java) as low-level

languages (machine and assembly languages), it is important to remember that a

memory location has two features: its address and its contents. In Java, the

programmer is typically concerned about its contents.

Given the above representation of variables, how are they actually created or

declared? When a variable is declared, there are two things that must be done. First,

a variable needs to be given a name so that it can be referred to by various

instructions in the program, and second, the type of data that will be stored in the

00000000 00000000

address contents

Fig. 1.6 Representation of

memory

number 00000000

name contents

Fig. 1.7 Using names for

memory locations

1.3 Variables and Constants 7

memory location needs to be indicated. The reason for this is that although all the

data is stored as ones and zeros as discussed above, different types of data are stored

using different combinations of ones and zeros. A single one or zero is called a

binary digit (abbreviated as a bit), and a group of 8 bits is called a byte. Typically
the more bytes that make up a memory location, the larger the number that can be

stored in the location. Although how the data is actually stored is beyond the scope

of this text, Table 1.1 shows some of the types of data, the size, and the range of

values that can be stored for each type.

Typically the types int, double, char, and String are the ones that are

used the most frequently. For example, should one want to declare a variable named

number and have it store an integer, it would be declared as follows:

int number;

First the type is indicated, in this case int for integer, and then the identifier or

name of the variable number is given, followed by a semicolon. The name of the

variable can be almost anything except for a reserved word, but there are certain

rules that need to be followed as well as some suggestions that should be followed.

The length of the variable name should be from 1 to any number of characters long.

Further, the variable name can be composed of letters, numbers, underscores _, and
dollar signs $, but must begin with a letter. Also, the variable name is case sensitive,

meaning that cat, Cat, and CAT are separate variable names and correspond to

separate memory locations.

Typically a variable name should not be too long, because they can be difficult to

read, but by the same token, they should not be too short either, for it could become

difficult to remember what it represents. For example, if the letter n were used

instead of number, then it might not be clear whether n stood for name, number,
or numeral. Exceptions to this are for variables from a mathematical expression.

For example, the variables x, y, and z are commonly used to represent the points of

a Cartesian coordinate system, or i, j, or k are used for loop control variables as

will be discussed in Chap. 4. Although most of the time this text will avoid the use

of shorter names, on occasion shorter names might be used to save space or for the

sake of simplicity to concentrate on other aspects of a code segment. If a variable is

too long, it can be difficult to read as in the following: numberofcatsanddogs.

Table 1.1 Data types

Type Size Range

byte 1 byte �128 to 127

short 2 bytes �32,768 to 32,767

int 4 bytes �2,147,483,648 to 2,147,483,647

long 8 bytes �9,223,372,036,854,775,808 to 9,223,372,036,854,775,807

float 4 bytes �3.40282347 � 1038 to 3.4028347 � 1038

double 8 bytes �1.79769313486231570 � 10308 to 1.79769313486231570 � 10308

char 2 bytes one character

String 2 or more bytes one or more characters

8 1 Variables, Input/Output, and Arithmetic

http://dx.doi.org/10.1007/978-1-4471-6317-6_4

Common practice in Java is not to capitalize the first letter of a variable but to

capitalize the first letter in all subsequent words, as in numberOfCatsAndDogs.
Notice that it is a little easier to read that way. Also on occasion, abbreviations can

be used such as num instead of number, but be sure to use good abbreviations,

and this text will occasionally show some of the more commonly used ones.

Variables of other types can be declared as well, such as a variable of type float
or double. Although numbers of type float take up less space in the computer’s

memory, they are less precise and can sometimes cause inaccuracy in calculations.

Even though they take up more memory, this text will use double variables to

alleviate some possible problems later. For example, should one want to declare a

variable to hold a double precision value, it would be declared as follows:

double average;

Further it could contain a value and would look like the following:

0.0average

Notice that instead of showing the number zero as an integer, it is represented as a

real number with a decimal point, to indicate its type as a double.
All of the types given in Table 1.1, other than the String type, are known as

primitive data types, meaning that when they are declared, the memory needed to

store the associated data is allocated at that time. However, a String data type is a

reference data type. When a variable of type String is declared, the memory

allocated is not used to store the data, but rather only to store a reference to the data.

String data types are unique in that although they are technically objects, they can

be used syntactically as if they were primitive data types.

The first part of this text will use strings in a very limited capacity.

An understanding of strings is much easier once one has had an introduction to

objects and practice with objects, so a full description of how string objects are

created and manipulated is presented in Chap. 6. However, for now, this text will

represent strings “as if” they are primitive data types, and the following shows

a character primitive data type and a simplified view of the string data type.

For example, a character and string could be declared as follows:

char initial; String name;

and would be represented with values as follows, respectively:

'T'initial "John"name

Note that the char data type is represented using single quotation marks and

that the String is represented using double quotation marks. Although a character

could be represented as a String of length one, it is usually better to use the char
data type. Further, there are also ways to extract a single char type from a

String data type. Again, a full description will be deferred until Chap. 6.

1.3 Variables and Constants 9

http://dx.doi.org/10.1007/978-1-4471-6317-6_6
http://dx.doi.org/10.1007/978-1-4471-6317-6_6

In contrast to variables, a constant can be declared so that its value cannot be

changed. Although not nearly as useful as variables, constants have their place in a

program when a value does not need to be changed, nor should it be changed. For

example, if an integer N always needs to remain a 7, then it could be declared as

follows, where the use of the reserved word final indicates that N is a constant:

final int N ¼ 7;

Typically constant names are declared as all capital letters to help other

programmers distinguish them from variables. In another example, suppose a

number like PI needs only two digits after the decimal point, then it could be

declared as follows:

final double PI ¼ 3.14;

Although the use of a constant might not be readily apparent at this time, their

use will become clearer in subsequent examples after discussing assignment

statements in the next section.

1.4 Assignment Statements

In the previous section, all the drawings of the memory locations had values in

them. How did those values get there? By default, Java technically initializes all

int variables to 0 and double variables to 0.0. Also, char variables are

initialized to ", the empty character, and String variables are initialized to

null as will be discussed further in Chap. 6. Although this can be helpful in

some instances, in many other languages variables do not have a default value.

The variables contain whatever was in that memory location from the last time it

was used which could be interpreted as junk to another program, cause logic errors,

and be difficult to debug. Variables with unknown initial values are said to be

indeterminate. As a result, many programmers do not use Java’s default values

and assume instead that the initial values of variables are indeterminate, which will

also be the assumption of this text. So instead of initially showing an integer

variable with the number 0 in it, this text will show the variable as indeterminate

with a dashed line in it as shown below:

---number

Does this mean that all variables need to be initialized to some value? Not

necessarily. As will be seen, only those variables that need an initial value for

subsequent processing should be initialized. Initializing a variable to a value when

it does not need to be initialized could be confusing to other programmers reading the

code, as will be discussed later in this chapter and in Chap. 4 on iteration structures.

So if a variable is assumed not to be initialized, how does one initialize a variable

to a value such as 0 or any other value for that matter, such as 5? After a variable is
declared, it can be given a value in an assignment statement using an assignment

10 1 Variables, Input/Output, and Arithmetic

http://dx.doi.org/10.1007/978-1-4471-6317-6_6
http://dx.doi.org/10.1007/978-1-4471-6317-6_4

symbol. The assignment symbol is the equal sign. However, when one first starts to

use the equal sign, one must remember that it does not mean that the variable on the

left is “equal to” the value on the right, but rather that the value on the right is

copied into or assigned to the variable on the left. Again, this is best shown by way

of an example:

int number;
number ¼ 5;

After the variable number is declared as type int, the second statement

indicates that the integer 5 is assigned or copied into the variable number and

the memory location would then appear as follows:

5number

Again, the assignment statement is not really saying that number is equal to 5
or equals 5, but rather that the variable number is assigned a 5 or takes on the

value of 5. Although it is tempting to say that number equals 5 and even though

most people will understand what is meant, try to avoid saying it, and there will be

less difficulty in the future as shown in Sect. 1.7 on arithmetic statements.

Note that it is possible to combine the previous two statements into one state-

ment as shown below. It looks similar to the definition of a constant in the previous

section but without the word final in the statement:

int number ¼ 5;

The above syntax is perfectly legal and saves a line when writing a program.

However, when first learning a language, it helps to reinforce the distinction

between the declaration of a variable and the assignment of a value to a variable.

Of course if one’s instructor does not mind the above shortcut or if one is studying

this text on their own and likes the shortcut, then go ahead and use it. However, this

text will use the previous two line method at least for the next few chapters to help

reinforce the distinction between the declaration of a variable and the assignment of

a value to a variable.

Continuing, what if one wanted to take the contents of number, and copy it into
another memory location named answer? For example, consider the following

code segment:

int number, answer;
number ¼ 5;
answer ¼ number;

After both number and answer have been declared in the first line, the

variable number is then assigned the value 5 in the second line and answer
will still be indeterminate. The memory locations would look as follows:

5number answer ---

1.4 Assignment Statements 11

The third line then takes a copy of the contents of number and places it into the

memory location answer as shown below:

5number answer 5

Note that the assignment statement does not remove the 5 from number and

put it into answer, but rather it takes a copy of the 5 and puts it into answer.
The original 5 in number does not disappear. Why does it copy and not move it?

The reason is because it is actually faster for the computer to copy it and not

take the time to delete the original. This is a fundamental concept in most computer

languages and will become more important later in the writing of subsequent

programs.

Again, the important point to notice is that the copying of values is from right to

left, not left to right. This sometimes causes confusion among beginning

programmers, possibly because they are used to reading from left to right.

The reason why Java and many previous languages go from right to left is because

they are mimicking some of the assembly languages on many machines. Ideally it

would be nice if languages used an arrow to show how values are copied as shown

below:

answer number;

However, most keyboards do not have an arrow character, so an equal sign was

used. Just be very careful to remember that values are copied from right to left and

there should not be any problems.

Assigning variables of type double is similar to the above and will not be

shown here; however, a couple of points need to be made concerning assigning

variables of different types. For example, what would happen if a variable of type

int was assigned to a variable of type double as shown below?

int number;
double result;
number ¼ 5;
result ¼ number;

As before, the contents of the memory locations after the assignment of 5 to

number would be as follows:

5number result ---

Then when the next assignment statement is executed, the int value of 5 would

be copied, converted to a double value of 5.0, and assigned to result as

follows:

5number result 5.0

12 1 Variables, Input/Output, and Arithmetic

Would the value in number be converted to a 5.0? The answer is no, as shown
above, because only the variable to the left of the assignment symbol is altered by

an assignment statement. The 5 in number is not converted, but rather when it is

copied, it is converted to the proper type so that it can be assigned to result.
If an int value can be stored in a variable of type double, is the reverse true?

The answer is no, because, for example, how could the number 5.7 be stored as an

integer without the fractional part? A way around this problem is to use a typecast

operator. A typecast operator allows a value of one type to be converted to another

type. In the case below, the typecast operator (int) converts the double value in

number to type int so it can be assigned to result. As before, the value in

number would not change and would still contain a 5.7. However, what happens
to the fractional part? The result is that it is truncated and a 5 is stored in result:

double number;
int result;
number ¼ 5.7;
result ¼ (int) number;

What if the value needed to be rounded instead? Fortunately Java has the Math
class which contains a method named round. A method is somewhat like a

function in mathematics. The name of the class, Math, is followed by a period

and the name of the method, round. Parentheses are placed after the method name

and contain the argument, number, which is sent to the method. The code segment

from above is rewritten below:

double number;
int result;
number ¼ 5.7;
result ¼ (int) Math.round(number);

Unfortunately, when the round method is sent a value of type double, it
returns a value of type long, but the typecast operator (int) can again be used to

convert the value of type long to type int. Since number contains 5.7, the
variable result would contain a 6. Again, the value in number would not

change and would still contain a 5.7. Of course if the precision of the type

double is needed, the better solution would be to change the type of result
to double to preserve the fractional part of number. The round method is one

of the many methods available in the Math class which is discussed in more detail

in Sect. 1.7 on arithmetic statements.

1.5 Output

Unless a program performs some type of output, it is not particularly useful. Output

can be of many forms including output to a screen, a printer, a disk, or even some

form of movement such as a robot on an assembly line. In this section, only output

to a screen will be considered. Although there are several ways to output data to the

1.5 Output 13

screen, this section will examine the simplest of them to get started. More advanced

methods of output will be examined in Chap. 10 and Appendix A, and one can jump

to these locations and learn these methods if one is reading this text independently

or at the discretion of one’s instructor. However, this text will use the methods

introduced in this chapter for the sake of simplicity.

One of the more common first programs written when learning a new language

is the infamous “Hello World!” program. The advantage of this program is to make

sure that one is writing a program correctly and using the compiler properly. This

program can be written as shown in Fig. 1.8.

This program looks very similar to the original Skeleton program in Sect. 1.2,

except that the class name has been changed from Skeleton to Output
and the comment line has been replaced with the System.out.println
("Hello World!"); statement. This statement outputs the string contained

within the double quotation marks to the monitor. Java uses System.out to

refer to console output and the standard output device by default is the monitor.

To perform console output, one simply uses the println method to display a

primitive value or a string to the monitor. The println method is part of the Java

Application Programming Interface (API) which is a predefined set of classes that

can be used in any Java program. The classes and methods in the Java API provide a

variety of fundamental services that are not part of the language itself.

The method name println is often pronounced as “print line,” even though it

is not spelled that way. The print portion of println causes the information in

the parentheses to be output to the computer screen, and then the ln portion of

println causes the cursor on the screen to move down to the next line. In this

case, the only information in the parentheses is the string "Hello World!".
Of course, the statement is terminated with a semicolon just as the declaration

statements and assignment statements were in Sects. 1.3 and 1.4, respectively.

Go ahead and try typing in this program on your computer using the IDE (Integrated

Development Environment) installed in your lab, home computer, or place of

employment and then compile and execute the program. Provided there are no

syntax errors, the output should appear similar to the following, where the under-

score represents the location of the cursor on the screen:

Hello World!
_

Notice that the quotation marks are not output to the screen and the cursor

appears on the next line. Also note that the cursor might not appear on the screen,

Fig. 1.8 Hello World!

14 1 Variables, Input/Output, and Arithmetic

http://dx.doi.org/10.1007/978-1-4471-6317-6_10
http://dx.doi.org/10.1007/978-1-4471-6317-6_11

since there is no input as of yet, but in this example, it still serves to illustrate where

any subsequent output would appear. However, what would happen should one

leave off the ln portion of the println, as shown below?

System.out.print("Hello World!");

Given the previous description concerning the println above, the output

would be as follows:

Hello World!_

At first glance, this does not appear to be much different than the original sample

output. However, if one looks carefully, note the location of the cursor. It is not on

the second line but rather at the end of the string. The statement outputs the string to

the screen, but with the absence of the ln, the cursor does not move down to the

next line. In fact, if the cursor does not show up on the screen, one could not notice

the difference. Even though it might not be detected on the screen, it is important to

know where the cursor is located, so that subsequent output is correct. For example,

what if one split the string so that it appears on two separate lines? This can be

accomplished by using two separate System.out.println statements as

follows:

System.out.println("Hello");
System.out.println("World!");

As one might suspect, the output would appear as follows:

Hello
World!
_

The string "Hello" is output and the cursor moves down to the next line. Then,

the string "World!" is output, and again the cursor moves down to the next line in

preparation for the subsequent line to be output. However, what if one accidently

used two separate System.out.print statements instead?

System.out.print("Hello");
System.out.print("World!");

The output would appear as given below:

HelloWorld!_

Note that this output appears similar to using a single System.out.print
statement as shown previously. Why are they similar? After the first System.
out.print output the word Hello, the cursor stayed on the same line and did

not move to the second line. So when the second System.out.print was

executed, the word World! was output on the same line, and since there was no

ln in the second statement, the cursor stayed on the same line. One might also

notice there is no space between the two words. Why did this happen? Since there is

no space at the end of the first string within the double quotes, nor a space at the

beginning of the second string, a space did not appear in the output.

1.5 Output 15

Although this is similar to the example using the System.out.print, could
it be changed to mimic the first example in this section? The answer is yes, as in the

following example:

System.out.print("Hello ");
System.out.print("World!");
System.out.println();

In this case, the word Hello followed by a space would be output, and then the

word World! would be output. The last line would output nothing, because there

is no string in the parentheses, but the ln would cause the cursor to move down to

the next line as shown below:

Hello World!
_

Although the above three line code segment produces the same output as the

original single-line statement, why would one want to use this latter example?

Usually one would not and the single line is preferable to using multiple lines.

However, there are instances where one needs to break up an output line into

multiple lines for the sake of convenience as will be illustrated in the next section

on input and in Chap. 3 on selection statements.

As a further example of formatting output, what if one wanted to output the

following with a blank line between the two words and the cursor at the bottom?

Hello

World!
_

The following code segment would accomplish this task:

System.out.println("Hello");
System.out.println();
System.out.println("World!");

The first statement outputs the word Hello and moves the cursor down to the

second line. The second statement does not output anything, so the ln of the

System.out.println statement causes the cursor to move down to the third

line and the blank line to appear on output. Lastly, the word World! is output and

the cursor moves down to the fourth line. What if one wanted to output two blank

lines, would the following code segment work?

System.out.print("Hello");
System.out.println();
System.out.println();
System.out.println("World!");

At first glance, it might appear to work, but look carefully. Notice that the first

statement does not contain a println but rather only a print. The result would

16 1 Variables, Input/Output, and Arithmetic

http://dx.doi.org/10.1007/978-1-4471-6317-6_3

be exactly the same as the previous code segment since the first statement outputs

the word Hello, but does not move the cursor down to the next line on the screen.

The second statement is a System.out.println, and it moves the cursor down

from the first line to the second line of output. The second System.out.
println creates a single blank line.

Unfortunately, this is a mistake that is sometimes made by beginning Java

programmers, where they assume that anytime there is a System.out.
println(); a blank line is produced. The only time a blank line is produced is

when there is not a preceding System.out.print statement. This is yet another

reason why one should tend to avoid using the System.out.print statement

unless under special circumstances, again discussed in the next section and Chap. 3.

The correct code segment to produce two blank lines is given below. Note that

the first statement is a System.out.println:

System.out.println("Hello");
System.out.println();
System.out.println();
System.out.println("World!");

Although the above code segments are useful for outputting strings and format-

ting output, how does one output integers and real numbers? Combining the

information learned in the previous two sections, one can then have a program as

shown in Fig. 1.9.

This program declares the variable num to be of type int, assigns the value 5 to

num, and then outputs the contents of the variable num. Note that the variable num
is not enclosed in quotation marks, so the word num is not output, but rather the

contents of the variable num are output. Unfortunately, only the integer 5 would be

output to the screen which would not be very useful. Instead, it is helpful to output

some other information for the user to identify and understand the information on

the screen.

The output statement in the program in Fig. 1.9 can be modified to include the

string "The number is " followed by a plus sign prior to the variable num as

shown in Fig. 1.10. A plus sign between two strings or between a string and any

other type of data means concatenation. In other words, the string "The number
is " and the contents of num are output as if they are one string. It should be noted

that one needs to be careful should only two integers be separated by a plus sign,

because then it would mean addition as will be discussed in Sect. 1.7. However,

Fig. 1.9 Outputting an int precision number

1.5 Output 17

http://dx.doi.org/10.1007/978-1-4471-6317-6_3

provided a string or a concatenated string appears to the left, then the item to the

right of the plus sign will be concatenated instead of added. Note that there is a

space within the quotes at the end of the string so that the contents of the variable

num are separated from the word is in the string. The result is that the output of

this program would appear as follows:

The number is 5
_

What happens if one outputs a number of type double using the same format

shown in Fig. 1.10? For example, Fig. 1.11 outputs the contents of the variable num
of type double.

As will be discussed further in Sect. 1.7, the /means division and num will take

on the value of one third. When the above program is compiled and executed, the

screen displays

The number is 0.3333333333333333

Although using high precision is necessary during computation, it may not be

needed when a number of type double is displayed. How can one limit the

number of digits after the decimal point in a floating-point number? A predefined

method in the Java API called printf can be used. The general syntax of the

printf method is as follows:

printf(control string, expr, expr, . . .)

where control string is a string that may consist of substrings and format

specifiers and an expr represents a variable, expression, or constant value.

A format specifier indicates how an expr should be displayed. A specifier %d
is used for a decimal integer, %f for a floating-point number, %c for a character, and

Fig. 1.10 Outputting an int precision number with description of output

Fig. 1.11 Outputting a double precision number without formatting

18 1 Variables, Input/Output, and Arithmetic

%s for a string. For numbers, the total width and precision can be indicated in a

specifier. For example, the specifier %10d outputs an integer value with a width of

at least 10. The specifier %10.2f outputs a floating-point number with a width of at

least 10 including a decimal point and two digits after the decimal point. The width

of character and string values can also be indicated. For example, the specifier %3c
outputs a single character and adds two spaces before it, and %10s outputs a string

with a width at least 10 characters. If there is more than one expr to be output,

they must match the specifiers within the control string in order, number, and type.

Using the formatting information described above, the program in Fig. 1.11 can

be rewritten as follows in Fig. 1.12.

The floating-point number stored in the variable num will be output with two

digits after the decimal point. Since a space is included before the specifier in

the string after the word is, there will be a space between is and the number as

shown below:

The number is 0.33

Also notice that since the printf method does not move the cursor to the next

line, just like a print method. A System.out.println(); statement needs

to be added at the end of the program in order to have the same effect as the program

in Fig. 1.11.

Some characters cannot be simply included between double quotes for output. In

order to output a double quotation mark, two characters, a backslash and a double

quote, need to be used, \". The following statement

System.out.println("He said \"Hello\".");

will output

He said "Hello".

Similarly, a backslash can be output by placing an extra backslash in front of one

as shown below:

System.out.println("How to output a backslash, \\");

This will produce an output of

How to output backslash, \

Fig. 1.12 Formatting a double precision number

1.5 Output 19

1.6 Input

The ability to declare variables, assign values to them, and output strings and

variables is very important but does not allow for many useful programs. As it stands,

anytime one wants to change the output of a program, one has to edit the program and

recompile it before executing the program. What is needed is a way to input data into

a program. As with output, input can come from a variety of sources such as the

keyboard, mouse, a disk, or even from sensors such as those that might be on a robot

on an assembly line. Although other methods for input can be found in Chap. 10 and

Appendix A, this section will deal with the simplest form of input.

As in the last section, it is best to start with a simple example based on the

previous program in Fig. 1.10 and modified as shown in Fig. 1.13. Although

the description of the first few lines of the following program might be a little

complicated due to the nature of input in Java, the actual statements that perform

the input are less complicated as will be seen shortly.

Notice the addition of the import statement in the first line. The import
statement is added in order to use a predefined method for input. All the predefined

classes and methods in the Java API are organized into packages, and the import
statement identifies those packages that will be used in a program. For example, the

following statement imports the Scanner class of the java.util package:

import java.util.Scanner;

A second option uses an asterisk to indicate that any class inside the package

might be used in the program. Thus, the statement

import java.util.*;

allows any of the classes in the java.util package to be referenced in the

program. The second option is used in the program shown in Fig. 1.13.

Remember when the System.out.println, System.out.print, and
System.out.printf statements were used in the previous section for output,

the java.lang package which includes the System class was not imported at

Fig. 1.13 Program to input an integer

20 1 Variables, Input/Output, and Arithmetic

http://dx.doi.org/10.1007/978-1-4471-6317-6_10
http://dx.doi.org/10.1007/978-1-4471-6317-6_11

the beginning of the program. This is because the java.lang package, which

includes the System and Math classes, is used extensively, and it is automatically

imported into all Java programs.

Returning back to Fig. 1.13, in order for input to work properly, one needs a

place to store the data entered. The first statement in the body of the main method

declares the variable num as type int. The next statement is the declaration of the

variable scanner of type Scanner as shown below:

Scanner scanner;

Scanner is not a primitive data type like int or double, but rather it is a
class. As discussed briefly at the beginning of Sect. 1.2 and will be discussed further

in Chap. 2, a class is like the set of blueprints for a building. The following

statement

scanner ¼ new Scanner(System.in);

creates a new instance of the Scanner class, or in other words a Scanner object.

This can be thought of as how an individual building might be constructed from a

set of blueprints. Java uses System.in to refer to the standard input device, which

is the keyboard. Unlike output, input is not directly supported in Java; however,

the Scanner class can be used to create an object to get input from the keyboard.

The above statement then assigns a reference to the new object to the variable

scanner. Again, although this might be a little confusing at this point, the

important thing is be sure to include the import statement and the above two

statements in any program that needs to input data.

The next statement below shows how the Scanner object is used to scan the

input for the next integer. The method nextIntwill make the system wait until an

integer is entered from the keyboard, and then the integer input is assigned to the

variable num:

num ¼ scanner.nextInt();

The last statement in the program is the same as before where the value of num is

output to the computer screen. However, if one were to enter, compile, and run this

program as given, the result might be a little confusing. The reason is that there

would only be a blinking cursor on the screen as the system is waiting for input and

there would be no indication of what should be input without having to look at the

program. To solve this problem, it is usually best to provide a prompt to let the user
know what should be input. A prompt is just an output of a message to the user to

help them understand what is expected to be input. The program in Fig. 1.14

includes a prompt just prior to the input.

As can be seen, the prompt is nothing more than the output of a string to indicate

what the program is expecting in terms of input. Notice that a System.out.
print(); is used to cause the input to stay on the same line. Further, a prompt

should be formatted well. Note that there is a space after the colon so that the cursor

is separated from the prompt. After entering the data and when the user presses the

enter key, the cursor then moves to the next line.

1.6 Input 21

http://dx.doi.org/10.1007/978-1-4471-6317-6_2

Furthermore, a prompt should be user friendly. A user-friendly prompt is one

that clearly describes what the user should input, as in the case above where it

asks for an integer. A user-friendly prompt can be polite such as “Please enter a

number: ”, but typically a prompt should avoid the use of first person words like “I”

and “you”, as in “I would like you to. . .”, since the computer is a machine, not

a human.

Now would be a good time to enter, compile, and run the program in Fig. 1.14

to see how it works. The results should be similar to the following:

Enter an integer: 5
The integer is 5
_

In addition to nextInt, the method nextDouble reads a number of type

double, the method next reads a word of type String that ends prior to a

space, and the method nextLine reads an entire line of text of type String,
including all the spaces until the user presses the enter or return key. All of these
methods work similarly to the method nextInt.

1.7 Arithmetic Statements

The ability to input data, copy data from one memory location to another, and

output data is fundamental to almost every computer program. However, unless

there is the capability to manipulate and process data to convert it into information

that can be output and used, the power of the computer has hardly been tapped. One

of the first things computers were used for and continue to be used for is arithmetic

computation, which is the subject of this section.

The four basic operations of arithmetic, addition, subtraction, multiplication, and

division can be accomplished in Java by the use of the binary operators +, -, *,
and /, respectively. The word binary in this case does not mean the binary number

Fig. 1.14 Prompting a user to input a number

22 1 Variables, Input/Output, and Arithmetic

system, but rather that these operators have two operands (such as variables and

constants) that are manipulated by the operators. As before, the best way to

illustrate this is through an example. Consider the following code segment:

int num1, num2, sum;
num1 ¼ 5;
num2 ¼ 7;
sum ¼ num1 + num2;

After the variables of num1 and num2 have been assigned the values 5 and 7,
respectively, the contents of the memory locations would appear as follows:

5num1 num2 7 ---sum

What occurs next is that the expression on the right side of the last assignment

statement is evaluated. The contents of num1 are brought into the CPU, and then

the contents of num2 are added to it in the CPU. Once the expression on the right

side of the assignment symbol has been evaluated, the result of the expression in the

CPU is then copied into the variable to the left of the assignment symbol. As in

Sect. 1.4, the copying goes from right to left, so the expression is always on the right

side of the equal sign and there can only be one variable on the left side. The results

of this evaluation and assignment can be seen below:

5num1 num2 7 12sum

Of course the values for num1 and num2 in the above segment could have been

input from the keyboard, and the result in sum could be output to the screen, but for

now simple assignment statements are used to initialize num1 and num2, and the

value of sum is not output to keep the segment simple. The examples following will

use this same pattern; however, a complete program using input and output will be

shown in Sect. 1.10.

Similar equations can be made using subtraction, multiplication, and division,

and examples incorporating these operators will follow later in this section. Still, a

few comments need to be made about mixing variables of different types. As shown

above, when two variables of the same type are used, the result is of that type.

However, should one or both of these operands be of type double, then the result

will also be of type double. For example, if num1 is of type int and num2 is

of type double, then the result of the expression would be of type double.
Of course, if the result of the expression is of type double, then it could not be

assigned to the variable sum of type int. Either the round method would need to

be used or the type of sum would need to be changed to double.
There is also a unique aspect to the division operation depending on the types of

its operands. As with the other operators, if either or both of the operands are of type

double, then the result of the division is also of type double. So, for example,

7.0 divided by 2would be 3.5. If both operands are of type int, the result will of
course be of type int. Although this does not pose a problem with the other

1.7 Arithmetic Statements 23

arithmetic operators, the result of division when performing arithmetic often has a

fractional component, and one would write it as 3½, 3.5, or possibly 3 with a

remainder of 1. However, if the result of the division operation in Java is of type

int, the fractional part is discarded and the result is simply 3. Although one does

not get the fractional part with integer division, what if one wanted to determine

the remainder? That can be done with the mod operator which is represented by

the percent sign, %. To illustrate, consider the following code segment, where all

variables are of type int:

int num1, num2, quotient, remainder;
num1 ¼ 7;
num2 ¼ 2;
quotient ¼ num1 / num2;
remainder ¼ num1 % num2;

Upon completion of the segment, the respective memory locations would con-

tain the following:

7num1

num2 2

3quotient

remainder 1

Although it is relatively easy to create some simple instructions that contain only

one operator, what about expressions with more than one operator? In that case, an

awareness of the precedence of the various operators is needed. The precedence in

Java is the same as in mathematics, on a calculator, or in a spreadsheet application

program. First, the multiplication and division operators have precedence over

addition and subtraction. For example, given the following code segment, what

are the contents in answer?

int answer, x, y, z;
x ¼ 2;
y ¼ 3;
z ¼ 4;
answer ¼ x + y * z;

Unfortunately if one guessed 20, that would be wrong. Remember that multi-

plication has precedence over addition so the result of the multiplication of y and z,
which contain 3 and 4, would be 12, plus the contents of x, which is 2,
would be 14.

However, what if one wanted to perform the addition first? As in arithmetic,

one can always use parentheses to override the precedence of the operators, so that

answer ¼ (x + y) * z;

would result in answer containing a 20. If there are more than one set

of parentheses, then the innermost nested ones are evaluated first, and if the

24 1 Variables, Input/Output, and Arithmetic

parentheses are not nested, the parentheses are evaluated from left to right. In fact,

if there is a tie of any sort, such as two addition symbols, or an addition symbol and

a subtraction symbol, the order is also from left to right.

Given all this information, what would be the answers in the following segment?

int answer1, answer2, x, y, z;
x ¼ 3;
y ¼ 4;
z ¼ 5;
answer1 ¼ x - y + 6 / z;
answer2 ¼ (x * (y + 2)) % 2 – 1;

First, note that there are some constants in the mathematical expressions on the

right side of the assignment statement and this is perfectly acceptable. In the first

expression, the 6 / z is evaluated first and the result would be 1. After that, which
operation is performed second? Since there is a tie in the precedence between the

subtraction and the addition, and the subtraction is on the left, it is performed first,

where 3 minus 4 is -1. Lastly, the 1 from the division is added to the -1 from the

subtraction, so the answer is 0.
In the second expression, which operation is performed first? Since there

are nested parentheses, the y + 2 is performed first with an answer of 6. Then
the 3 in x is multiplied by the 6 for a value of 18. Then the 18 is divided by 2,
where the remainder is 0, and lastly the 1 is subtracted from the 0 for a final answer

of -1.
When trying to evaluate expressions, it is sometimes helpful to draw a line

underneath each of the sub-expressions to help one remember which parts of the

expression have been evaluated and remember their respective values. For example,

in the first expression above, it would appear as follows:

x - y + 6 / z

-1 1

0

Since parentheses override the order of precedence, why can’t one just use

parentheses all of the time and avoid having to remember the order of precedence?

One could do that, but the resulting expressions would have an inordinate number

of parentheses and they could be quite difficult to read. Further, since the prece-

dence rules in most languages are fairly similar and most programmers use

parentheses sparingly, it is to one’s advantage to learn and use them correctly.

For further practice, see the exercises at the end of this chapter.

Just as there are binary operators that have two operands, there also exist unary

operators that have only one operand. The two most common are the plus sign

1.7 Arithmetic Statements 25

and the minus sign, where the latter is used more frequently as in the following

example:

z ¼ -x + y;

The thing to remember about unary operators is that they have a higher priority

than binary operators. So in the above statement, the negative of the value contained

in x is added with the value in y and the result placed in the variable z. Should one
want to negate the entire quantity, then parentheses would need to be used as in the

following example, where the values in x and y are added together first, then

negated, and the result placed in z.

z ¼ -(x + y);

There are of course other arithmetic expressions to be learned, including how the

contents of a variable can be incremented or decremented by 1 or more. There are a

couple of ways to do this, and the method that is applicable in most programming

languages will be examined first. One way is to first get the contents of a variable,

add or subtract 1, and then copy the new number back to the variable as follows:

int x, y;
x ¼ 0;
y ¼ 0;
x ¼ x + 1;
y ¼ y - 1;

At first the fourth and fifth statements above might appear unusual to the

beginning programmer. The fourth statement seems to be saying that x is equal

to x + 1, which would be impossible in algebra. How could a value in x be equal to

itself plus 1? The answer is that it cannot. The reason why this might look unusual

is that one might be mistaking the equal sign in Java as an equal sign in algebra,

which it is not. If one recalls from Sect. 1.4, the equal sign in Java is the assignment

symbol which takes a copy of the result on the right side and places it in the variable

on the left.

In this case, the value inx, which is a0 as shown above, plus a1 is1, and that is the
value placed into x. So prior to execution of the fourth statement, the value in x is a 0,
and after the execution of the fourth statement, the value in x is a 1. The same sort of

process occurs with the statement using subtraction where the final value in y would

be a -1. Also note that since both variables appear on the right side of the assignment

symbol, they must be initialized to some value and should not be indeterminate.

At first these statements might be a little confusing, but with time they become second

nature. Statements like these are often used to increment and decrement variables that

are used as counters and will be discussed in detail in Chap. 4.

Since these operations are fairly commonplace, the languages C, C++, and Java

have shortcuts for these as follows:

þþx; or xþþ;
��y; or y��;

26 1 Variables, Input/Output, and Arithmetic

http://dx.doi.org/10.1007/978-1-4471-6317-6_4

These operators are very convenient. The operators on the left side work

the same way as those on the right when they are used as standalone statements.

The style on the right is seen more often and will be used again extensively in

Chap. 4. However, when used as part of a larger expression, the two styles have

entirely different meanings. For example, consider the following two statements:

a ¼ þþ x; b ¼ yþþ;
If x and y originally contain a 2, their respective memory locations would

initially appear as follows:

2x

a ---

2y

b ---

At first it might seem that all four variables would contain a 3, but that would be
incorrect. When the ++ (or ��) appears prior to a variable, the increment is

performed before the assignment or any other operation that might be in the

expression. On the other hand, if the ++ (or again ��) appears after the variable,

then any other operations are performed first, including the assignment operation.

The result is that in the example on the left, the value of x is incremented by 1,
which makes x contain a 3, and then the new value of x would be assigned to a,
which would then also contain a 3. In the example on the right, the value in the

variable y, which is a 2, is first assigned to b. Then the value in y would be

incremented to 3 and the value in b would still be a 2 as shown below:

3x

a 3

3y

b 2

As mentioned above, as standalone operators, the ++ and �� can be fairly

useful and easy to use, and this text will use them more frequently in Chap. 4.

However, using the more simple initial approach such as x ¼ x + 1; is common in

almost all languages, so this text will tend to use this initially to help reinforce how

an expression like this works. Further, when these operators are used in more

complicated expressions, their use becomes much more difficult to understand,

and it is for this reason that this text will tend to avoid the use of the ++ or ��
operators in this fashion. However, be aware that intermediate and advanced texts

often use these operators more frequently in complicated expressions, so one needs

to know how they work and also be careful when reading code containing them.

As shown at the beginning of this section, when two variables are added

together, the sum is often stored in a third variable. However, similar to counting,

when a constant such as a 1 is added to a variable in the process of trying to

1.7 Arithmetic Statements 27

http://dx.doi.org/10.1007/978-1-4471-6317-6_4
http://dx.doi.org/10.1007/978-1-4471-6317-6_4

find a total, one variable is added to another variable. For example, consider the

following segment:

int total, num;
total ¼ 0;
num ¼ 5;
total ¼ total + num;

where the initial contents of the respective memory locations would appear as

follows:

5num total 0

As with previously incrementing by 1, it might look a little odd to see the

variable total on both sides of the equal sign. Again the equal sign does not

mean equality but assignment, where the expression on the right is evaluated first

and the results are then stored in the variable on the left. Also, since the variable

total appears on both sides of the assignment symbol, it needs to be initialized

with a value prior to the statement. After the 0 and 5 are added together, the results

are then placed back into total as follows:

5num total 5

Just as with the increment operation, the ability to find a total also has a shortcut.

This shortcut is as follows and has the same effect as the instruction above.

total +¼ num;

Similar shortcuts can also be used with the subtraction, multiplication, and

division operators, but they are used less frequently than addition. As with the

previous shortcuts, this is only possible in languages like C, C++, and Java and does

not appear in all languages. Likewise, since they do not appear in all languages and

do not illustrate as readily how values can be totaled, this text will tend not to use

these shortcuts as often.

Although all the basic arithmetic operation are available in the Java program-

ming language, there are a number of other functions that would be helpful to have

available. In addition to the constants PI and E for pi and e, respectively, many

extra functions are in the Math class. Including the round method previously

introduced in Sect. 1.4, some of the other methods include square root, the power

function, and the trigonometric functions. These methods along with some others

are shown in Table 1.2. To illustrate a few of these functions, examine the program

segment in Fig. 1.15.

The methods should be fairly straightforward given their descriptive names and

the reader’s requisite mathematical background. After execution of the segment,

the answers stored in the variables power, sqRoot, sine, and cosine would

28 1 Variables, Input/Output, and Arithmetic

be 8.0, 2.0, 0.0, and -1.0, respectively. Note that the value in z is in terms of

PI, because the trigonometric functions work with radians instead of degrees. If the

initial value in z was in degrees, the method toRadians could be used.

1.8 Comments

Although comments were discussed briefly in Sect. 1.2, there are few more items

that should be discussed. As mentioned previously, comments are either preceded

by two slashes //, and the remainder of the line is considered a comment by the

compiler, or a comment can begin with a slash and an asterisk /* and end with an

asterisk and a slash */ which allows a comment to extend over multiple lines in a

program. Single-line comments are helpful in explaining an individual line or

multiple lines of code. Although a single-line comment can be placed off to the

right-hand side of the statement it is describing, it can sometimes get crowded once

code is indented as shown in Chaps. 3 and 4. As a result, this text will usually place

comments just prior to a line of code or code segment being documented. For

example, the following comment helps the reader of the program understand what

the subsequent statement accomplishes:

// calculate the area of a rectangle
areaRect ¼ base * height;

Multiple-line comments are also helpful to create what are called headings at the

beginning of programs and methods in class definitions. The format of these headings

Fig. 1.15 Sample Math
class constants and methods

Table 1.2 Various methods in the Math class

Method Function performed Arguments Value returned

cos(x) cosine double (in radians) double

pow(x,y) x to the power of y double double

round(x) round float (or double) int (or long)

sin(x) sine double (in radians) double

sqrt(x) square root double double

tan(x) tangent double (in radians) double

toDegrees(x) convert radians to degrees double double

toRadians(x) convert degrees to radians double double

1.8 Comments 29

http://dx.doi.org/10.1007/978-1-4471-6317-6_3
http://dx.doi.org/10.1007/978-1-4471-6317-6_4

can vary in different computer courses and companies, so be sure to determine your

local requirements. An example of one such heading might be as follows:

/* name: your name
class : cs 1xx
prog : one
date : mm/dd/yyyy

*/

Once filled with the corresponding information, this heading identifies the

author of the program, which class it was written for, the program number, and

the date written. As can be seen, comments are good for documenting what various

sections of code do in a program and identify who wrote a program, among other

things. Having comments within a program explaining what a program does

is known as internal documentation, whereas having explanations that appear in

manuals (whether online or in physical manuals) is known as external documen-

tation. Internal documentation tends to be more specific and is helpful to

programmers, whereas external documentation tends to be more general and is

useful to users, customers, and managers who may not understand programming.

Although at first some of the simpler programs will not appear to need

comments, it becomes imperative to include comments as programs become larger

and more complex. If the original programmer is on vacation or is no longer with a

company, documentation is essential to help other programmers understand how

the program works. Although many of the programs written in a first programming

course might not be too complex, it is helpful to include comments to gain practice

in good commenting techniques. To that end, the complete programs at the end of

each chapter will include comments to help the reader understand the program and

learn some commenting techniques.

There is also another way to document a program using Javadoc. This technique is

very useful with larger programs that have many classes and methods, and an

introduction is presented in Appendix C. Again, many computer science departments

and computer science professors have different documentation standards, as do many

different companies. Although they share some commonalities, there can also be a

number of differences. Find out what your professor’s or company standards are and

be sure to follow them closely.

1.9 Program Design

When writing a program for the first time, there is a tendency to want to just start

keying the program into the computer and get it to work. Initially this method

appears to work fairly well when programs are small at the beginning of a text and

in a class. As mentioned previously, many beginning programmers focus primarily

on the syntax of their program, and they want to avoid getting syntax errors.

However, as problems get more complex, they become more difficult to solve,

30 1 Variables, Input/Output, and Arithmetic

http://dx.doi.org/10.1007/978-1-4471-6317-6_13

and programs written this way will tend to have not only more syntax errors but

complicated logic errors which are more difficult to correct since no error messages

are provided.

As an analogy, an individual might be able to build a small storage shed by just

sawing and nailing some lumber together without worrying about the overall design

of the project. However, with a larger project such as a house, apartment building,

or office building, that methodology would not be sufficient. Instead there are many

other people who must be consulted, including the original customer who wants

the building built, the architects who work with the customer, the contractors, and

carpenters. The same holds true in the world of programming which involves

customers, users, and managers.

What are needed are various strategies and tools to help write programs

correctly. Just as in the above example where blueprints and plans are used by

the architect, there are techniques that can be used by analysts, software engineers,

and programmers. Although the complete process for developing software might

not be needed initially with smaller programs, it does not hurt to practice the various

techniques on smaller programs to gain familiarity, so that when one advances to

more difficult projects, one is comfortable with many of the techniques. Although

the following techniques are used primarily with non-object-oriented programs,

they can be augmented with object-oriented design techniques introduced in the

next chapter and used in larger programs.

There are many different methodologies and number of stages within the various

methodologies for solving problems that can be found in different texts, but upon

closer examination, they are all rather similar. They tend to include at least four

stages, and they are usually comparable to the following:

1. Analysis

2. Design

3. Implementation

4. Maintenance

The analysis stage is where the needs of the user or customer are first deter-

mined. Questions concerning the form and quantity of the input, the type of

processing that needs to be done, the storage requirements of data, and the type

of output needed are asked and clarified at this stage. This would be similar to a

customer in a construction project trying to determine what type of building should

be built. In a first semester programming class, this stage may or may not be

included. Sometimes a professor might have already completed the analysis

stage and included what is needed in the programming assignment. However,

at other times, they might require this stage and a number of questions will need

to be asked by the student. This might be especially true when working on a team

project in a senior capstone course.

The design stage is where a project begins to take shape. It is similar to the

architect creating a set of blueprints and models for the user to examine,

because changes are much easier to make on paper or with the model than once the

construction of the building has started. Various tools such as UML diagrams

(discussed in the next chapter) and pseudocode (discussed later in this section) are

1.9 Program Design 31

used by analysts, software engineers, and programmers to help design the program.

Again it is much easier to make changes during the design phase than once the

programming has begun.

The implementation stage is where the code is actually written, compiled, and

errors are corrected. Once the code is free of syntax errors, it is thoroughly tested.

This includes testing various components of the program to be sure each section is

working properly. If not, then the code needs to be debugged to correct any logic

errors. In addition to the various components, the entire program needs to be tested

to ensure that all the components work together as planned. Sometimes errors are a

result of not following the design, whereas other times, it is not necessarily the code

but rather the design itself that has the error, in which case one has to go back and

correct the error in the design. The result is that each of the stages above is not a step

that needs to be rigorously adhered to, but rather one stage may need to return to a

previous stage for clarification or to fix a possible error.

Although it is tempting to jump directly to the implementation stage, this

tendency should be avoided. It is important to take the time to properly design

the algorithm first before starting to key in a program. An algorithm is a step-

by-step sequence of instructions, not necessarily implemented on a computer. Once

an algorithm is implemented in a specific language, it is then a program. By taking

the time to design a well-thought-out algorithm, there will be fewer logic errors

in the program. Although it might seem to take longer to include the design

stage, the savings will be more than made up for in less time spent debugging

logic errors later.

The maintenance stage is where all the modifications and updates take place.

In an industrial strength program, more time is spent in the maintenance phase than

all of the three preceding stages. This is because once a program is up and running,

there can be numerous changes that need to be made over the lifetime of a program.

This is another reason why a program should be designed well in order to facilitate

modifications later in the life of a program. Unfortunately, beginning programmers

do not often experience this stage of a program, because once the concepts are

learned from one programming assignment, the program is often not used again and

another program is assigned to introduce the next set of concepts. However, in some

upper-level courses, the assignments get longer, existing programs might be

modified and reused, and students get to have some experience with the mainte-

nance stage of programs. Regardless, it helps even beginning students to design

well-thought-out programs to gain practice in the event that a professor decides

it might be easier to modify an existing program rather than having to design a

new program from scratch, as done in the real world.

One technique that can help during the design stage is the use of pseudocode.
Pseudocode is a combination of English and a programming language. Since it is

really not a programming language, this is the reason for its name as “pseudo” code.

The advantage of using pseudocode is that one can concentrate on the logic of

an algorithm and not worry about the syntax of a particular programming language.

In fact, well-written pseudocode should be understood by any programmer regard-

less of the programming language that they use, and they should be able to convert

32 1 Variables, Input/Output, and Arithmetic

the pseudocode into their particular programming language. However, there can be

many different versions and levels of detail that can be included in pseudocode, so it

is best to check with one’s instructor or company if there are any preferences or

standards that are employed. In this text, when pseudocode is used, it will be written

with as much detail as possible so as not to be ambiguous and to help with the

translation into Java. As a simple example, consider the following pseudocode on

the left and the Java statement on the right:

areaRec height x width areaRec = height * width;

Note first that an arrow is used instead of an equal sign to indicate an assignment

statement. This helps illustrate the direction of assignment, since some languages use

symbols other than an equal sign to illustrate assignment. Also notice that a mathe-

matical symbol is used instead of an asterisk to illustrate multiplication. Lastly, a

semicolon is not used since not all other languages use them to terminate statements.

The result is that the pseudocode is more generic and helps in the translation to other

languages and not just the Java programming language. Again, this is just one sample

of pseudocode, so be sure to check your local guidelines and requirements.

Even when all attempts to write a logically correct program are followed, the

possibility of logic errors still exists. When this occurs, a programmer should not start

to randomly alter code in the hope that the error might be fixed. Although this might

work occasionally with smaller programs, it rarely works as programs become larger

and more complex. Instead, one should look for patterns in the output in an attempt to

isolate the problem. Further, one needs to carefully check the program by walking

through the code to ensure that it is doing what was originally intended. To assist in

this process, many IDEs include debuggers that can trace the contents of various

memory locations to help locate a logic error. However, do not rely on the debugger

alone to help correct the problem, but rather use it as a tool to assist in tracing the

logic of the program. If a debugger is not available, well-placed output statements at

critical points in the program can help in the debugging process. In the end, it is the

programmer reading the code carefully to see what the code is actually doing rather

than what one thinks it is doing that will ultimately fix logic errors in a program.

1.10 Complete Program: Implementing a Simple Program

Combining all the material from Chap. 1, one can now write a simple program to

prompt for and input various numbers, perform a wide variety of calculations, and

output answers as needed. In this section, a program that calculates two roots of a

quadratic equation ax2 + bx + c ¼ 0 will be developed and implemented. As might

be recalled from mathematics, the following is the definition of the two roots:

r1 ¼ �bþ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
b2 � 4ac
p

2a

1.10 Complete Program: Implementing a Simple Program 33

http://dx.doi.org/10.1007/978-1-4471-6317-6_1

and

r2 ¼ �b�
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
b2 � 4ac
p

2a

Problem statement: Write a program to calculate the two roots of a quadratic

equation. Assume that a 6¼ 0 and the relationship b2 � 4ac holds, so there will be

real number solutions for x.
Once a problem statement has been given, the requirements can be determined

by analyzing the problem. The program will:

• Prompt a user to enter values for a, b, and c
• Compute the two roots

• Display the two roots

During the design stage, pseudocode can be used to outline the program. At this

point, one does not need to be concerned with the details of the implementation,

such as the name of the class or the parameters in the mainmethod. It lists the steps

that need to be taken to accomplish the task. The following is the pseudocode for a

program calculating two roots of a quadratic equation:

declare a, b, c, root1, root2

input (a)
input (b)
input (c)

root1 �bþ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
b2 � 4ac
p� �

= 2að Þ
root2 �b�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
b2 � 4ac
p� �

= 2að Þ

output (root1, root2)

Observe in the formulas for the roots that the expression in the square root is called

the discriminant and is used in calculating both roots. Therefore, the square root of

discriminant can be calculated prior to the computation of root1 and root2, so
that it does not need to be calculated twice. The augmented pseudocode is

declare a, b, c, root1, root2, sqrtDiscr

input (a)
input (b)
input (c)

sqrtDiscr
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
b2 � 4ac
p

root1 (-b + sqrtDiscr)/(2a)
root2 (-b � sqrtDiscr)/(2a)

output (root1, root2)

34 1 Variables, Input/Output, and Arithmetic

After the design phase comes the implementation phase. Consider the following

program that is derived from the pseudocode above:

Observe the formula for the discriminant for root1 and root2. The methods

sqrt and pow are defined in the Math class and are used to calculate the square

root of the discriminant and the number b raised to the power of 2. All the

parentheses are necessary to obtain the answer, which is accurate to at least two

decimal places. In the output section of the program, println is called at the

beginning in order to have a blank line between the input and output. The specifiers

for root1 and root2 do not include the width to avoid any extra space before the

roots are output since an extra space is included in the string. Given the above

program, sample input and output are shown below:

Enter a: 2.0
Enter b: -5.0
Enter c: -3.0

Two roots of the equation, 2.0*x*x + -5.0*x + -3.0 ¼ 0, are
3.00 and -0.50.

1.10 Complete Program: Implementing a Simple Program 35

1.11 Summary

• Machine language and assembly language are low-level languages, where the

former uses ones and zeros and the latter uses mnemonics. High-level languages

are more English-like, where C, C++, and Java are examples of high-level

languages.

• Compilers convert the entire high-level language program into machine lan-

guage before executing the machine language program, whereas interpreters

convert a high-level language program one instruction at a time and then execute

only the corresponding machine language instructions before converting the

next high-level instruction.

• Java is a hybrid system, where the Java instructions are converted into an

intermediate language called bytecode using a compiler and then the bytecode

is converted into machine language using an interpreter.

• System.out.print leaves the cursor on the same line, whereas System.
out.println moves the cursor to the next line.

• Just because there are no arguments in a System.out.println, it does not
mean a blank line is output. A blank line is output with a System.out.
println when there are no preceding System.out.print statements.

• Remember that multiplication and division have a higher precedence than

addition and subtraction and that unary operators have an even higher

precedence.

• Parentheses can override any operator precedence, where the innermost nested

parentheses have the highest precedence. It is also good practice not to use

unnecessary parentheses.

• Whenever there is a tie at any level of precedence, the operators or parentheses

are evaluated from left to right.

• The ++ or �� operators are an easy shortcut when used as standalone

statements. However, great care must be taken when they are used in assignment

statements or with other operators. In that case, if the ++ or �� precede a

variable, it is performed first, but if they appear after the operand, they are

performed last.

1.12 Exercises (Items Marked with an * Have Solutions
in Appendix E)

1. Indicate whether the following statements are syntactically correct or incorrect.

If incorrect, indicate what is wrong with the statement:

A. integer num1, num2;
*B. double num3;
C. 7.8 ¼ num3; Assume that a variable num3 has been declared correctly.

*D. int j;
j ¼ 5.5;

36 1 Variables, Input/Output, and Arithmetic

http://dx.doi.org/10.1007/978-1-4471-6317-6_BM1

2. Assume the following declaration and initialization of variables:

int i, j;
double d;
i ¼ 1;
j ¼ 5;
d ¼ 2.34;

Determine the value for each of the following expressions, or explain why it is

not a valid expression:

*A. i / j;
B. j + d;
C. Math.pow(j);
D. i - j * d
E. i + d * (j * 3 – 2) / 4

3. Assuming the following declaration and initialization of variables,

int i;
double d;
i ¼ 3;
d ¼ 2.34;

Determine the value assigned to the variable in each of the following assignment

statements, or explain why it is not a valid assignment statement:

A. i ¼ d;
*B. d ¼ i + d;
C. d ¼ Math.pow(5, Math.sqrt(Math.pow(i, 2)));

4. Implement each of the following statements in the Java language:

A. Declare a variable weight of type double.
*B. Declare a constant EULER_NUMBER of type double and assign it the

value 2.7182.

5. Given the following Java program, what will be output to the screen? Be sure to

line everything up properly. Use an underscore to represent a blank and the

words blank line to represent a blank line:

class OutputTest {
public static void main (String[] args) {

System.out.println("alpha ");
System.out.println();
System.out.print(" beta");
System.out.println(" gamma");

}
}

1.12 Exercises (Items Marked with an * Have Solutions in Appendix E) 37

*6. Write code to output the following pattern:

** **
** **

** **
** **

*7. After the following statements are executed, what is stored in value1,
value2, and value3?

int value1 ¼ 5;
int value2 ¼ 9;
int value3 ¼ 4;
value1 ¼ value2;
value2 ¼ value3;
value3 ¼ value1;

8. Write an equivalent Java assignment statement for each of these mathematical

expressions.

A. ν=49x15

yþz
*B. s=rπ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
r2 þ h2

p

C. a=sin g
c

9. Write a complete program to prompt for and input a number, and then compute

2 to the power of the number that was input. The form of the input and output can

be found below, and as always be careful with the vertical and horizontal spacing.

Input and Output:

Enter the number: 4.0

Two to the power of 4.0 is 16.0.

38 1 Variables, Input/Output, and Arithmetic

Objects: An Introduction 2

2.1 Introduction

Having written a complete Java program in the proceeding chapter, one should have

a basic understanding of how a program works. However, as programs get larger,

they can become very difficult to modify. It would be similar to trying to write

a paper or book as just one long paragraph without any chapters, sections, or

paragraphs. To help make a program easier to modify and maintain, it can be

broken up into sections much like a book is divided up into chapters. Further, if a

section of a book needed to be referred to many times, instead of repeating that

section over and over again, it could possibly be placed in an appendix, and then the

appendix can be referred to as necessary. Similarly, if a section of a program needs

to be used again, the program can be broken up into subprograms. Instead of having

to rewrite the code, a program can just call the same subprogram repetitively, thus

saving time rewriting the code and saving memory as well.

However, what if the repeated code is only slightly different from the

code that has been previously written? One could rewrite the code again with

only slight modifications, but the chance for making mistakes would increase.

There would also be time wasted rewriting existing code and memory wasted to

store the code.

Instead of the above scenario, the programming methodology called object-

oriented programming (OOP) could be used. OOP allows programmers to identify

the common memory locations and code and then create what is known as a class.
Then as variations of the class are needed, they can be made based on the original

class. This allows for the reuse of a software that has been initially created in

the original class, and the new classes are just variations on the theme of the

original class.

A class is essentially a definition of an object or group of objects. For example, in

the real world, the drawings, plans, or blueprints for a house are a definition for a

single house or a group of houses. Although blueprints could be drawn up for

a single custom-built house, many times there might be a set of master blueprints

J.T. Streib and T. Soma, Guide to Java: A Concise Introduction to Programming,
Undergraduate Topics in Computer Science, DOI 10.1007/978-1-4471-6317-6_2,
© Springer-Verlag London 2014

39

for a group of houses. A subdivision could be built with houses that are all very

similar but have various subtle differences so that they do not all look the same.

For example, some houses might be built with different color siding, with windows

in different locations, with one or two car garages, and so on. The reason for doing

this is to keep the cost of the individual houses reasonable. Should a major change

in the blueprint need to be made for all the houses, then only the master blueprints

would need to be changed. However, if a change only needs to be made to some

of the houses, such as only to those houses that have fireplaces, then only the

individual supplement that contains the plans for fireplaces would need to be

changed. This idea is called inheritance and will be explored further in Chap. 9.

However, before learning more about that topic, the fundamentals of object-

oriented programming must be discussed first.

2.2 Classes and Objects

In object-oriented terminology, the master blueprint would be called the class defini-

tion, and an actual house would be an instance of that class or what is known as an

object as shown in Fig. 2.1. This can be a source of confusion for some beginning

programmers which sometimes use the words class and object interchangeably.

However, if one keeps the distinction between the plans or blueprints as the class

and the individual houses as instances of the class or the objects themselves, it makes

the learning of object-oriented programming easier in the long run.

Although a class can be placed in the same file right before or after the class that

contains the main program, it is often placed into a separate file. This eventually

helps when there are a number of different classes and when there is more than one

programmer working on a project. However, this text will show classes imme-

diately after the main program in order to save space.

As with the initial skeleton of the main program in Chap. 1, the introduction of

classes will also start with an empty class called Number as shown below:

class Number {

}

Actual Houses
(Instances of the Class or Objects)

Blueprint
(Class)

Fig. 2.1 Classes and objects

using blueprints and houses

40 2 Objects: An Introduction

http://dx.doi.org/10.1007/978-1-4471-6317-6_9
http://dx.doi.org/10.1007/978-1-4471-6317-6_1

As can be seen, a class is somewhat similar to the main program except it is

much simpler. As before, the word class is a reserved word, Number is the name

of the class, and the opening and closing braces indicate the body of the class.

2.3 Public and Private Data Members

As before, an empty class is not very useful until code is added to it. Two of

the most important items in a class definition are its data members and methods.

A data member is similar to the declaration of a variable in the previous chapter.

An important difference is that data members need to be declared using the access

modifiers: public or private. A public data member is one that can be seen and

used by an object of the class in which it was declared but can also be used outside

the object, such as the main program. A private data member is one that can only be

seen or used within an object of the class and cannot be used externally, such as by

the main program. As shown below, the variable or data member x is declared as

private, and the data members y and z are declared as public.

class Number {
private int x;
public int y, z;

}

At first, one might be tempted to declare all data members as public to

allow for easy access from the calling program. However, this would be in

contradiction with why one creates a class in the first place. One of the important

aspects of OOP is data encapsulation. This means that the data in an instance of a

class is encapsulated within the object and not directly accessible from the outside

world. For example, in an automobile there are various parts which are inaccessi-

ble when one is driving, such as the fuel tank. However, through a gauge on the

dashboard, one can tell whether there is fuel in the fuel tank. This is similar to

public and private data members, where in many instances one does not want

the main program having direct access to the data members. So although it is

possible to declare data members as public, they will most often be declared as

private.
If a data member is not directly accessible when it is declared as private,

how does one gain access to it? The answer is through a method, specifically a

public method which can indirectly allow access to private data members.

Although methods are sometimes declared as private, for now most of

the methods will be declared as public. If a method is just accessing and

examining the contents of a data member, it is known as an accessor. Should a

method alter a data member, it is known as a mutator. An accessor method is often

used to get the contents of a data member and a mutator is often used to set the

contents of a data member. In particular, an accessor method is known as a value-

returning method, and a mutator is known as a void method, as discussed in the

next two sections.

2.3 Public and Private Data Members 41

2.4 Value-Returning Methods

First, consider a method that returns the contents of a private integer data member x
as follows:

public int getX() {
return x;

}

The word public means that the method can be accessed from the main

program. If the data member is private, then the method invoked from the

main program to access the data member is declared as public. (How the method

is invoked will be discussed shortly.) The word int is the type of the value that will

be returned to the main program. The name of the method is getX and it is used in

the main program to invoke the method. Inside the opening and closing parentheses

() is known as a parameter list and is used for sending information to the method.

Since this method is an accessor and not a mutator, there is no information being

sent to the method, so the parameter list is empty. The opening and closing braces

{} indicate the body of the method that contains the instructions, just as in the main

program. The return instruction followed by the variable x indicates what

value will be returned to the main program. Although there can be more than one

return statement in a method, it is a good programming practice to include only

one return statement, and typically as the last statement in the method, as will be

discussed later in Chap. 3. Returning to the automobile example, the getX accessor

method is somewhat like the fuel gauge on the dash panel of a car that displays the

amount of fuel in the fuel tank.

2.5 Void Methods and Parameters

As an example of a void method, consider the following:

public void setX(int a) {
x ¼ a;

}

As with the value-returning method, the void method is also public so it can

be invoked from the main program. The word void indicates that the method will

not return a value. Similarly, setX is the name of the method that will be used

when invoking the method from the main program as will be discussed in the next

section.

Unlike the previous method, this method has a parameter (sometimes called a

formal parameter) between the parentheses. Notice that it looks similar to a

variable declaration, and in a sense, it is like a variable declaration with a type

and a variable name. However, what is unique about a parameter is that it can accept

a value from the calling program. This is accomplished through an invoking

statement, where there is another variable or constant called an argument

42 2 Objects: An Introduction

http://dx.doi.org/10.1007/978-1-4471-6317-6_3

(sometimes called an actual parameter) and the value of the argument is passed to

the parameter. This is not unlike how the value on the right side of an assignment

symbol ¼ is copied into the variable on the left side. This copying of a value from

an argument to a parameter is known as pass-by-value, or in other words this type of

parameter is known as a value parameter. A value parameter provides one-way

communication from the main program to the method. Other programming

languages have additional parameter passing mechanisms that provide two-way

communication, but Java has only value parameters, which makes the task of

learning parameters a little easier. A visual example of how this works will be

demonstrated in the section on contour diagrams later in this chapter. Lastly, the

only statement in the method is x¼ a;which is a simple assignment statement that

takes a copy of the contents in the parameter a and copies it into the data member x,
as discussed in Chap. 1.

A question that might be asked is where is the data member x, since it does not
appear in either of the two methods. If the variable is used by only one of the two

methods, it should be declared locally in that method, but if the value in the variable

is needed in both methods, it should be declared as a data member in the class. If a

variable is declared in a method, it is sometimes referred to as a local variable since
only that method has access to it. However, if a variable is declared as a data

member, it is sometimes referred to as a global variable since it is accessible by all

the methods in the object. In this example, since the variable x is used by both

methods, it is declared as a data member so that both methods have access to it.

To illustrate a complete class using both the data member x and the two methods

above, the class definition of Number is shown in Fig. 2.2.

Unlike the previous skeleton, the new class Number above only contains the

private data member x. Also, the order of the methods is irrelevant. Sometimes the

methods are put in alphabetical order, but this text will typically list the mutators

first followed by the accessors, and then order them alphabetically within each

group. The use of comments and line spacing helps with the readability of the class,

although they will sometimes be omitted to save space in this text.

Fig. 2.2 Number class

2.5 Void Methods and Parameters 43

http://dx.doi.org/10.1007/978-1-4471-6317-6_1

2.6 Creating Objects and Invoking Methods

Given the discussion of classes and methods in the previous sections, how are

instances of classes created and the methods invoked? The best way is to show an

example of a complete main program. Using the skeleton program from Chap. 1

with the appropriate code added, consider the program in Fig. 2.3.

Note that there are two variables named y and z declared as type int, but there
is also a variable named num that is declared as type Number. Just like different

variables can be declared as primitive data types, variables can also be declared as a

type of a class. Similar to the primitive types, the contents of the class variables are

initially indeterminate. In order to create a new instance of a class, in other words a

new object, the new operator must be used, and then a reference to the new object is

typically placed into a variable. The statement num ¼ new Number(); performs

these two tasks. First, a new object is created via the new Number() section of the

statement. Then a reference to that new object is placed in the variable num through

the assignment symbol ¼. It is important to remember that simply declaring a

variable is not sufficient to create an object, but rather after the variable is declared,

a new object must be created and then assigned to the variable. A shorter way of

doing this is as follows:

Number num ¼ new Number();

Although this technique might occasionally be used later in the text to save

space, for now the two statements as shown below will be used to reinforce the

concepts of variable declaration, object creation, and the assignment of references

to variables.

Number num;
num ¼ new Number();

This also reinforces the idea concerning the separate declaration and assignment

of variables presented in Chap. 1. If one’s instructor prefers using a single statement

or if one is reading this text independently and wants to use just one statement,

then of course do so.

Fig. 2.3 Invoking program

44 2 Objects: An Introduction

http://dx.doi.org/10.1007/978-1-4471-6317-6_1
http://dx.doi.org/10.1007/978-1-4471-6317-6_1

2.7 Contour Diagrams

As indicated in the preface, contour diagrams are a very usefulmechanism to visualize

how objects, data members, methods, and parameters work. By building a good

working visual model of objects, there will be less of chance having misconceptions

as to how objects work. By building a solid foundation of the fundamental concepts,

it makes it easier to understand more complex ideas in the future.

The purpose of using contours is to not only show the data members, similar to

the variables that were drawn in Chap. 1, but also to show the scope of where the

data members are accessible. The scope of a local variable is the method where it is

declared, and the scope of data member is all of the methods in the object.

Although not required, it is also helpful to include the type of the variable in the

contour to avoid confusion among the many different types of variables. In addition

to the variables, contours can also show how parameters are represented in the

methods. Lastly, contours show the dynamic or changing nature of a program as it

executes.

As before, it is helpful to start with an example. The program from Fig. 2.3 is

combined with the class from Fig. 2.2 to create Fig. 2.4 with each line numbered

in a comment to the right for convenience in the description that follows. The

contour diagram in Fig. 2.5 shows the state of execution just prior to the execution

of Line 5 in the main program.

The outer contour represents the class Invoke, and the inner contour around the
boxes shows the scope of the variables in the main program. Although the contours

do not indicate much presently, the use of the contours will become clear shortly.

Further, note that although technically the Invoke contour should be drawn for

each of the following figures, it is not very useful at this time and will not be drawn

for the rest of this chapter in order to simplify the drawings. However, it will be

reintroduced and discussed further in Chap. 5.

Fig. 2.4 Invoking program and Number class

2.7 Contour Diagrams 45

http://dx.doi.org/10.1007/978-1-4471-6317-6_1
http://dx.doi.org/10.1007/978-1-4471-6317-6_5

Continuing, the first column of boxes on the left indicates the names of the

variables, and the boxes in the middle indicate the types of the variables, where y
and z are of type int, and num is of type Number. Lastly, the boxes on the right
indicate the current contents of the variables. Note that the state of execution is just

prior to line 5, not after its execution. While technically y and z are initialized by

the system to 0, this text will continue to assume that the variables do not contain an

initial value and are indeterminate as discussed in Chap. 1.

Although rather simplistic here, once Line 5 is executed, the contents of variable

y now contain the value 5. Figure 2.6 shows the state of execution just prior to the

execution of Line 6 and also does not show the outer contour for the Invoke class.

However, when Line 6 is executed, things start to get interesting. Just like the

Invoke contour was drawn in Fig. 2.5, when a new instance of the Number class

is created, a new corresponding contour is also created. Although as mentioned

previously the contour for Invoke is not very useful at this time, the contour for

Number is necessary for the following discussion. Note that there is one data

member in the class and it is shown within the Number contour. Once the instance

is created, a reference to the object is assigned to the variable num. This reference is
illustrated as an arrow in the contour diagram, where the arrow points to the new

contour and the end of the arrow is placed in the variable num. Figure 2.7 shows the
state of execution just prior to Line 7 in main.

The next line to be executed is Line 7, which invokes the method setX. Prior to
having the flow of control go from Line 7 to Line 15 in the setXmethod, a number

of things need to occur. Just like when a new object is created and a corresponding

contour is drawn, the same holds true when a method is invoked. Since the method

is part of the instance of the class Number, this is where the corresponding contour

main

y int ---

z ---

---num

int

Number

InvokeFig. 2.5 State of execution

just prior to Line 5

main

y int 5

z ---

---num

int

Number

Fig. 2.6 State of execution

just prior to Line 6

46 2 Objects: An Introduction

http://dx.doi.org/10.1007/978-1-4471-6317-6_1

appears. A convenient way of remembering this is that whenever there is a dot in the

invocation of a method, then one needs to follow the reference or arrow to the

corresponding contour. With the instruction num.setX(y); one just starts with

the variable num, then follows the arrow to the Number contour, and then within

the Number contour creates another contour for the setX method as shown in

Fig. 2.8 which illustrates the state of execution just prior to Line 15 in setX.
Note that the contour setX has a memory location associated with it for the

parameter a. As mentioned in Sect. 2.5, a parameter is essentially a variable that takes

on the value of the corresponding argument. Since the value contained in the variable

y which is used as an argument in the main program is a 5, then the corresponding

parameter takes on a copy of that same value, similar to an assignment statement.

This also illustrates why parameters in Java are called value parameters, because they

merely take on the value of the corresponding argument. Note that an argument

and the corresponding parameter can have the same name or different names. In this

example, the argument y and parameter a have different names, illustrating that the

two do not have to be the same. Then when Line 15 is executed, Fig. 2.9 shows the

state of execution just prior to Line 16 in setX.
Note that Line 15 is the assignment statement x ¼ a; where the contents of the

parameterawill be copied into the variablex. However, notice that the parametera is

inside the contour for setX and the variable x is in the contour for the object or

instance ofNumber. Is it okay for the contents ofa to be assigned tox? The answer is
yes. The reason is that when executing a statement that contains a variable, the system

first looks for the variable within the innermost contour for the variable. If it is found, it

uses that variable or parameter. If it is not, then the system looks at the variables

contained within the next most encompassing contour diagram. If the variable is

found, it is used. However, if the variable is not found, then a syntax error will be

main

y int 5

z ---

num

int

Number

Number

x int ---

Fig. 2.7 State of execution just prior to Line 7

main

y int 5

z ---
num

int
Number

Number

x int ---

a int 5

setX()

Fig. 2.8 State of execution just prior to Line 15

2.7 Contour Diagrams 47

generated during compilation time. It is very important to note that although the

system will look at any encompassing contour, it cannot look into another contour.

In other words, it will look outside of a contour, but it cannot look into another contour.

Another way of looking at this is to say that the scope of the variable a includes

only the method setX; however, the scope of the variable x includes both the object

num and the method setX. The word scope is just a way of expressing in which

objects and methods a variable is accessible. Problems can occur when there are two

variables of the same name, and examples will be illustrated later in Chap. 5, but for

now this text will use different variable names to avoid this difficulty.

Although Line 16 is not an instruction, it does represent the end of method

setX. When the method is done executing, control is transferred back to the main

program. Since setX is a void method, control is transferred back to the line just

after the one that invoked the method. The result is that Fig. 2.10 represents the state

of execution just prior to Line 8 in the main program.

Note that the contour for the setX method is shaded as light gray. The reason

for this is to indicate the contour is deallocated, where the memory locations

associated with the method are no longer accessible. Although the contour can

and is often simply erased as shown in Fig. 2.11, it is sometimes helpful to show the

contour as shaded prior to erasing it so that the contents of the memory locations

can still be seen by others. Although shading a contour might be difficult when

drawing a contour by hand, an alternative is to just very lightly cross it out while

still allowing its contents to be seen.

main

y int 5

z ---

num

int

Number

Number

x int 5

a int 5

setX()

Fig. 2.9 State of execution just prior to Line 16

main

y int 5

z ---

num

int

Number

Number

x int 5

a int 5

setX()

Fig. 2.10 State of execution just prior to Line 8

48 2 Objects: An Introduction

http://dx.doi.org/10.1007/978-1-4471-6317-6_5

So what happens when Line 8 is executed? Similar but somewhat different to the

invoking of the void method setX, the value-returning method getX is invoked,

and the state of execution just prior to Line 18 is shown in Fig. 2.12.

Note that there are no memory locations allocated in the contour for getX.
The reason for this is that there are no parameters in the parameter list, nor are there

any local variables declared within the method, as will be discussed later. As a

result, no memory locations are allocated within the contour. So what happens

when the return x; statement is executed? Since there is no variable declared by

the name x in the getX contour, the system looks outside the contour to see the

variable x in the Number contour. The number 5 in the variable x is the value

returned to the main program. Since this is a value-returning method, control does

not return back to the line after the line that invoked the method, but rather control

is returned back to the same line from which it was invoked, so that the value

returned can be assigned to a variable or possibly output. When the return is

executed, control is transferred back to Line 8, where the number 5 is assigned to

the variable z in the main program.

Figure 2.13 shows the state of execution just prior to Line 9 with the contour for

getX shaded as discussed previously. Alternatively, the contour for getX does not

need to be shaded nor drawn as shown in Fig. 2.14.

Since Line 9 is just a print statement and does not contribute to the understanding

of objects, the state of execution after Line 9 is not shown here. Although almost

every contour was drawn to illustrate the intricate details in the preceding example,

this will not always be the case. In the future, some of the more simplistic contours

might be skipped, but should they be needed they will be drawn in order to explain a

particular concept, as in the next section on constructors.

main

y int 5

z ---

num

int

Number

Number

x int 5

Fig. 2.11 State of execution just prior to Line 8 (alternative)

main

y int 5

z ---

num

int

Number

Number

x int 5
getX()

Fig. 2.12 State of execution just prior to Line 18

2.7 Contour Diagrams 49

2.8 Constructors

When a new object is created, it is sometimes nice to have the various private data

members initialized to specific values. This is convenient and allows variables to

have default values in case a programmer forgets to initialize them. The mechanism

needed to accomplish this task is known as a constructor. A constructor is a special

method that is automatically invoked once at the time an object is created via the

new instruction. It looks similar to other methods, but instead of having its own

unique name as determined by the programmer, it has the same name as the class.

Although this can be confusing at first, it helps to remember that when a new object

of a class like Number is created, the method that serves as the constructor for the

class has the same name, Number, and does not have a return type. Again, it is best
to show an example. In this case the constructor initializes the data member x to the

default value 0, again assuming that the initial value of variables is indeterminate as

discussed in Chap. 1.

public Number() {
x ¼ 0;

}

Including the above constructor, the previous class would look as shown in

Fig. 2.15, where typically constructors are located after the data members but prior

to all the other methods.

main

y int 5

z 5
num

int

Number

Number

x int 5

getX()

Fig. 2.13 State of execution just prior to Line 9

main

y int 5

z 5
num

int
Number

Number

x int 5

Fig. 2.14 State of execution just prior to Line 9 (alternative)

50 2 Objects: An Introduction

http://dx.doi.org/10.1007/978-1-4471-6317-6_1

Using the first 11 lines of the main program in Fig. 2.4 and replacing lines

12 through 20 with the code from Fig. 2.15, the program in Fig. 2.16 is the revised

one from Fig. 2.4 that now incorporates a constructor. Instead of walking through

the entire program as was done in the last section, only the first few lines of the

program will be executed to illustrate how a constructor works.

Fig. 2.15 The Number class

with a constructor

Fig. 2.16 Invoking program and Number class with a constructor

2.8 Constructors 51

After executing Line 5, the contour in Fig. 2.17 shows the state of execution

just prior to the execution of Line 6 in the main program. If the contour looks

familiar, it is because it is the same contour that appeared previously in Fig. 2.6.

However, what happens when Line 6 is executed is different from the previous

program. As before a contour is created for an instance of the Number class which

contains the variable x. Recall from the discussion above that a constructor is

automatically executed when a new instance of an object is created. As a result, a

contour is also created for the constructor as shown in Fig. 2.18 which shows the

state of execution just prior to Line 15 in the constructor for the class Number.
Notice that the contour is empty, since there are no local variables or parameters

as was the case previously with the getX() method. Also note that there is no

arrow pointing to the contour either. That is because while the constructor is

executing, the reference to the object has not yet been assigned to the variable num.
After Line 15 is executed, the state of execution looks as shown in Fig. 2.19.

Notice that the variable x has been initialized to 0. Since there is not a variable

named x in the constructor, the system looks outside to find the variable x in the

class Number, similar to the setX method as discussed previously. Once

Line 16 is finished, the contour for the constructor is deallocated and shaded in

gray. The flow of control then returns back to Line 6 in the main program, and the

reference to the object is assigned to the variable num as shown in Fig. 2.20.

The program then continues to execute Line 7 just as it did previously, where the

only difference is that the variable x has been initialized to the number 0 instead of

being indeterminate. Although the initialization could have been accomplished by

invoking the setX method with a parameter of 0, the advantage of using a

constructor is that a programmer does not need to explicitly invoke a method and

main

int 5

z ---

---num

int

y

Number

Fig. 2.17 State of execution just prior to Line 6

main

y int 5

z ---

---num

int

Number

Number

x int ---

Constructor

Fig. 2.18 State of execution just prior to Line 15

52 2 Objects: An Introduction

does not run the risk of forgetting to do so, which under some circumstances might

cause a logic error. Although this is a simple example, as programs become more

complicated, the role of a constructor will become more important. When one

begins to learn more about data structures in later courses, the role of the con-

structor as just a mere initializer will diminish, and it takes on roles more befitting

of its namesake as a constructor. For now, it is a good practice to use constructors

when possible to gain more familiarity and become more comfortable with their use

and function.

2.9 Multiple Objects and Classes

Is it possible to have more than one instance of a class or more than one class? The

answer is yes and this section will address some of the issues with multiple objects

and classes. For example, if one wanted to have two instances of the preceding

Number class, the program could be written as in Fig. 2.21. In the interest of

simplifying the contours, the number of variables has been reduced in this example.

For example, instead of using local variables as arguments as done in the previous

section, constants are used as arguments in Lines 6 and 7. Also, note that the values

returned from getX are not stored in variables, but rather just simply output

as shown in Lines 8 and 9. Again, these shortcuts are not generally encouraged,

but they do save some space in the contour diagrams and hopefully help the reader

see the points currently under consideration more clearly.

main

int 5

z ---

---num

int
y

Number

Number

x int 0

Constructor

Fig. 2.19 State of execution just prior to Line 16

main

y int 5

z ---

num

int

Number

Number

x int 0

Constructor

Fig. 2.20 State of execution just prior to Line 7

2.9 Multiple Objects and Classes 53

Notice that there are now two variables of type Number on Line 3. As before, it

is helpful to use contour diagrams to assist in the understanding of the code. In this

case, only the first part of the code will be executed, and the remainder of the code is

left as an exercise at the end of the chapter. Figure 2.22 shows the state of execution

after Line 5 but just prior to Line 6.

Note that after the constructor has been invoked twice, there are now two

instances of the class Number. There are also two variables with the same name,

x, but does this cause any problems during the execution of the program? The

answer is no, because each variable x is in a different instance of the Number class,

where one of the variables is in the object referenced by num1 and the other by

num2. Upon completion of Line 6, Fig. 2.23 shows the state of execution after the

execution of Line 18, but prior to the execution of Line 19 in the setX method.

Fig. 2.21 Program to create multiple instances of the same class

main

num1

num2

Number

Number

Number

x int 0

x int 0

Number

Fig. 2.22 State of execution after creating two instances prior to Line 6

54 2 Objects: An Introduction

As before, the contents of the parameter a have been placed in the data member x.
However, is there any confusion as to where the setX method contour should

appear? No there is not; since the method call was num1.setX(5); the system

knows to execute the setXmethod in the contour referenced by num1. As discussed
previously in Sect. 2.7, an easy way of reading the code num1.setX(5); is to first

go to the variable name in the contour, in this case num1, and when there is a dot after
the variable name in the code, follow the corresponding reference or arrow to the

appropriate contour. In other words, a dot in the line of code refers to a reference or

arrow in the contour diagram. After following the reference to the corresponding

contour diagram, the contour for the method setX is created. This also reinforces

that it is very important to create the initial object contour and corresponding

reference correctly when the new instruction is first executed, because all subsequent

code is dependent upon it.

Although the creation of two instances of the same class is fairly straightforward,

one must be careful when manipulating the two instances. For example, what if one

wanted to take a copy of the integer 5 in the variable x in num1 and put it in the

variable x in num2? At first it would seem to be a simple assignment operation

from Chap. 1, for example, a ¼ b; to copy an integer from the variable b into the

variable a. However, when dealing with objects, the results might not be what one

expects. For example, what if one wrote the code num2 ¼ num1? The contents of
num1would be copied into num2, but remember, what exactly is in num1? It is not
the integer 5, but rather a reference to the corresponding object that contains the

integer 5. What is copied is not the integer 5, but rather the result would be that

num2 points to the same object as num1 and the previous object that num2
referenced would be deallocated as shown in Fig. 2.24.

Given that the simple assignment statement above does not accomplish the

intended task, how then could the integer 5 be copied from the x in num1 to the

x in num2? Although another technique will be shown later in Chap. 5, for now a

temporary variable temp could be used, and the contents of x in num1 could be

main

num1

num2

Number

Number

Number

x int 5

x int 0

Number
a int 5

setX

Fig. 2.23 State of execution just prior to Line 19

2.9 Multiple Objects and Classes 55

http://dx.doi.org/10.1007/978-1-4471-6317-6_1
http://dx.doi.org/10.1007/978-1-4471-6317-6_5

retrieved using the method getX. Then the corresponding x in num2 could be set

with the method setX as shown in the following code segment:

int temp;
temp ¼ num1.getX();
num2.setX(temp);

Alternatively, the temporary variable might not be used, and the getX method

could be used as a parameter for the setX method as shown in the following

shortened segment:

num2.setX(num1.getX());

Here the getXmethod is invoked first, and then the results returned are used as a

parameter to be sent to the setX method. Although the above shortcut works well,

for now this text will occasionally use a temporary variable to help make the code a

little easier to read.

Just as it is possible to have multiple instances of a single class, it is also possible

to have multiple instances of multiple classes. To elaborate further on the Number
class and make it a little more interesting, suppose there is a class defined that has

methods to calculate the area of a square and another class has methods to define and

calculate the area of a rectangle. Although it could be argued that a square is just a

special case of a rectangle, for now they will be defined as two separate classes, and

this will pave the way to help explain the concept of inheritance later in Chap. 9.

The class Square will need a method to set the length of the sides and another

to calculate the area of the square. Although the method that calculates the area

could also return the area (see Sect. 2.11 for the alternative technique), for now an

accessor method will be used to return the area of the square, and all three methods

are shown in Fig. 2.25.

Note that instead of a single data member as in the previous example, there are

now two private data members, one for the side and one for the area. Except for the

different variable names, note the constructor, setSide, and getArea methods

are similar to the constructor, setX, and getX methods in the previous example.

The only real difference is the inclusion of the calcAreamethod which calculates

the area of the square, and it is implemented as a void method.

main

num1

num2

Number

Number

Number

x int 5

0

Number

x int

Fig. 2.24 Results of num2 ¼ num1;

56 2 Objects: An Introduction

http://dx.doi.org/10.1007/978-1-4471-6317-6_9

The Rectangle class can be implemented similar to the Square class.

The major difference between these two classes is that with a rectangle, it is

possible to have the two sides be of different lengths, so there needs to be two

variables instead of just one to represent the sides, in this case, sideX and sideY
as shown in Fig. 2.26.

Fig. 2.25 Square class

Fig. 2.26 Rectangle
class

2.9 Multiple Objects and Classes 57

Notice the use of three variables in the bodies of the constructor and the

calcArea method. Also, since the setSide method is modifying more than

one side, the body of that method is also changed, but more importantly, the

setSide method has two parameters instead of just one. Lastly, the getArea
method remains unchanged.

Both classes can now be implemented and used with a main program as

illustrated in Fig. 2.27. As with the last program and again not generally

Fig. 2.27 The main program along with the Square and Rectangle classes

58 2 Objects: An Introduction

encouraged, in order to help save space in the contours, note that in Lines 7 and

8 constants are used as arguments and in Lines 11 and 12 the get methods are

located in the println statements.

As before, in order to see the difference between instances of multiple classes, it is

helpful to walk through the contour diagrams, at least part of the way. The contour in

Fig. 2.28 illustrates the state of execution after Line 6 and before the execution of

Line 7 in the main program.

Previously in Fig. 2.22, the two object contours were identical because they were

two instances of the same class. However, here in Fig. 2.28 the two object contours
are different because they are instances of different classes. After executing Line

7, Fig. 2.29 shows the state of execution just prior to Line 23 in the setSide
method.

Is there any confusion as to where the setSide method contour appears? No,

since the method call was square.setSide(2); the system knows to execute

the setSide method in the Square class because square is of type Square.
Although somewhat different, this is similar to the previous example in Fig. 2.23

where there were two variables of the same name, but in that example there were

main

square

rect

Square

Rectangle

Square

side int 0

sideX int 0

Rectangle

sideY int 0

area int 0

area int 0

Fig. 2.28 State of execution just prior to Line 7

main

square

rect

Square

Rectangle

Square

side int 2

sideX int 0

Rectangle

sideY int 0

setSide

s int 2

area int 0

area int 0

Fig. 2.29 State of execution prior to Line 23

2.9 Multiple Objects and Classes 59

two instances of the same class. In this case, there are two methods of the same

name, but they are in two different classes. As before, an easy way of reading the

code and the contour diagram is to go to the variable name, in this case square,
and when there is a dot after the variable name in the code, follow the corre-

sponding reference or arrow to the appropriate contour and then create the method

contour in the corresponding object contour.

After returning to Line 8 in the main program, the rect.setSide(3, 4);
statement is executed, and control is transferred to Line 39 in the corresponding

setSide method in the Rectangle class. Figure 2.30 then shows the state of

execution just prior to Line 41.

Note that this time the setSide method contour appears in the Rectangle
class contour, and there are two parameters instead of one. Later it will be seen that

there can be several methods within a class with the same name; however, they can

be distinguished by having a different number, type, or order of the types of

parameters. This concept is called method overloading and will be discussed in

detail in Chap. 5. In the current example, although there are two methods that have

the same name, it is not a problem because the two methods are in different classes.

As with the previous example, the completion of the contours is left as an exercise

at the end of the chapter.

2.10 Universal Modeling Language (UML) Class Diagrams

Whereas contours are helpful in examining how a specific object works, when an

application becomes larger and includes several classes, it is helpful to get a better

picture of the relationship among the various classes using Universal Modeling

main

square

rect

Square

Rectangle

Square

side int 2

sideX int 3

Rectangle

sideY int 4

setSide

sX

sY

int 3

int 4

area int 0

area int 0

Fig. 2.30 State of execution just prior to Line 41

60 2 Objects: An Introduction

http://dx.doi.org/10.1007/978-1-4471-6317-6_5

Language (UML) diagrams. UML diagrams can also help one not only see

relationships between classes but also see the relationships among the objects of

different classes. UML is a language specifying a graphical notation for describing

software designs in an object-oriented style. It gives one an overall view of a

complex system more effectively than a Java program which may provide too

much detail. Again, whereas contour diagrams are helpful when trying to under-

stand the execution of a program, UML diagrams are helpful when trying to design

a program. The class definitions and objects discussed in the previous sections can

be illustrated using UML class diagrams. Figure 2.31 shows how the Number class

in Fig. 2.16 can be displayed using UML class diagram notation.

In the UML class diagram, both data members and methods are included. A class

is displayed as a box that includes three sections: The top section gives the class

name, the middle section includes the data members for individual objects of the

class, and the bottom section includes methods that can be applied to objects. In this

example, the middle section represents the data member x, and the type of the

data member is specified by placing a colon : followed by the name of the type.

The methods in the Number class include the constructor Number, along with the
two methods, a mutator setX and an accessor getX. Methods are denoted as the

following format:

methodName(parameterName: parameterType): returnType

Notice that if there is no information being sent to the method, the inside of the

parentheses will be empty, and if the method does not return a value, the

returnType will not be included. In Fig. 2.31, the type of the return value is

specified after the colon, similar to the type of data members. The parameter list

(a: int) for the method setX indicates that information is sent to the method

and the value of a, which is of type int, is assigned to the data member. By having

an empty parameter list in the parentheses, the getX method does not accept any

information and returns a value of type int which is the value stored in the data

member x.
Similar to contour diagrams, but not as detailed, UML notation can also be used

to illustrate objects graphically. In the main method of Fig. 2.16, an object named

num is instantiated from the class Number. Then the value 5 is assigned to the data

member of the object num through a mutator method. UML notation for the object

after Line 7 is executed is shown in Fig. 2.32.

In the diagram, the top section gives the object name followed by the class name

after the colon, all of which is underlined. The bottom section lists the data

members. In this example, the variable x contains the value 5.

Number
x: int
Number()
setX(a: int)
getX(): int

Fig. 2.31 UML class

diagram of Number class

2.10 Universal Modeling Language (UML) Class Diagrams 61

2.11 Complete Program: Implementing a Simple Class
and Client Program

Combining all the material from this chapter, one can now define a simple class and

use an instance of the class in a client program. In this section, a program to

calculate the area of a circle will be developed.

Problem Statement: Write a program to calculate the area of a circle.

Once a problem statement is given, the requirements can be established by

analyzing the problem. The program will:

• Accept a radius from the user

• Compute the area of the circle using the given radius

• Display the area

Next, some further issues can be considered. Since the area of more than one

circle may need to be calculated, a class describing a circle should be defined

separately from the main program. In the definition of a circle, only the value of the

radius which is the main characteristic of a circle should be kept. In some

circumstances where a calculation is very complex, it might be better to calculate

the result just once and invoke a method to get the result each time it is needed, thus

saving compute time. But since the calculation for the area of the circle is not very

complex, it can be computed at any time using the value of the radius, and it does

not need to be stored in the object.

Having addressed some of the issues, the design of the application can proceed.

The definition of the Circle class in UML notation is shown in Fig. 2.33.

According to the diagram, a Circle object has a data member radius of type

doublewhich is a property that characterizes a circle shown in the middle section.

The behavior of an object is defined by the methods in the bottom section. The first

method is a constructor which creates a new object and performs the initialization

of the data members when a new object is created. Each circle can assign a value of

radius by performing the setRadius method, invoke the computeArea
method to return its area, and return the value of radius using the getRadius
method.

After the design phase comes the implementation phase. Figure 2.34 contains the

code defining the class for a Circle object. A client program to test the functional-

ity of the Circle class is given in Fig. 2.35.

When the above program is compiled and executed using the sample input of

2.0, the output of the program looks like this:

Enter the radius: 2.0

The area of the circle with a radius of 2.00 cm is 12.57 square cm.

num: Number

x = 5

Fig. 2.32 UML notation for object num of the Number class

62 2 Objects: An Introduction

In this example, an object circlewas instantiated from the class Circle, and
the user provided 2.0 for the value of the radius of the circle. The UML notation

for the object, circle, is shown in Fig. 2.36.

As before, the top section contains the object name circle followed by the

class name Circle after the colon, all of which is underlined. The bottom section

lists the data member radius of the object circle. In this example, the variable

radius has a value 2.0.

2.12 Summary

• Remember that a class is like a definition, whereas an instance of a class is an

object.

• Private data members and methods can only be accessed internally within an

object of a class, whereas public data members and methods can be accessed

both internally and externally.

Circle
radius: double
Circle()
setRadius(inRadius: double)
computerArea(): double
getRadius(): double

Fig. 2.33 UML class

diagram of the Circle class

Fig. 2.34 Circle class

2.12 Summary 63

• A value-returning method is used to return a value back to the invoking statement.

• It is best to use only one return statement in a value-returning method and also to

place the return statement as the last statement in the method.

• A void method is usually used to set values in an object.

• Arguments in an invoking statement are used to send values to a method, and the

corresponding parameters are used to receive values within the method.

• Each time an object is created or a method is invoked, a corresponding contour

should be drawn.

• The new instruction creates a new instance of a class, and the reference to the

new instance is often assigned to a variable.

• A constructor is automatically invoked when the new instruction is executed and

is often used to initialize data members. Remember that a constructor has the

same name as the name of the class and does not have a return type.

circle: Circle
radius = 2.0

Fig. 2.36 UML notation for the object, circle, of the Circle class

Fig. 2.35 A client program for Circle class

64 2 Objects: An Introduction

2.13 Exercises (Items Marked with an * Have Solutions
in Appendix E)

1. Indicate whether the following statements using the Circle class in Fig. 2.34

in Sect. 2.11 are syntactically correct or incorrect. If incorrect, indicate what is

wrong with the statement:

*A. Circle circle ¼ new circle();
B. Circle circle

Circle ¼ new Circle(5);
*C. circle.getRadius(); assume that an object circle has been

declared and created correctly.

D. circle.setRadius("two"); assume that an object circle has

been declared and created correctly.

E. circle.setRadius(); assume that an object circle has been

declared and created correctly.

2. Draw contour diagrams to show the state of execution prior to the following line

numbers of the CalcAreaCircle class in Fig. 2.35 in Sect. 2.11.

A. Line 8

B. Line 12 (assume an input value of 2.0)

3. Draw contour diagrams to show the state of execution prior to Line 8 of the

Invoke class in Fig. 2.21 in Sect. 2.9.

4. Answer the questions A–D about the following declaration of class Circle:

2.13 Exercises (Items Marked with an * Have Solutions in Appendix E) 65

http://dx.doi.org/10.1007/978-1-4471-6317-6_BM1

*A. Declare and create a variable of type Circle called innerCircle.
B. Write a statement using the setRadius method to change the value of

innerCircle’s data member, radius to 10.0.
*C. Write a statement using the getRadius method to output the value of

innerCircle’s data member, radius, preceded by the phrase "The
value of radius is ".

D. Write a statement using the computeCircumferencemethod to output

the value of innerCircle’s circumference, preceded by the phrase

"The value of the circumference is ".

5. Draw contour diagrams to show the state of execution prior to Line 11 of the

class Multiple shown in Fig. 2.27 in Sect. 2.9.

6. Write a complete program to calculate the volumes of a cone and a hollow

cylinder. The shape of a hollow cylinder is shown below, where r is the radius of
the inner cylinder and R is the radius of the outer cylinder:

R

h

r

First, draw a UML diagram similar to Fig. 2.31 for a class named Cone as

described below and then write the code to implement the Cone class.

*A. The Cone class has two private data members, radius and height, of

type double.
B. Write code for a constructor to set the data members to default values of 0.0.
C. Write code for the accessor methods, getRadius and getHeight, that

return the value of the appropriate data member.

*D. Write code for themutatormethods,setRadius andsetHeight, that each
have one formal parameter which is stored as the value of the data member.

E. Write a method named computeVolume to compute the volume of a

cone and return the computed volume to the client. The formula to find the

volume of a cone is 1
3
πr2h.

Second, draw a UML diagram similar to Fig. 2.31 for a class named

HollowCylinder as described below and then write the code to implement

the HollowCylinder class.

F. The HollowCylinder class has three private data members,

innerRadius, outerRadius, and height, of type double.
G. Write code for a constructor to set the data members to 0.0.
H. Write code for the accessor methods, getInnerRadius,

getOuterRadius, and getHeight, that return the value of the appro-

priate data member.

66 2 Objects: An Introduction

I. Write code for the mutator methods, setInnerRadius,
setOuterRadius, and setHeight, that each have one formal param-

eter which is stored as the value of the data member.

J. Write a method named computeVolume to compute the volume of a

hollow cylinder and return the computed volume to the client. The formula

to find the volume of a hollow cylinder is πh(R2 � r2).

Third, write a client program to test the Cone and HollowCylinder class as

defined above. Name this class CalcVolume. The main method should

perform the following tasks:

K. Allow the user to enter a radius of the cone.

L. Allow the user to enter a height of the cone.

M. Declare and create a Cone object setting the data members to the values

entered by the user.

N. Allow the user to enter an inner radius of the hollow cylinder.

O. Allow the user to enter an outer radius of the hollow cylinder.

P. Allow the user to enter a height of the hollow cylinder.

Q. Declare and create a HollowCylinder object setting the data members

to the values entered by the user.

R. Output the phrase "The volume of the cone with a radius of XX
cm and a height of XX cm is XX cubic cm.", where the XXs are the

input values and the value returned from the method.

S. Output the phrase "The volume of the hollow cylinder with an
inner radius of XX cm, an outer radius of XX cm, and a
height of XX cm is XX cubic cm.", where the XXs are the input

values and the value returned from the method.

Here is some sample input and output:

Input for the cone
Enter the radius: 2.0
Enter the height: 3.0

Input for the hollow cylinder
Enter the inner radius: 2.0
Enter the outer radius: 4.0
Enter the height: 3.0

The volume of the cone with a radius of 2.00 cm and
a height of 3.00 cm is 12.57 cubic cm.

The volume of the hollow cylinder with an inner radius
of 2.00 cm, an outer radius of 4.00 cm, and
a height of 3.00 cm is 113.10 cubic cm.

Finally, draw a UML diagram similar to Fig. 2.32 for the objects created in the

main method.

2.13 Exercises (Items Marked with an * Have Solutions in Appendix E) 67

Selection Structures 3

3.1 Introduction

Chapter 1 showed how to perform input, arithmetic, and output, which are funda-

mental to many subsequent programs. Chapter 2 introduced elementary object-

oriented programming, which allows programs to be designed using objects and

methods. Although invoking a method causes a program to branch to another

subprogram and this alters the flow of control, the order in which the methods are

executed can be determined by examining the code to see the order in which they

are invoked. In other words, each time the program is executed, it would have the

same order of execution regardless of what was input. What gives software some of

its power is the ability to alter the flow of control of a program, so that during

different executions of the program with different input, it will behave in a different

fashion. This ability is a result of a program being able to use control structures.

The word “structure” is a generic description of statements regardless of the

programming language, whereas “statements” are the individual instructions which

can vary from language to language. Control structures can alter the flow of control

of a program and can be classified as two main groups, selection structures and

iteration structures. Selection structures, sometimes also called decision structures,

allow the program to take two or more different paths based on different conditions,

whereas iteration structures, sometimes called repetition structures, allow a pro-

gram to repeat a part of the code many times. In this chapter, various forms of the

selection structures will be examined along with the associated Java statements.

3.2 If-Then Structure

The most basic of the selection structures is the if-then structure. If a particular

condition is true, the then portion of the structure is executed; otherwise the then
portion of the structure is not executed. It is very similar to natural languages, where
one might say “If it is hot today, then I’ll buy ice cream.” If it was actually hot later in

J.T. Streib and T. Soma, Guide to Java: A Concise Introduction to Programming,
Undergraduate Topics in Computer Science, DOI 10.1007/978-1-4471-6317-6_3,
© Springer-Verlag London 2014

69

http://dx.doi.org/10.1007/978-1-4471-6317-6_1
http://dx.doi.org/10.1007/978-1-4471-6317-6_2

the day, then one would buy ice cream; otherwise one would not buy ice cream.
Before looking at specific Java code for this example, it is helpful to look at a visual
representation using a flowchart. There are many different types of flowcharts,

where Fig. 3.1 shows the type of flowchart that will be used in this text.

In Fig. 3.1, the diamond shape represents a selection structure and the arrows

represent the flow of control. The arrow at the top represents entrance into the

selection structure. The statement inside the diamond is a question and its results

are either true or false. The two labeled arrows exiting the diamond represent the

flow of control should the condition be true or false. The true branch is known as the

then branch which contains a rectangle representing a statement, and there are no
statements in the false branch. The rectangles can be used to hold various statements
such as input, output, and assignment statements. In this example, the question is
asked “Is it hot?”, and if the answer is true, the then or true branch is taken and one
would “Buy Ice Cream.” Should the answer to the question be false, the false branch
is taken and one does not buy ice cream.

However, the example shown in Fig. 3.1 is not very precise for writing a

program. It is not clear what is classified as hot, so it might be better to specify a

particular temperature. To make it easier to write a program, it would be best to use

a variable such as temp for temperature, where temp would first need to be input.

It could then be tested in an if-then structure. For example, if it is 90� Fahrenheit or
above, the message “Buy Ice Cream” could be output. Although not necessary now,

but for convenience later, a message indicating “End of Program” can also be

output as shown in Fig. 3.2.

Specifically, the flowchart in Fig. 3.2 first inputs the value of temp. Next it tests
if the value in temp is greater than or equal to 90. If it is true, it outputs the message

“Buy Ice Cream”, and if it is false, it does not output the message “Buy Ice Cream”.

In either case, the flow of control continues on to the end of the if-then structure and

the message “End of Program” is output.

The comparison between temp and 90 is known as a conditional expression, and

the greater than or equal to symbol is known as a relational operator and it could be

any of the relational operators that one has previously learned in mathematics.

For example, one could also say temp “greater than” 89, where 90 would still

True

False

Is it hot?

Buy
Ice Cream

Fig. 3.1 Flowchart

representing an if-then

structure

70 3 Selection Structures

output the message “Buy Ice Cream”, and a temp “equal to” 89 would not.

However, what if the variable temp was of type double? Then, a temp of 89.5

would cause the message “Buy Ice Cream” to be output, and this might not be what

was intended. As a result, it is a good idea not to change what is given and to

implement what was originally intended.

Although flowcharts are good for visually depicting the logic of a program,

sometimes they are cumbersome to draw. As an alternative to flowcharts,

pseudocode can be used to create the logic for a program as discussed previously

in Chap. 1. The above flowchart could be implemented in pseudocode as follows:

input temp
if temp � 90 then
output “Buy Ice Cream”

output “End of Program”

After temp is input, the word if indicates an if-then structure. The condition
appears between the words if and then and the word then is optional. If the condition
is true, the statement immediately following the if statement is executed, and execu-
tion proceeds to the statement following. Note that the true section of the structure is
indented to visually indicate the then section. If the condition is false, control
branches or jumps over the indented then section and the last statement is executed.

Given the above flowchart and pseudocode, how could they be implemented

in Java? The code would look as shown below:

System.out.print("Enter a temperature: ");
temp¼scanner.nextInt();
if(temp >¼ 90)

System.out.println("Buy Ice Cream");
System.out.println("End of Program");

True

False

temp ≥ 90

Output
 “Buy Ice Cream”

Input temp

Output
“End of Program”

Fig. 3.2 Flowchart using

the variable temp

3.2 If-Then Structure 71

http://dx.doi.org/10.1007/978-1-4471-6317-6_1

The input and output statements should look familiar from Chap. 1. What is new

and different is the if-then statement. Note that there are parentheses around the

conditional expression and the word then does not appear in the code. Although

the word then does not and should not appear in Java, the true section of an if-then

statement is still referred to as the then section. Also, just like the pseudocode, it is a
good idea to indent the true or then section, but be aware that indenting the code
does not affect the flow of control in the program. It is done as a courtesy for other
programmers to help improve the readability and maintainability of the code.

Lastly, note that the � symbol has been replaced with the >¼ symbols. This is

because the mathematical symbol � does not exist in the Java programming

language and the >¼ symbols need to be used instead. As one might suspect,

some of the other mathematical symbols do not exist in Java as well as indicated in

Table 3.1.

In addition to the “less than or equal to” symbols, notice the “equal to” symbol.

Instead of a “single” equal sign, it is represented in Java as a “double” equal sign.

The reason for this is to distinguish the check for equality ¼¼ from the assignment

symbol ¼. This is a common mistake for beginning Java programmers to use the

wrong symbol, so extra care must be taken when writing a conditional expression in

a control structure. Although not as problematic as the “equal to” symbol, notice

that the “not equal to” symbol is !¼.

To illustrate a complete program that can be keyed into the computer to test the

current if-then statement, see Fig. 3.3. This program can also be modified to test

subsequent selection statements introduced in this chapter.

It should further be pointed out that syntactically there can be only one statement

in the then section of an if statement in Java. But if there can be only one statement

in Java, how can more than one statement be placed in the then section? Taking a
minute to think about it, a way this problem can be solved has already been presented
in Chap. 2. Yes, multiple statements could be placed in a method and then an invoke
statement could be placed in the then section. However, if a method was not being
used to solve this problem, how could more than one statement be put into the then
section?

With flowcharts and pseudocode, there are no restrictions to using only one

statement as there is in Java. In a flowchart, additional boxes can be placed in the

then branch and each box represents a new statement. For example, in addition to the
message “Buy Ice Cream”, the message “Buy Lemonade” could be added as shown
in Fig. 3.4.

Table 3.1 Relational

symbols
Mathematical symbol Java symbol

> >

� >¼
< <

� <¼
¼ ¼¼
6¼ !¼

72 3 Selection Structures

http://dx.doi.org/10.1007/978-1-4471-6317-6_1
http://dx.doi.org/10.1007/978-1-4471-6317-6_2

In pseudocode, if more than one statement is needed in the then section, it is
simply inserted and indented to visually indicate to the reader that the additional
statements are part of the then section and do not belong after the then section, such
as in the following:

input temp
if temp � 90 then
output “Buy Ice Cream”
output “Buy Lemonade”

output “End of Program”

Fig. 3.3 Complete program using the if-then statement

True

False

temp ≥ 90

Output
 “Buy Ice Cream”

Input temp

Output
“End of Program”

Output
“Buy Lemonade”

Fig. 3.4 Flowchart with two

statements in the then section

3.2 If-Then Structure 73

However, if one attempted to write the above pseudocode in Java as follows,

there would be a logic error:

// *** Caution: Incorrectly Implemented Code ***
System.out.print("Enter a temperature: ");
temp¼scanner.nextInt();
if(temp >¼ 90)

System.out.println("Buy Ice Cream");
System.out.println("Buy Lemonade");

System.out.println("End of Program");

Although this might look correct, it is sometimes a common error made by

beginning programmers. By merely moving the “Buy Lemonade” statement to the

left as shown below, there is no change in the logic of the segment, and the true flow

of control is made more obvious, where the “Buy Lemonade” message is output

regardless of the temperature:

// *** Caution: Incorrectly Implemented Code ***
System.out.print("Enter a temperature: ");
temp¼scanner.nextInt();
if(temp >¼ 90)

System.out.println("Buy Ice Cream");
System.out.println("BuyLemonade"); //<---Unindented
System.out.println("End of Program");

As stated previously, the indentation of the code does not affect the flow of control

of the program in Java. So how does one indicate that there is more than one line

of code in the then section? The answer is through the use of a compound statement.
A compound statement is indicated by the use of opening and closing braces, { and }.
For example, the above pseudocode would be correctly implemented as follows:

// *** Correctly Implemented Code ***
System.out.print("Enter a temperature: ");
temp¼scanner.nextInt();
if(temp >¼ 90) {

System.out.println("Buy Ice Cream");
System.out.println("Buy Lemonade");

}
System.out.println("End of Program");

The compiler sees the compound statement which allows more than one state-

ment to be in the then section. Although syntactically to the compiler there is still
only one statement, specifically the compound statement, there are now logically two
statements in the then section. Notice that the opening brace appears just after the
closing parentheses of the conditional expression and the closing brace lines up with
the if statement. Although there are a number of other styles, this text will use the

style shown above. However, should one’s instructor or place of employment use a

different style, be sure to follow it.

74 3 Selection Structures

3.3 If-Then-Else Structure

The if-then structure is helpful when there is something that needs to be done in

addition to the normal flow of control. However, what if one wanted to have a

program do one thing in one case and another thing in an alternative case. Using a

new example, assume that if the number of credit hours input, using the variable

credits, is 120 or greater, the program should output the message “Graduate”;

otherwise the program should output “Does not graduate”.

Is it possible to solve this problem using only if-then structures? The answer is

yes, by using two if-then structures in the pseudocode that follows:

if credits � 120 then
output “Graduate”

if credits < 120 then
output “Does not graduate”

Although this solution works, the problem with this method is that it has to ask two

questions. For example, if the number of credit hours is equal to 120, then themessage

“Graduates” would be output. However, even though the message has already been

output, the code still needs to check to see if the number of credit hours is less than

120 and branch around the output “Does not graduate”message. It should be clear that

if one of the options is true, the other one is false, so there is no need to check the

opposite condition. This can be accomplishedwith the use of the if-then-else structure.

An example of the flowchart for this scenario is as shown in Fig. 3.5.

True

False

credits
≥120

Output
“Graduate”

Input credits

Output
“End of Program”

Output “Does not
graduate”

Fig. 3.5 If-then-else

structure

3.3 If-Then-Else Structure 75

Note that unlike the flowchart in the previous section, the false section is no

longer empty. Instead, it contains a box to output the message “Does not graduate”.

The false section of the flowchart is also called the else section. The pseudocode for
this flowchart is shown below:

input credits
if credits � 120 then

output “Graduate”
else

output “Does not graduate”
output “End of Program”

Notice that the word else lines up with the word if and that the else section of
the pseudocode lines up with the then section. The Java code to implement the
pseudocode is as follows:

System.out.print("Enter the credit hours: ");
credits¼scanner.nextInt();
if(credits >¼ 120)

System.out.println("Graduate");
else

System.out.println("Does not graduate");
System.out.println("End of Program");

As with the pseudocode, notice that the word if and the word else line up and

the then and else sections line up. What if there needs to be more than one statement
in either the then or else sections? As before with the if-then statement, a compound
statement must be used.

It is possible to reverse the above then and else sections, but one needs to be
cautious and reverse the conditional expression correctly. What is the opposite of
greater than or equal to? Be careful, it is not less than or equal to. If one used less
than or equal to, then those students who had exactly 120 credit hours would be
listed as not graduating, much to their dismay! Instead, the opposite of greater than
or equal to is simply less than as shown below:

System.out.print("Enter the credit hours: ");
credits¼scanner.nextInt();
if(credits < 120)

System.out.println("Does not graduate");
else

System.out.println("Graduates");
System.out.println("End of Program");

Although the above code performs identically to the previous code, why should

one be chosen over the other? Unless there is a compelling reason to do otherwise,

such as the original description is unduly confusing, it is usually better to write the

code to follow the original specifications as given. However, if either way is

acceptable, then code is often written to have the most common occurrence in the

76 3 Selection Structures

then section and the exception in the else section. In the above example, most
seniors will probably have 120 credit hours or more at graduation, so using the
original code segment is probably the best choice.

When writing if-then structures, it is important to write them so that they not

only work correctly but they are also efficient in terms of memory utilization. For

example, consider the following code segment:

if (a > 0) {
b ¼ b + 1;
a ¼ a - b;
c ¼ c + a;

}
else {

b ¼ b + 1;
a ¼ a + b;
c ¼ c + a;

}

Note that the first and last statements in both the then and else sections are the
same. The only statement that is different between the two is the middle statement in
each segment. Given that the other statements are the same, why are they duplicated
in the then and else sections? The answer is that they should not be and they can be
moved. Not only are they taking up more memory, they also present a possible
problem when someone attempts to modify the code, where a programmer might
accidently modify a statement in one section and fail to modify the other statement in
the other section which might lead to a subsequent logic error. Although this does not
appear to present as much of problem here in a small code segment, it could be much
more serious in larger code segments.

If the duplicate statements are to be consolidated and moved, where should they

be relocated? By examining the above code segment, the variable bmodified in the

first statement in each segment is used by the second statement, so it should be

moved prior to the if statement. Similarly, the variable a used in the last statement

is modified by the middle statement, so it should be relocated after the if-then-else

statement. In other words, care must be used to ensure that the logic is not altered

when moving statements to optimize an if-then-else statement or any code segment

for that matter. Below is the modified code segment that clearly is less cluttered

without the braces, uses less memory, and would be easier to modify in the future.

The result is that once one has written code that works correctly, be sure to take the

time to ensure that it is also a well-written code.

b ¼ b + 1;
if(a > 0)

a ¼ a - b;
else

a ¼ a + b;
c ¼ c + a;

3.3 If-Then-Else Structure 77

Note further that it is also possible to write an if-then structure as an if-then-else

with either an empty else section or an empty then section. In both cases, leaving an
empty else or then section in Java requires a semicolon in either section, which
might lead subsequent programmers to wonder what might have been accidently left
out. Unless there is intent to fill in the empty section in the immediate future, it is best
to just write the code simply as an if-then. If code is written with an empty else
section, the else section should be removed. In the case of an empty then section, it
is usually best to carefully reverse the conditional expression and again write the
code as an if-then.

3.4 Nested If Structures

If there is only one selection, the if-then is the best choice, and should there be two

selections, the if-then-else structure is the obvious choice. But what if there are

three or more choices? Sure, a series of if-then structures could be used, but

although this “works,” it is a very inefficient solution as discussed in the previous

section. Instead, a series of if-then-else structures could be nested. There are two

ways if-then-else structures can be nested: the subsequent if-then-else statements

could be nested in the else section or in the then section of the previous if-then-else.
The first form of nesting is called an if-then-else-if structure and the second is called
an if-then-if structure. Note that there are no Java statements that correspond to each
of these two structures, but rather they can be created fairly easily from a pair of if-
then-else statements. Of the two, the former tends to be used more often and will be
discussed first.

3.4.1 If-Then-Else-If Structure

As mentioned above, an if-then-else-if structure is created when an if-then-else is

nested in the else section of an if-then-else. Using a new example, assume that the
temperature is input in degrees Celsius and messages are to be output as to whether
water is in the form of steam, water, or ice. At 100� or greater, water is in the form of
steam, and at 0� or less, it is in the form of ice; otherwise it is in its liquid state. As
before, it is helpful to view the structure in the form of a flowchart as shown in
Fig. 3.6.

Notice that the second if statement appears in the else section of the first
statement. The dotted lines are not part of the flowchart, but rather are included to
help one see that the inner if-then-else is contained in the else section of the outer
if-then-else. If the first condition is true, the message “Steam” is output and no
further testing is necessary. If the first condition is false, then further testing occurs in

78 3 Selection Structures

the nested if-then-else structure. Given the flowchart in Fig. 3.6, the corresponding
pseudocode would appear as follows:

Aswith the flowchart, the dashed lines are not part of the pseudocode. Rather, they

are included to allow one to see how the inner if-then-else structure is nested in the

else portion of the outer if-then-else structure. In particular, note that the nested if and

else line up with the output statement in the then section of the outer if-then-else
structure. Again, if the first condition is true, the then section is executed and no
further testing occurs, but if the first condition is false, the nested if is executed.

False

True
temp≥100

Output “Steam”

Input temp

Output
“End of Program”

Output “Water”Output “Ice”

False

True
temp>0

Fig. 3.6 Nested if-then-else-

if structure

3.4 Nested If Structures 79

As would be expected, the Java code looks very similar:

System.out.print("Enter the temperature: ");
temp¼scanner.nextInt();
if(temp >¼ 100)

System.out.println("Steam");
else

if(temp > 0)
System.out.println("Water");

else
System.out.println("Ice");

System.out.println("End of Program");

The dashed lines are not included in the Java code so that one can concentrate on

the indentation and the syntax. As with the pseudocode, note how the inner if and

else line up with the System.out.println statement in the then section of the
outer if statement.

Since there appears to be more than one statement in the else section of the outer if-
then-else structure, does there need to be a pair of braces, { and }, in that section? In
other words, does a compound statement need to be used? The answer is no, because

an if-then-else statement is syntactically considered to be a single statement.

Although it would not cause a syntax error to include the braces, it could cause

some programmers to wonder if a second statement was forgotten and not included.

Some instructors might not care whether the extra pair of braces is included, but this

text will omit them to help the reader get used to this programming style.

Does it matter which test is first? If all the groups are equal, then the answer is

no. However, if one of the groups occurs more frequently, then it would be best to

put it first so that fewer tests would need to be done. This is especially true when an

if statement is inside an iteration structure as will be seen in Chap. 4. What if the

middle section occurs more often? This could prove to be a problem at this point,

but it will be discussed further in Sect. 3.5 on logical operators.

3.4.2 If-Then-If Structure

Since it is possible to nest an if-then-else structure in the else section of an outer if-then-
else structure, is it possible to nest an if-then-else structure in the then section of an outer
if-then-else structure? The answer is yes, and this type of structure is called an if-then-if
structure. Again, there is no Java statement called an if-then-if, but rather this name
merely indicates what section the subsequent if-the-else is nested. The flowchart for an
if-then-if that implements the example from the previous section is shown in Fig. 3.7.

As before, the dashed lines are not part of the flowchart but help indicate how the

if-then-else is nested in the then section of the outer if-then-else. In particular, notice
how the relational expression in the first if is changed from �100 to >0. The reason
for this is because previously when the temp was at 100 or greater, the then section
would be executed and the message “Steam” would be output. However, with the if-
then-if structure, the then section now contains a nested if and has two groups that

80 3 Selection Structures

http://dx.doi.org/10.1007/978-1-4471-6317-6_4

need to be further subdivided. The relational expression in the outer if structure is
changed to >0, so when temp is zero or less than zero, execution proceeds to the

else section. As discussed previously in Sect. 3.2, be careful to write the relational
expression properly, otherwise a logic error could occur. After checking for a
temperature greater than zero, the nested if checks whether the temperature is greater
than or equal to 100, and if so the message “Steam” is output, otherwise the message
“Water” is output. As before, the pseudocode for the nested if-then-if can be found
below:

Notice the nested if-then-else in the then section of the outer if-then-else and note
the level of indentation. As should be expected, the Java code follows. Again pay
attention to the indentation and the absence of braces:

False

True
temp>0

Output “Ice”

Input temp

Output
“End of Program”

Output “Steam”Output “Water”

False

True
temp≥100

Fig. 3.7 Nested if-then-if

structure

3.4 Nested If Structures 81

System.out.print("Enter the temperature: ");
temp¼scanner.nextInt();
if(temp > 0)

if(temp >¼ 100)
System.out.println("Steam");

else
System.out.println("Water");

else
System.out.println("Ice");

System.out.println("End of Program");

Since the if-then-else-if and the if-then-if structures can perform the same tasks,

which is the better choice? In one sense it depends on the circumstances. If the original

specifications are written in such a fashion to make it easier to implement with one or

the other structure, then themost appropriate structure should be used. However, often

the original specifications are written in a way that is easier to communicate to other

users and programmers, and this tends to be in an if-then-else-if fashion. For example,

assume there were an equal number of different denominations of coins and someone

wanted tomove all of the one cent pieces. Ordinarily a person would not try to remove

all the other coins to leave only the one cent coins, but instead it would be easier to

merely remove the one cent coins. If there were subsequent coins to be removed, such

as the five cent pieces, they would be the next to be removed and so on.

1

1 1 5

25

25

5 5If coin equal to 1?

25

This is similar to the previous example, where instead of checking for

temperatures above freezing and then checking for temperatures that produce

steam or water, it is more natural to check for the temperatures that are greater

than or equal to 100�. In other words, the if-then-else-if structure is often chosen

over the if-then-if structure because that is the way people often speak and tend to

write specifications. Further, it is helpful to have the program written similar to the

specifications to assist other programmers who might be maintaining and

modifying the program in the future. There is yet another reason why the if-then-

else structure is used more often than the if-then-if as discussed in the next section.

3.4.3 Dangling Else Problem

The if-then-if structure also suffers from an occasional problem due to the nature of

the Java syntax. For example, assume that one wanted to modify the previous

temperature example to implement the flowchart in Fig. 3.8 which only the

messages for “Steam” and “Ice” are to be output.

82 3 Selection Structures

The flowchart can also be implemented as shown in the following pseudocode:

In both cases, what is intended is that if the temperature is greater than or equal

to 100, then the first and second if statements are true and the message “Steam” is
output. If the temperature is 0 or less than 0, the first if is false and the message “Ice”
is output. However, if the temperature is greater than 0 or less than 100, then the first
if statement would be true, and the second if would be false, and since there is no
code in the else section of the second if, no message is output. It would appear that
the code for the above could be implemented as follows:

// *** Caution: Incorrectly Implemented Code ***
System.out.print("Enter the temperature: ");
temp¼scanner.nextInt();
if(temp > 0)

if(temp >¼ 100)
System.out.println("Steam");

else

False

True
temp>0

Output “Ice”

Input temp

Output
“End of Program”

Output “Steam”
False

True
temp≥100

Fig. 3.8 “Ice” or “Steam”

flowchart

3.4 Nested If Structures 83

System.out.println("Ice");
System.out.println("End of Program");

However, what appears to be correctly implemented code is not accurately

implementing the logic from the flowchart and pseudocode. If the pseudocode

follows from the flowchart, and the code follows from the pseudocode, how can

this be? The problem is that the pseudocode is relying on indentation to indicate

which parts belong in the then and else sections, but recall from Sect. 3.2 that
indentation does not affect the flow of control in Java or in most languages for that
matter. This is known as the “dangling else” problem. It might not be clear which if
statement the else statement is paired. If the above code segment has the else
and the subsequent System.out.println indented, note that the code presents

itself entirely differently:

// *** Caution: Incorrectly Implemented Code ***
System.out.print("Enter the temperature: ");
temp¼scanner.nextInt();
if(temp > 0)

if(temp >¼ 100)
System.out.println("Steam");

else // Indented ---->
System.out.println("Ice"); //Indented ---->

System.out.println("End of Program");

Instead of the else appearing to belong to the outer if, it now seems to belong

to the inner if statement. If indenting doesn’t affect the flow of control, which of

the above two code segments is correct? The answer is neither, but the second one

more accurately represents the flow of control, because an else is always matched

with the closest if statement. The result is that the flowchart for the above code

segment is as shown in Fig. 3.9.

If temp is less than or equal to 0, then nothing is output, and if the temperature is

greater than 0, but less than 100, then the message “Ice” is output, which is clearly

incorrect. Although indenting is a useful way of indicating flow of control in

pseudocode, it is only useful in illustrating the flow of control in Java when it is

done properly. If indenting will not help correct the above problem, what can be done

to correct the code? There are a couple of solutions. One is to include braces to force

the else to match up with the outer if instead of the inner if as shown below:

// *** Correctly Implemented Code ***
System.out.print("Enter the temperature: ");
temp¼scanner.nextInt();
if(temp > 0) {

if(temp >¼ 100)
System.out.println("Steam");

}
else

System.out.println("Ice");
System.out.println("End of Program");

84 3 Selection Structures

Note that in addition to the braces, the else is moved to the left to line up with

the outer if to improve readability. But doesn’t the inclusion of braces contradict

the suggestion from Sect. 3.2 to not use braces for a single statement and use them

only when they are necessary? No, not in this case, because although the if-then

structure in Java is only a single statement, the braces are necessary in this case to

force the else to match with the proper if statement.

In fact, some might suggest that braces should always be used to avoid a special

case such as this. However, it seems somewhat counterintuitive to use braces

everywhere for only a single potential error, since too many braces might clutter

up a program and hurt the overall readability. There is another solution and that is to

generally avoid the use of the if-then-if structure and instead primarily use the

if-then-else-if structure, which does not suffer from this problem, as shown below:

// *** Correctly Implemented Code ***
System.out.print("Enter the temperature: ");
temp¼scanner.nextInt();
if(temp >¼ 100)

System.out.println("Steam");
else

if(temp <¼ 0)
System.out.println("Ice");

System.out.println("End of Program");

False

True
temp>0

Input temp

Output
“End of Program”

Output “Steam”Output “Ice”

False

True
temp≥100

Fig. 3.9 Flowchart

representing the “Dangling

Else” problem

3.4 Nested If Structures 85

Again, does this mean one should never use the if-then-if structure? No, as

mentioned previously use the if-then-if structure only when the nature of the

problem lends itself to its usage and use extra caution to ensure that the code

written actually implements the intended logic. Further, an example of the use of

the if-then-if structure is shown in the next two sections.

However, it might appear that the initial cause of the above problem results from

the indentation used in the previous pseudocode. Does this mean that one should not

rely on indentation when writing pseudocode and braces should be used to help

indicate nesting? The answer is largely left up to the individual, the instructor of a

class, or the standards in a company. As long as one is aware of the potential

problem, indentation can be used in pseudocode to indicate the flow of control.

Also, if one wants to ensure that a mistake does not occur in writing subsequent

Java from the pseudocode, then the inclusion of braces in the above instance would

provide extra insurance that the pseudocode is not accidently implemented

incorrectly. However, this text will not use braces in pseudocode to save space

and help the reader better understand the potential problems.

3.5 Logical Operators

Although nested if statements are very useful in the circumstances discussed in the

previous section, there are techniques that can make them even more useful. For

example, assume that the only message needed to be output was the opposite of the

example presented in the previous section. If the temperature is greater than 0� and less
than 100�, only themessage “Water” needs to be output. This could be donewith either

an if-then-if structure or an if-then-else-if structure, where the former is shown below:

System.out.print("Enter the temperature: ");
temp¼scanner.nextInt();
if(temp > 0)

if(temp < 100)
System.out.println("Water");

System.out.println("End of Program");

However, does the use of an if-then-if above go against the suggestion in the

previous section to use the if-then-else-if? No not really, because this is one of those

cases that lend itself better to the use of the if-then-if. The use of an if-then-else-if

would result in an empty then section which should be avoided as discussed in
Sect. 3.3 and as shown below:

System.out.printl("Enter the temperature: ");
temp¼scanner.nextInt();
if(temp >¼ 100);
else

if(temp > 0)
System.out.println("Water");

System.out.println("End of Program");

86 3 Selection Structures

Note the semicolon at the end of the first if statement indicating an empty then
section, which can be quite confusing. Clearly in this instance the if-then-if structure
is a better solution than the if-then-else-if structure. However, by using logic there is
an even better solution to this problem, and before presenting the solution, it is best
to look over the fundamentals of logic operations.

Logical operators are also known as Boolean operators, which are named after

George Boole (1815–1864) an English-born mathematician and logician. The

results of Boolean operations are the values true or false which can be stored

in variables of type boolean as shown below:

boolean flag;
flag ¼ true;

Further, any relational or logic operation can be assigned to a boolean
variable, and that variable can be used subsequently in an if statement. Although

not used as often, it is sometimes helpful to have a relation in one part of a program,

set a boolean variable (often called a flag and coded as flag), and then test the

flag later in another part of the program. The result is that both of the following code

segments are equivalent:

if(x ¼¼ 0)
System.out.println("x equals 0");

flag ¼ x ¼¼ 0;
if(flag)

System.out.println("x equals 0");

Although at first the assignment statement of the second segment might look a

little strange, if one thinks about it for a minute, the comparison of x ¼¼ 0 results

in either true or false. The true or false is then assigned to the boolean
variable flag. Lastly, when the if statement is executed, should the value in flag
be true, the then portion of the if is executed. Otherwise the value in flag is

false, the then portion is skipped, and any statement that might follow is
executed. In the second instance, does the variable flag need to be compared to

the Boolean values of true or false? The answer is no, because the variable

flag is of type boolean and already contains either the value true or false, so
the comparison is unnecessary. Although the first example is more common, again

the second is useful to set a flag in one part of a program and test it in another part of

a program.

Continuing, there are three fundamental logic operations called and, or, and not.
The first of these three has a value of true when both conditions are true. For
example, a graduation requirement for a major in computer science might include
that a student takes both a course in calculus and discrete mathematics. If one takes
one course but not the other, or takes neither course, then the major will not be
complete. This can be represented in the form of a truth table, where all the possible
combinations of the two courses are listed on the left side and the result of the and

3.5 Logical Operators 87

operation is listed on the right in Table 3.2. The variables c and d are used to
represent the calculus and discrete mathematics courses, respectively, and the letters
T and F are used to represent the values true and false, respectively. Note that result is
true only when both c and d are true.

As an example of the or operation, suppose that in order to complete a major in
computer science a student must take one of two electives, such as a course in
artificial intelligence or a course in computer graphics. If a student takes one course
or the other, then the student has fulfilled the requirement. But what if both courses
are taken? In the case of the or operation under consideration here, known as an
inclusive-or, the results are true when one or the other, or both are true. The result is
that a student would have also fulfilled the requirement if both courses were taken.
On the other hand, an exclusive-or is true when only one or the other is true, but not
both. Although some other languages have both types of or operators, Java only has
the inclusive-or as illustrated in the truth table in Table 3.3, where the letter a
represents artificial intelligence and the letter c represents computer graphics. As
can be seen, if either a or c is true, or both are true, the result is true. If neither is true,
the result is false.

The last of the logic operators is the not operator, which when applied to
something that is true initially, the result is false and vice versa. For example, if one
has taken an introduction to computer science course, then the result is true, but if one
has not taken the course, the result is false. In Table 3.4 the letter c represents the
introduction to computer science course. Since there is only one variable, there are
only two entries in the truth table. In fact, to determine the number of entries needed in
a truth table, just count the number of variables in the expression and raise 2 to that

Table 3.2 Truth table for

the and operation
c d c and d

F F F

F T F

T F F

T T T

Table 3.3 Truth table for

the or operation
a c a or c

F F F

F T T

T F T

T T T

Table 3.4 Truth table for

the not operation
c not c

F T

T F

88 3 Selection Structures

power. For example, if there were three variables in a logical expression, how many
entries would be needed? The answer is 2 raised to the 3rd power which is equal to 8.

In Java the and, or, and not operations are represented using the &&, ||, and !
symbols, as shown in Table 3.5.

Using this information, how can the if-then-if structure presented at the begin-

ning of this section be simplified? Instead of checking first whether temp is greater

than 0 and subsequently checking whether temp is less than 100, it would make

sense to use the and operation. Although it would be nice to use a range such as
0 < temp < 100 as done in mathematics, note that this would cause a syntax error
in Java. Instead, the relation must be written with two separate comparisons each
using the variable temp as in temp > 0 && temp < 100. The previous if-then-if
structure can now be written as follows:

System.out.print("Enter the temperature: ");
temp¼scanner.nextInt();
if(temp > 0 && temp < 100)

System.out.println("Water");
System.out.println("End of Program");

Could the above if statement been written as if(temp >¼ 1 && temp <¼
99)? Given that the variable temp is of type int in the past couple of examples,

the answer is yes. However, what if the variable temp was a double? Then, a

temperature such as 0.5� would not be output as “Water,” which would be incorrect.

Again as discussed previously in Sect. 3.3, it is usually better to write a program

with the proper endpoints and relations even when programming with integers to

help prevent a possible future logic error should a program be modified later.

Although the basic operations of logic are fairly simple, expressions can become

quite complex as the number of operations increase, so extra care must be taken

when creating Boolean expressions. For example, suppose someone had originally

coded the following if statement with an empty then section to check for a correct
battery voltage in order for a system to operate correctly. Further, suppose that one
wanted to convert the if-else structure to an if-then structure, how could that be
accomplished?

if(voltage < 10.5 || voltage > 14.0);
else

System.out.println("Correct Voltage");

The message needs to be moved from the else section to the then section. In
other words the message should be output when the condition is true, not when it is

Table 3.5 Logic

operations and Java

symbols

Logic operation Java symbol

and &&

or ||

not !

3.5 Logical Operators 89

false. The simple way to convert the condition is to simply add a not operator in front
of the conditional expression and remember to remove the semicolon from the end of
the if statement as follows:

if(!(voltage < 10.5 || voltage > 14.0))
System.out.println("Correct Voltage");

However, one must be careful with the not, because just as arithmetic operators
have precedence rules, so to do logical operators. The not operator has the highest
priority, the and operator has the second highest priority, and the or operator has the
lowest priority. Further, just as with arithmetic operators, when there is a tie between
two operators, the order is from left to right, and parentheses can be used to override
any precedence rules where the expression in the innermost nested parentheses is
evaluated first. The order of precedence for logical operators is summarized in
Table 3.6.

As a result, note that when the not is added, there are a set of parentheses around
the original logical operator and its operands from the previous if statement,

because without them the result would be different. A truth table is a convenient

way to prove that the two are different. To simplify the above relations, the Boolean

variables a and b are used in the truth table below:

a b !a !a || b a||b !(a||b)
F F T T F T
F T T T T F
T F F F T F
T T F T T F

≠

Notice that the intermediate columns are shown to help ensure that there are no

mistakes, or if one is made, it is easy to see where it occurred. Further, note that the

arrow pointing to the two columns shows that !a || b is not equal to !(a || b).
Specifically, the values in the second and fourth line down are not equal, and
although the other two are correct, it takes only one instance to prove that they are

Table 3.6 Logical

operator precedence
Operator Precedence

innermost nested () Highest

!

&&

||

Tie – left to right Lowest

90 3 Selection Structures

not equal. Further, something like this might be difficult to catch when testing a
program. If these particular instances are not tested, a program could subsequently
have a logic error and no error message would be generated.

Returning to the if statement, what if one didn’t want to have the not symbol in
the if statement. Could it be rewritten without the ! symbol? The answer is yes,

but again one must be careful when changing a logical expression. Similar to what

can be done in arithmetic with a minus sign, the not symbol can be distributed over
the terms in the parentheses. Although similar, it is different than arithmetic and De
Morgan’s laws must be used, which were formulated by Augustus De Morgan
(1806–1871), a British mathematician and logician. Simply stated, if a not is
distributed over either an and operator or an or operator, the operands must be
complemented. Further, the operators must be changed to an or operator or an and
operator, respectively. To help understand these laws better, they are listed in
Table 3.7.

To show that the laws are indeed correct, a truth table can be used to prove that

they are equal using the techniques shown above, and this is left as an exercise at the

end of the chapter. To show how De Morgan’s laws can be used in Java in the

previous if statement, first the ! symbol is distributed over the operands and then

the || operator is changed to an && operator as shown below:

if(!(voltage < 10.5) && !(voltage > 14.0))
System.out.println("Correct Voltage");

Since there are now two not symbols, the relations can be changed to their
opposites, thus eliminating the need for the two not symbols. Of course, one has
to be careful to reverse the relationals correctly as has been discussed previously. The
final if statement without the ! symbols is shown below:

if(voltage >¼ 10.5 && voltage <¼ 14.0)
System.out.println("Correct Voltage");

Given some of the potential problems above, if a code segment can be written

without using logical operators, then generally it is better to do so to avoid the

added complexity and the potential for errors. When creating nested if structures,

it is helpful not to have the first if contain a logical operator and instead rewrite

the if structure to use a simple expression first. For example, in a code segment

concerning temperatures, instead of starting with the water range and using an and
operator, it is better to start with the steam or ice range which do not require a logical
operator.

Table 3.7 De

Morgan’s laws
not (a and b) ¼ not a or not b

not (a or b) ¼ not a and not b

3.5 Logical Operators 91

Another potential complexity often occurs when some beginning programmers

feel compelled to include a logical operator on subsequent if statements. How-

ever, this is often unnecessary as shown previously in the temperature example

where the first if checks for temperatures of 100� and above. Since the higher

temperatures have already been removed by the first if statement, it is not

necessary to include the logical operators in the subsequent if statement to

check whether the temperatures are below 100�. As a general rule, if the logical

operators are necessary or they help to reduce the number of if statements, then

they should be included. However, if the code can be written without the use of

logical operators, it is best not to include them. An example of when to use or not

use logical operators can be found at the beginning of the next section.

As one writes logical operators with conditional expressions as operands, care

must also be taken which conditional expression comes first. For example, the

following code segment checks to make sure that i is not equal to 0 and that the

results of the division operation are positive before outputting a message. What

would happen if both i and total contained a 0?

if(i !¼ 0 && total / i >¼ 0)
System.out.println("The average is positive");

Since i is equal to 0, the result of the first operand is false. However, does it

matter what the results of the second operand are? Since false && false is false and

false && true is also false, there is no need to check the second operand. This averts

the division by zero error and the then portion of the if statement would not be

executed. This is known as a short circuit, where if the first operand of an &&
operation is false, there is no need to check the second operand.

So given the above, what would happen if the operands were reversed as follows

and the value i and total were still 0?

if(total / i >¼ 0 && i !¼ 0)
System.out.println("The average is positive");

At first, it seems to be okay because the if statement is still checking to see if i
is not equal to 0. However, although both tests are included in the if statement,

recall from the discussion above that the operand on the left is evaluated first.

Further if i was not equal to 0, there would not be a problem, but in the instance

where i is equal to 0, there would be a division by zero error before the comparison

of i to 0 in the second operand.

A similar problem can occur with the || operator, where if the first operand is

true, there is no need to check the second operand. The reason this occurs with both

the && and || operators is the result of the underlying machine language generated

by the compiler and the interpreter. For a further explanation, see Guide to
Assembly Language: A Concise Introduction [4]. Although this short circuit evalu-

ation of statements can be helpful in some instances, it can cause a problem if one is

not careful with the order of the operands. So when writing logical operators, in

addition to being careful with the precedence of logical operators and De Morgan’s

laws, one should also be careful with the order of the operands.

92 3 Selection Structures

3.6 Case Structure

As can be imagined, if the number of nested if statements becomes too deep, the

resulting code might be difficult to read and maintain. For example, consider when

a student’s quiz score is input and a message is output indicating how well the

student performed as implemented in the following code segment:

Notice the use of an or operation in the first if statement to test for a score of

either 9 or 10 and the output of the message “Very Good”. Note that an and
operator could have been used instead as in if(score>¼ 9 && score<¼ 10),
but since the range is only two integers, it is probably better represented using an or
operator. However, with the last if statement above, it is easier to use the and
operator to test for the range of numbers instead of listing out each of the possibilities.
Lastly, notice that if the score does not fall between 0 and 10 inclusive, then a

message is output indicating that it is an invalid quiz score.

Although the above code segment works, what if there were more levels of

scores to check and corresponding messages to be output? The level of indentation

could become quite ungainly and the code might become more difficult to read and

modify. Luckily, most languages have what is known as a case structure to help

with these situations. In Java this structure is known as the switch statement.

A switch statement is like a multi-way if statement. The contents of a simple

variable or the result of an expression causes the flow of control to branch to one of

the many particular cases, and the corresponding code is then executed. The above

3.6 Case Structure 93

nested if-then-else-if structure can be implemented using a switch statement

as follows:

The first thing to be aware of is that the variablescore cannot be of type double
or float. Although it is possible to use typecast operators with these types, in these

instances the use of nested if structures might be a better choice. This is one of the

drawbacks of the switch statement, where typically only variables or expressions of

typeint andchar can be used. The second thing to note in theswitch statement is

that the variable score is not part of a relational expression (using>,>¼, etc.) as it

can be in an if statement. Instead, the contents of the variable score are compared

with each of the case statements that follow. If a match is found, then control is

transferred to the corresponding case statement, and the code that follows is

executed. For example, if the value in the variable score is a 10, then control is

transferred to case 10: and the code that follows is executed. As mentioned above,

an expression can be used instead of a variable, and an example of this follows later.

Syntactically, there is one set of braces which indicate the beginning and end of the

entire switch statement; however, note that there are no braces in each of the

individual case sections even when there is more than one statement. The reason for

this is that at the end of each case section, abreak statement is included. The use of the

break statement causes the flow of control to be transferred to the end of the switch
statement.Without it, the flow of control would fall through to the code that follows the

next case statement. Although it is legal to write code that does not use a break
statement, the need to do so is very rare and is considered to be of poor programming

style. Doing so usually makes code difficult to debug or modify and should be avoided.

The last section of the switch statement is the default statement, which is

executed when a matching case is not found. Although a default can be placed

94 3 Selection Structures

anywhere within the switch statement, it is typically placed at the end of the

switch statement. It should be noted that switch statements are not required to

have a default statement. However, if a switch statement does not have a

default statement and the particular value is not found in the cases given, then

nothing will be executed in the switch statement, and in the previous example,

nothing would be output. Although this might be what was intended, a value that is

not part of the data to be processed might cause a logic error later on in the program.

As a result, default statements are usually included as a precautionary measure.

Notice that the default case does not have a break statement. If there were

no default statement, then the last case section would not need to have a

break statement either. The reason is that upon completion of executing the code

in the last case or default, the flow of control will simply fall through to the

next statement following the switch statement. Although a break statement

could be included, it is not necessary and will not be included in this text.

With respect to indenting, there are a number of styles that can be followed, but

typically the individual case statements are indented three spaces, and the code in

each section is lined up after the colons. Again, should one’s instructor or place of

employment have a different style, be sure to follow that style.

Also, note that each of the individual possible values of the variable score has

its own case statement. Unfortunately a relation cannot be used in the case
statements and this is another of the switch statement’s drawbacks. However,

there are on occasion a few ways around this limitation as will be seen later.

For example, instead of having quiz scores of 10 through0,what if the variablescore
was used to hold an exam score from 100 through 0, where a score of 100 through 90

inclusivewas to output amessage “VeryGood”, 89 through 80was to output themessage

“Good”, and so on? For a nested if structure, the solution is fairly simple. Instead of just

checking for one or two integers as in the previous nested if structure, it could bemodified

to check for a range of integers using an and logical operator as in the following segment:

3.6 Case Structure 95

Note that each if statement has an && to check for a range of values. However,

wasn’t it suggested in Sect. 3.5 to avoid this? Yes it was, but in previous examples,

such as the temperature example, there were no upper and lower bounds, but in this

case there are the bounds of 0 and 100. Although it appears necessary to include a

range in each if statement in this example, is there a way that it could be rewritten

to avoid having to include an and operator in every if statement? The answer is

yes, where an extra if statement can be placed prior to the other if statements.

This can be written as an if-then-else-if structure starting with if(score < 0 ||
score > 100) and with the error message at the beginning, or it can be coded as

an if-then-if, which allows for the error message to be written at the end. To reflect

the preferred order of the switch statement, the latter if structure is chosen as

shown in the following segment:

Note the use of De Morgan’s rules in the first if statement where the || is

replaced with an && and the relations are reversed. With an if statement checking

the range of the scores added at the beginning, there is no longer a need to have an

and operator in each of the subsequent if statements, which simplifies the code.

Also, the extra if at the beginning makes it so the last if statement checking for

the range from 0 to 59 can be eliminated, since after all the previous if statements,

the only scores left would be in that range. Although an if-then-if is used as the

outer if, the last nested if has its own else statement and therefore the problem

of a dangling else is avoided.

As can be seen, the exam score problem can be implemented relatively easily

using nested if statements, but how could this be implemented using a switch
statement? Does there need to be a separate case for each of the 101 possibilities?

Without using an arithmetic expression, the answer would be yes. However, since

the messages output are based upon exam scores in multiples of 10, if one thinks

96 3 Selection Structures

about it for a minute, there is a solution to this problem. What if each number is

divided by 10? For example, if the score 98 is divided by 10, then the answer

appears to be 9.8. But wasn’t it said previously that the switch statement can’t be

used with floating point numbers? The answer is yes. However, recall that an

integer divided by an integer is an integer, so the answer above would be just

9, not 9.8. Since each division results in an integer, the control can be transferred to

the appropriate case. As another example, what if the value in score is a 70 or

79? Then, 70/10 is 7 and 79/10 is also 7, so in both cases a message of “Fair” could

be output.

But what about values that fall outside the range, such as �10 and 110? When

divided by 10, they result in �1 and 11, respectively, and would be caught by the

default statement. However, what about numbers like �1 and 101? When

divided by 10, they would result in 0 and 10, respectively, so clearly this would

not work. The solution is similar to the preceding nested if structure as shown
below:

Notice that there are no braces around the switch statement in the then section
of the if-then-else statement because it is syntactically only one statement. Since the
value in score is being divided by 10, will the value in score be altered? No,

because as discussed in Chap. 1, the variable score is not being assigned a new

value. Also notice that there is no default statement because the error message is

part of the else section of the if-then-else statement. Lastly, note that since case 0:
is the last statement, the break statement is not included prior to the closing brace

of the switch statement.

3.6 Case Structure 97

http://dx.doi.org/10.1007/978-1-4471-6317-6_1

Given that it appears that the switch statement can solve this problem, when

should the switch statement be used instead of nested if statements? Granted the

above solution was helpful in this instance, because each of the message categories

were multiples of 10. If other problems are multiple of other particular values, then

the switch statement can be just as useful. However, if each of the categories are

not of the same multiple, then the switch statement might not be as useful and

nested if statements are probably a better solution to the problem.

In general, if statements can work in all instances and the switch statement has

various limitations. If there are only one or two alternatives, then the if-then or if-then-

else structures are probably the best choice, because using the switch statement is

probably overkill. Likewise, if there are only three or possibly four alternatives, then the

if-then-else-if will be used by this text to give the reader practice with using nested if
statements. If the problem has five or more of alternatives, then the switch statement

can be the better choice. However, if the number of cases for each alternative are too

numerous, then nested if statements might again provide the best solution.

3.7 Complete Programs: Implementing Selection Structures

The first program in this section is a simple program that does not include objects,

whereas the second program incorporates objects to help reinforce concepts learned in

Chap. 2.

3.7.1 Simple Program

Hurricanes are classified into five categories by the US National Oceanic and Atmo-

spheric Administration (NOAA) based on the speed of the wind as shown below:

Category Wind speed (mph)

1 74–95

2 96–110

3 111–130

4 131–155

5 Over 155

In this section a program using selection structures which will categorize a

hurricane will be developed. As in the past two chapters, this program will be

developed step by step. First, the problem that will be solved is:

Problem Statement: Write a program to classify a hurricane.

98 3 Selection Structures

http://dx.doi.org/10.1007/978-1-4471-6317-6_2

Once a problem statement is given, the requirements can be established by

analyzing the problem. The program will:

• Accept the wind speed of a hurricane from a user

• Determine the category of the hurricane

• Display the category of the hurricane

Because of the nature of the problem, a selection structure will be used. Since

there are five alternatives, five separate if statements could be used to check the

range of the wind speed. Assuming the wind speed is stored in the variable

windSpeed, a possible solution is shown below:

if(windSpeed >¼ 74 && windSpeed <¼ 95)
System.out.println("The hurricane is category 1.");

if(windSpeed >¼ 96 && windSpeed <¼ 110)
System.out.println("The hurricane is category 2.");

if(windSpeed >¼ 111 && windSpeed <¼ 130)
System.out.println("The hurricane is category 3.");

if(windSpeed >¼ 131 && windSpeed <¼ 155)
System.out.println("The hurricane is category 4.");

if(windSpeed > 155)
System.out.println("The hurricane is category 5.");

Is this a good design? The answer is no, because all five conditions will be

checked every time the program is run as was discussed in Sect. 3.3. This means a

nested if structure would be a better choice. How can the conditions be nested? Here

is one solution:

Is this a good design? It is better than the first solution because whenever the

condition becomes true, the rest of the conditions will not be checked. However, it

is always a good idea to reduce the number of logical operators. The complete code

shown below will check the wind speed in reverse order so that a logical operator is

not required in the first if statement nor in the subsequent if statements:

3.7 Complete Programs: Implementing Selection Structures 99

Notice that the code is indented only two spaces instead of three to help conserve

space. Although three spaces is preferred, when using a number other than three, be

sure to be consistent. When the above program is compiled and executed using the

sample input of 125, the output of the program looks like this:

Enter the wind speed (mph): 125
The hurricane is category 3.

The first two conditions returned false, and since the third condition was true, it

found the hurricane was category 3. The flow of control skipped the rest of the

conditions in the nested selection structure and reached the end of the program. The

program also checks for an invalid wind speed, which is any negative value. When

the program is executed with�50 as a wind speed, the output looks as shown below:

Enter the wind speed (mph): -50
Invalid wind speed.

100 3 Selection Structures

3.7.2 Program with Objects

How can the concept of objects, discussed in Chap. 2, be incorporated into the

program in the previous section? If an object for a hurricane is created, information

about a particular hurricane such as a wind speed and a category can be stored

inside of the object, and two hurricanes can be compared. Figure 3.10 contains the

code defining the class for a Hurricane object.

Notice the setCategory method uses the value of windSpeed which is

stored in the object to determine the category of the hurricane. As a result, the

setCategory method does not require any parameters. In the main program

shown in Fig. 3.11, two hurricane objects are created. After a user enters the wind

Fig. 3.10 Hurricane
class

3.7 Complete Programs: Implementing Selection Structures 101

http://dx.doi.org/10.1007/978-1-4471-6317-6_2

speed of both hurricanes, the program determines the categories and outputs them.

Then, it compares the categories of the two hurricanes to decide the strongest storm.

The stronger hurricane canbe foundby comparing the categories of the twohurricanes.

Since the value of the category is stored in each object, it can be retrieved by using an

accessor, the getCategory method. When the above program is compiled and

executed using the sample input of 100 and 160, the output of the program looks as

given below:

Enter the wind speed (hurricane1): 100
Enter the wind speed (hurricane2): 160
Hurricane1 is category 2.
Hurricane2 is category 5.
Hurricane2 is stronger.

Fig. 3.11 A client program for Hurricane class

102 3 Selection Structures

3.8 Summary

• The then and else sections of an if statement can syntactically contain only one

statement. Should more than one statement need to be included, use a compound

statement by putting two or more statements in braces. If there is only one

statement in the then or else section, braces are not needed and should not be used.
• Empty then or else sections should be avoided in if-then-else statements and the

code should be rewritten as an if-then.
• When nesting if statements, the if-then-else-if structure tends to be used more

often than the if-then-if structure. When using the if-then-if structure, be careful

to avoid the dangling else problem.

• Logical operator precedence from highest to lowest is () – innermost nested

first, !, &&, ||, and in a tie – left to right.

• De Morgan’s laws are not (a and b)¼ not a or not b and not (a or b)¼ not a and
not b.

• The switch statement works well with integer and character data but is not as

useful with floating point or double precision data.

• Generally, be sure to include a break statement after every case section,

except for the last one, unless there is a default statement at the end.

• Although a default statement is not required in a switch statement, it is

usually a good idea to include one at the end and it does not need a break
statement.

• Should there be only one or two alternatives, use an if-then or if-then-else

statement respectively and avoid the use of a switch statement. If there are

three or four alternatives, a switch could be used, but in this text nested if
statements will be used. Lastly, if there are five or more alternatives, a switch
statement should be used if possible.

3.9 Exercises (Items Marked with an * Have Solutions
in Appendix E)

1. Given the code segment below, indicate the output for the following initial

values of y:

int x ¼ 50;
if(y > 10)

x ¼ 30;
if(y < 20)

x ¼ 40;
System.out.println(x);

*A. What is the output if the integer variable y contains 10?
B. What is the output if the integer variable y contains 15?
C. What is the output if the integer variable y contains 30?

3.9 Exercises (Items Marked with an * Have Solutions in Appendix E) 103

http://dx.doi.org/10.1007/978-1-4471-6317-6_BM1

2. Given the code segment below, indicate the output for the following initial

values of x and y:

A. What is the output if the integer variable x contains 10 and y contains�15?
*B. What is the output if the integer variable x contains 100 and y contains 20?
C. What is the output if the integer variablex contains200 andy contains�100?

3. Given the code segment below, indicate the output for the following initial

values of x, y, and z:

A. What is the output if the integer variable x contains 1, y contains 0, and z
contains 2?

B. What is the output if the integer variable x contains 0, y contains 1, and z
contains �1?

*C. What is the output if the integer variable x contains 1, y contains 2, and z
contains 1?

4. Declare a Boolean variable, isEligible, and assign it a value of false.

104 3 Selection Structures

5. Evaluate each Boolean expression as true or false. Show intermediate steps.

Assume int num1 ¼ 5, int num2 ¼ -2, int num3 ¼ 0, boolean
flag1 ¼ true, and boolean flag2 ¼ false.
*A. num1 > num2 || flag2
B. num1 < num2 && num3 >¼ 0

*C. num2 < 0 || flag1 && flag2
D. (num2 < 0 || flag1) && flag2
*E. (num2 < 0 || !flag1) && flag2
F. num1 !¼ 0 && num2 !¼ 0 && num3 !¼ 0

6. Using a truth table, show that the first De Morgan’s law discussed in Sect. 3.5 is

correct.

7. Using a truth table, show that the second De Morgan’s law discussed in

Sect. 3.5 is correct.

*8. Write a code segment to ask a user to enter a number between 1 and 4, and print

the name of the class (Freshman, Sophomore, Junior, and Senior)

corresponding to the number. Use a case structure.

*9. Repeat the previous exercise using a selection structure instead of a case

structure.

10. Write a code segment to ask a user to enter a number between 1 and 12, and print

the name of the month corresponding to the number. Use a selection structure.

11. Repeat the previous exercise using a case structure instead of a selection structure.

12. In Sect. 3.5 it was mentioned that a mathematical expression like 0 < temp

< 100 would cause a syntax error if used as a condition in an if-then structure in

a Java program. Explain why.

13. The dew point temperature is a good indicator of how humid it feels during a hot

day. The US National Weather Service (NWS) summarizes the human percep-

tion of humidity using the dew point temperatures shown in the table below.

Dew point temperature (�F) Human perception

75 or higher Extremely uncomfortable

70–74 Very humid

65–69 Somewhat uncomfortable

60–64 OK

55–59 Comfortable

50–54 Very comfortable

49 or lower A bit dry

Write a complete programusinga selection structure tooutput howaperson feels for

a given dew point temperature. The program should perform the following tasks:

a. Allow the user to enter a dew point temperature.

b. Determine the human perception for a given dew point temperature.

c. Output the corresponding phrase from the table.

3.9 Exercises (Items Marked with an * Have Solutions in Appendix E) 105

Here is some sample input and output:

Enter a dew point temperature (F): 55
Comfortable

Enter a dew point temperature (F): 30
A bit dry

Enter a dew point temperature (F): 90
Extremely uncomfortable

Enter a dew point temperature (F): 65
Somewhat uncomfortable

14. Repeat the previous exercise using a case structure instead of a selection structure.

15. Write a complete program to compare the temperatures of three different cities

and find the hottest city. First, implement a class called Thermometer as

described below:

A. Thermometer has one private data member, temperature of type

double.

B. Write code for a constructor to set a data member to the default value of 0.0.
C. Write code for an accessor method, getTemperature, which returns the

value of the appropriate data member.

D. Write code for a mutator method, setTemperature, which has one

formal parameter, and store it as the value of the data member.

Then, write a client program to test the Thermometer class defined above.

Call this class Temperatures. The main method should perform the fol-

lowing tasks:

E. Allow the user to enter the temperatures of three cities.

F. Declare and create three Thermometer objects setting the instance data

member to the values entered by the user.

G. If city1 is the hottest city among the three cities, output a phrase like

"City1 is the hottest city."

Here is some sample input and output:

Enter the temperature of city1: 93.4
Enter the temperature of city2: 76.1
Enter the temperature of city3: 85.8
City1 is the hottest city.

Enter the temperature of city1: 76.5
Enter the temperature of city2: 85.2
Enter the temperature of city3: 66.9
City2 is the hottest city.

106 3 Selection Structures

Iteration Structures 4

4.1 Introduction

Selection structures were discussed in Chap. 3, which allows a program to follow

one of two or more paths. Iteration structures, sometimes called repetition

structures, allow a program to repeat a section of code many times. It is this

capability to repeat or loop that gives the computer the ability to perform a task

over and over again.

In creating any type of loop, it will generally have three parts: initialization, test,

and change. When performing a repetitive task, one typically does not think about

the particular steps of the repetition, but taking a moment to think about the process,

one can recognize these three components. For example, if a student needs to do a

number of homework problems for a mathematics class, they might count each of

the problems, starting with the number one. This can be seen as the initialization

phase which is performed just once. As the student starts to do the first problem,

they might look at their notes to see how many problems they need to do, where in

this example the student might need to do ten problems. Noticing that the count one

has not passed the number ten, the student realizes the assigned homework is not

completed. This is known as the test phase. As the student finishes the first problem,

the student then counts to the next number, two, and this act of counting is the

change phase of the repetitive process. The student again compares the count to

the number of problems to be completed. This process of counting and comparing is

the repetitive process of change and test. The process continues until the student has

finished the tenth problem and the iterative process stops. Although this detailed

analysis is much more than what a person does when performing a repetitive task, it

is what the computer needs to do to perform a loop.

In particular, this chapter will examine indefinite and definite loop structures.

The first type of loop iterates an unknown number of times, whereas the second type

of loop structure loops a fixed number of times. The first of these two loops can be

divided into what are known as pretest and posttest loop structures, where the first

has the test or conditional expression at the beginning of the loop and the second

J.T. Streib and T. Soma, Guide to Java: A Concise Introduction to Programming,
Undergraduate Topics in Computer Science, DOI 10.1007/978-1-4471-6317-6_4,
© Springer-Verlag London 2014

107

http://dx.doi.org/10.1007/978-1-4471-6317-6_3

has the conditional expression at the end of the loop. Since the pretest indefinite

loop structure is probably the most versatile, it is discussed first.

4.2 Pretest Indefinite Loop Structure

A pretest indefinite loop structure is a loop that has the test or conditional expression at

the beginning of the loop and can iterate an indefinite number of times. An indefinite

loop structure can also be made to loop a fixed number of times, and this is one of

the reasons it is a very useful loop structure. The pretest indefinite loop structure in

Java is known as a while loop. The while loop can generically be represented in a

flowchart as shown in Fig. 4.1.

At first glance, the flowchart of the while loop might appear similar to the

flowchart for the if structure presented in the last chapter. The reason for this

might be because of the diamond-shaped conditional expression near the top of

the flowchart, but upon closer examination, one should be able to see a number of

differences. The first box is for the initialization of a variable which occurs

just once. That is followed by the diamond-shaped box where the test of the

variable occurs. Note that like the if structure, there is a true and a false branch,

but instead of the true branch going off to the right, it is pointing downward.

Further, note that the two branches do not meet together at the bottom, but instead

the false branch goes to the box with the “End of Program” message and the true
branch ultimately ends up going back to the test. It is the true branch that forms the
actual loop. The first section in the loop is known as the body of the loop. It is here

True

False
Test

Change

Initialize

Output
“End of Program”

Body of Loop

Fig. 4.1 Generic while loop

108 4 Iteration Structures

that any task or tasks that need to be performed repetitively can be placed. This can
be any sort of input, processing, or output that needs to be performed. The body of
the loop can also include nested if structures or even nested loops as will be shown
later in this chapter. Lastly, the change to the variable occurs before the flow of
control loops back to the test. Although the change can occur anywhere in the loop,
it is best to be consistent in its placement, and for now it is the last thing that is done
in the loop.

4.2.1 Count-Controlled Indefinite Iteration Structure

Although the generic flowchart is fine for understanding the basic layout and

concept of a loop, it is helpful to see exactly how the loop performs. In the next

flowchart, the initialize, test, and change are replaced with more specific statements.

In this case, the loop is known as a count-controlled loop and the variable

controlling the loop is sometimes called the Loop Control Variable (LCV). In this

example, the LCV will be the variable i as shown in Fig. 4.2.

To understand the loop, the best thing to do is walk through the logic. First, the

variable i in the flowchart is initialized to 1. Then, the variable i is tested to see if

it is less than or equal to 3, which is true. The body of the loop is executed for the

first time and the value of i is incremented by 1, so that the value of i is equal to

2. The flow of control is returned back to the test, where i is less than or equal to

3. The body of the loop is executed for the second time, and the value of i is

incremented to 3. The value is tested again and i is still less than or equal to 3, so
the body of the loop is executed for the third time and the value of i is

True

False
i ≤ 3

i ← i + 1

Output
“End of Program”

Body of Loop

i ← 1

Fig. 4.2 Count-controlled

while loop

4.2 Pretest Indefinite Loop Structure 109

incremented to 4. The next time the value is tested, it is no longer less than or

equal to 3, so the false branch is taken and the message “End of Program” is
output. In the end, the final value of i is 4 and the body of the loop was executed

three times.

As in the previous chapter on if structures, it is nice to examine the pseudocode

equivalent of the while structure as seen below:

i 1
while i � 3 do

//body of loop
i i + 1

output “End of Program”

First, note that the while is written aswhile i� 3 do, where while-do is a common
way to describe the while loop structure. Of course, if one wanted to write it as while
(i � 3) to make the pseudocode look more like the Java language as will be seen
shortly, that is okay. However, it is recommended that whatever style of pseudocode
is chosen, it should be consistent. As with if structures, note that the body of the loop,
including the increment, is indented approximately three spaces. Lastly, note that the
output statement is not in the loop so it is not indented.

As one might suspect, the Java syntax is similar to the pseudocode as shown

below:

i ¼ 1;
while(i <¼ 3) {

// body of loop
i ¼ i + 1;

}
System.out.println("End of Program");

The first line is the initialization, the second line is the test with the conditional

expression in parentheses like an if statement, and the increment of the variable

i is inside the compound statement. Note that the statement i++ could be used

instead as shown in Chap. 1, and this style is often used in loops. Notice that

braces are being used around the comment concerning the body of the loop and

also the increment. Are these braces required in this particular code segment? At

first the answer might seem to be yes, because there appear to be two statements in

the loop. However, recall from Chap. 1 that comments are ignored by the

compiler, so technically there is only one statement in the loop and the answer

to the question is no. Why then are there braces included in the above segment?

The reason is that in addition to the increment, there are usually other statements

in the body of the loop. It is uncommon to see only one statement in a while
loop, so braces are included in the above example in anticipation of more

statements being added later.

What if the user wanted to loop a different number of times other than three?

That would require the user to modify and recompile the program, but many users

110 4 Iteration Structures

http://dx.doi.org/10.1007/978-1-4471-6317-6_1
http://dx.doi.org/10.1007/978-1-4471-6317-6_1

do not have knowledge of programming. To expand upon the above, the value 3
could be changed to an integer variable n, and the value for n could be prompted for

and input from the user as shown below:

System.out.print("Enter the number of times to loop: ");
n ¼ scanner.nextInt();
i ¼ 1;
while(i <¼ n) {

// body of loop
i ¼ i + 1;

}
System.out.println("End of Program");

If the user entered the value 3, the loop would still iterate three times as it did

before. Further, the user now has the option to enter any other number for the

value of n which allows the loop to have more versatility. However, what if the

user entered a value of 0 instead? One other important thing about a while loop is

that it is known as a pretest loop, meaning that the test is at the beginning of the

loop. In this particular case, the variable i is initialized to 1 and then the

comparison would be performed. Since the 1 in the variable i is not less than

or equal to the 0 in the variable n, the result would be false and the body of the

loop would not be executed. This is one of the important features about a pretest

loop because the body of the loop might be executed anywhere from zero to many

times. This is a reason why the while loop is one of the more versatile loops as

will be seen below.

As an example of how the while loop structure can be used to solve a problem in

the Java language, consider a user who wants to add a series of numbers. If there are

a relatively small fixed number of integers to be added, then a loop might not be

necessary. Consider the following program that would add three numbers entered

by the user:

int num1, num2, num3, total;
System.out.print("Enter an integer to be summed: ");
num1 ¼ scanner.nextInt();
System.out.print("Enter an integer to be summed: ");
num2 ¼ scanner.nextInt();
System.out.print("Enter an integer to be summed: ");
num3 ¼ scanner.nextInt();
total ¼ num1 + num2 + num3;
System.out.println("The total is " + total);

Although the above works, what if there were a large number of integers to be

added, say 1,000? The number of variables, prompts, and inputs would be over-

whelming when writing the code, and the program would also take up a lot of

memory. Returning to the example above where only three numbers need to be

added, the number of variables used to store the input could be reduced to one. This

would make the task a little easier, but more importantly it paves the way to see how

the problem could be solved using a loop.

4.2 Pretest Indefinite Loop Structure 111

Using only a single variable num instead of three variables, the first integer could

be prompted for, input, and placed into the variable total. The second integer

could be input into the variable num and added to the variable total. The same

would occur with the third integer and then the sum in total is output.

In the code above, the three prompts and inputs look the same, but the assigning

of the first integer input into total makes it different from the subsequent

assignment statements. The last two groups of statements indicated by the brackets

could be placed in a loop, but the first group could not be placed in the loop. It

would be convenient if there did not need to be the exception, so instead of

assigning the first value input into total, the variable total could be initialized

to zero; thus, the first value input into num could be added to the variable total
just as all the other integers.

The first group is no longer a special case, so it can also be put into a loop that

iterates three times. The body of the loop would contain a prompt and input for the

integer num followed by the variable num added to the variable total. How-
ever, to allow for the first time num is added, the variable total would need to

be initialized to zero prior to the loop. Then each time through the loop, the current

value in num could be added to the previous value in the variable total. The first
time through the loop, the value in num would be added to the zero in total, the
second time to the previous value in total, and so on until the loop terminates,

and the final value in the variable total is the sum of all the integers input.

112 4 Iteration Structures

Notice that the basic loop is the same as the loop presented earlier, with the

initialization, test, and change of the variable i. Also note that the variable total is

initialized to zero so that the integers input can be summed. Lastly, notice that three

statements from the previous code segment are no longer written three times, but rather

only once, because the loop will iterate three times and accomplish the same task.

How does one know what belongs inside the loop and what belongs outside the

loop? If outside the loop, does it belong before or after the loop? By looking for

patterns on a smaller number of items, one should be able to see those items that

need to be repeated and those items that need to be executed only once. In the above

example, the variables for counting and the total need to be initialized only once,

and they should be placed prior to the loop. Since the output of the total needs to

occur only once, it should be placed outside and after the loop. Further, since there

are three integers to be prompted for, input, and summed, that code should be

placed inside the loop. An advantage of the above code segment is that if just three

values were being input or 1,000 values were being input, the only thing that would

need to be changed is the number 3 in the while statement. This version of the code

is much easier to write than straight line code and also takes up less memory.

The previous code segment is a significant step forward by utilizing the power of

the computer to perform repetitive tasks; however, it can be improved. As it is

currently written, if the user wants to input and sum four integers instead of three,

the user would have to edit and recompile the program. Since most users are not

programmers, is there a way to make this program easier to use? The answer is yes.

As before, a prompt and input can be placed prior to the loop to allow the user to

input the number of integers to be summed as shown below:

int num, total, i, n;
total ¼ 0;
i ¼ 1;
System.out.print("Enter the # of integers to be summed: ");
n ¼ scanner.nextInt();
while(i <¼ n) {

System.out.print("Enter an integer to be summed: ");
num ¼ scanner.nextInt();
total ¼ total + num;
i ¼ i + 1;

}
System.out.println("The total is " + total);

4.2 Pretest Indefinite Loop Structure 113

Notice the prompt and input of the variable n prior to the while statement, and

also notice that the number 3 in the while statement has been changed to the

variable n. Again, this makes the program much more useful since it does not

require the user to make changes to the program. For example, if the user started the

program and then decided that they did not want to sum any integers, the user could

just enter the number 0, and since the while loop is a pretest loop, the user would

never be prompted to input any integers. Further, since total was initialized to 0,
the message indicating a total of 0 would be output also.

There are of course other tasks that could be added to the above program. For

example, what if the user wanted to find the average of the integers entered, how

would this be written? Since total needs to be divided by the number of items,

one thought is to use the value in the variable i. However, its final value is one more

than the number of items entered. If three items were input and since it was

initialized with a 1, it would contain the number 4 at the end of the loop. That

value could be decremented by one to make it the correct number, but why use the

counter when the variable n contains the number of items which was originally

entered by the user? The answer is that the use of the variable n is the better choice

as shown in the following code segment:

First, notice that average is declared as type double. Also, note that the

calculation of the average is outside the loop at the end of the segment because the

average only needs to be calculated once. Offhand, the above segment appears to be

fairly good. However, there are a few problems with it. If the program was executed

using a 3 for the first prompt and then using the three integers 5, 7, and 8 for the

values to be summed and averaged, what would the answer be? Using a calculator

one would say 6.666. . ., but is this the answer that the program would generate?

The answer is no because the program would output the answer 6.0, which is

incorrect. The variable average is type double so that is not the problem.

However, look carefully at the division on the right side of the assignment symbol.

Recall from Chap. 1, an integer divided by an integer is an integer, which in this

case is 6. The assignment of the integer to a variable of type double causes the

114 4 Iteration Structures

http://dx.doi.org/10.1007/978-1-4471-6317-6_1

6 to be changed to 6.0, which is the number that is output. How can this be

corrected? The answer from Chap. 1 is to use a (double) typecast operator on

one of the variables involved in the division which will force the answer to be of

type double. Also, it would help to format the output so that it would not be a

repeating decimal.

There is another problem with the previous code segment that might not be as

readily apparent. What would happen if the user entered a 0 for the number of

items to be summed and averaged? As discussed previously, the user would not be

prompted for integers to be entered. The problem occurs after the loop in the

division statement. The value in n would be a 0 which would cause an execution

error, or in other words a run-time error. How could this problem be solved? An

if statement could be included so that division would not occur unless the value

in n is positive. Should the average message still be output? That would depend

on the original specifications. In this case it would not hurt to still output the

message, but it would probably be a good idea to ensure that the variable

average contained the value 0. The updated program with all of the above

changes can be seen below:

Although typically users will not enter a negative number or the number 0 as

the number of items to be summed, programmers need to write programs that work

correctly under such circumstances. The old adage “If something can go wrong,

it will” applies to software development as well. As a result, these sorts of

possibilities should also be addressed in the design and specifications of programs

so that they will be taken care of properly when a program is written. This sort of

programming is known as robust programming and will be discussed at various

points throughout the text. However, at other times it will not be included when

introducing a new concept and to save space. When encountering an assignment or

specifications for a programming project that lack robustness, it is always advisable

to check with the user or the instructor when in a classroom setting.

4.2 Pretest Indefinite Loop Structure 115

http://dx.doi.org/10.1007/978-1-4471-6317-6_1

4.2.2 Sentinel Controlled Loop

The use of a prompt in the previous program to indicate how many integers will be

entered is better than having the number “hard coded” into the program. A disadvan-

tage with the previous loop structure is that it requires the user to know in advance

howmany integers will be entered prior to running the program. If the user miscounts

the number of integers, the program will not work correctly. For example, if the user

overcounts the number of integers, then the user will have one or more extra prompts

to enter data and the average will be off, which is unacceptable. If the user

undercounts the number of integers, then the user will have leftover data and again

the average will be off. In these cases the only real alternative is for the user to restart

the program from the beginning. Although this is not much of a problem for a small

data set, it is clearly impractical for a large number of data items.

Instead of having the user count all the data items prior to running the program,

wouldn’t it be useful to have the program do the counting for the user? This can be

accomplished using a sentinel controlled loop, or what is sometimes called an End

of Data (EOD) loop, which is usually implemented using a while loop. The idea is

that the user continues to enter data until a sentinel value or end of data indicator is

entered indicating that the end of data has been reached. The key is that the sentinel

or EOD indicator must be a value that is different from the other data values. Using

the above example, if only nonnegative integers were entered, then a negative

integer such as �1 could be used as a sentinel. The main disadvantage of this

method is that sometimes there is not an acceptable value that can serve as a

sentinel, but in those instances where a sentinel is available, the sentinel controlled

loop is better than the previous count-controlled loop. Although a count is not

necessary to control the loop anymore, a count can be added to the program to help

calculate the average as will be seen later.

As always, it is helpful to begin with an example as shown in the following

code segment:

System.out.print("Enter a non-negative integer or -1 to stop: ");

num ¼ scanner.nextInt();

while(num !¼ -1) {

// body of loop

System.out.print("Enter a non-negative integer or -1 to stop: ");

num ¼ scanner.nextInt();

}

System.out.println("End of Program");

The first thing to notice is that the variable i is no longer controlling the loop.

Since the while loop does not need a counter, it is called an indefinite loop structure.

Whereas in the previous section one could tell howmany times the loop would iterate

merely by looking at it, such as looping 3 times or in some cases n times, here the

number of times is not readily apparent and the code could loop indefinitely.

At first this loop might appear a little confusing because the value num is

prompted for and input in two places, once outside prior to the loop and another

time inside at the end of the loop. However, if one takes a little time to think about the

116 4 Iteration Structures

loop, it is not as confusing as it looks. First, the prompt and input outside prior to the

loop is sometimes called a priming read. This can be thought of as the initialization

section of the loop. The test portion of the loop includes the comparison of the value

input into the variable num to the sentinel value of �1. If the value input is equal to
the sentinel, then the loop is not executed, otherwise the data can be processed in the

body of the loop. The second prompt and input is the change portion of the loop,

where all subsequent values are input. Again, if a subsequent value input is not equal

to the sentinel, the value is processed, otherwise the loop terminates.

A disadvantage to the above loop is that as written, only a value of �1 will

terminate the loop. What would happen if the user input a �2? As can be seen, all

other negative values would be processed in the body of the loop, which might not

be what was intended. Instead, the prompt and test could be rewritten to include

all negative numbers as sentinel values as shown below:

System.out.print("Enter a non-negative integer ");
System.out.print("or a negative integer to stop: ");
num ¼ scanner.nextInt();
while(num >¼ 0) {

// body of loop
System.out.print("Enter a non-negative integer ");
System.out.print("or a negative integer to stop: ");
num ¼ scanner.nextInt();

}
System.out.println("End of Program");

Note that due to the length of the prompts, they are split into separate print

statements and that the while statement now checks to see if num is greater than

or equal to 0. Again, as long as the sentinel value is not part of the data to be processed,
the sentinel controlled loop can prove to be a nice alternative to count-controlled

loops. To help illustrate the usefulness of this loop, the following code segment shows

how it can be used to implement the calculation of total in the example from the

previous section:

int num, total;

total ¼ 0;

System.out.print("Enter a non-negative integer to be summed ");

System.out.print("or a negative integer to stop: ");

num ¼ scanner.nextInt();

while(num >¼ 0) {

total ¼ total + num;

System.out.print("Enteranon-negativeintegertobesummed");

System.out.print("or a negative integer to stop: ");

num ¼ scanner.nextInt();

}

System.out.println("The total is " + total);

4.2 Pretest Indefinite Loop Structure 117

As before, the value of total should be initialized to 0 prior to the loop. Notice

that adding num to total is the first line in the body of the loop. Is this correct? At

first this might look a little strange, but it is correct. Remember that the priming read

will input the first value to be summed. Also, sometimes beginning programmers

think there should be an if statement before adding num to total because they

think that the sentinel value might be included in the total. However, an if
statement is not necessary because the while loop is a pretest loop, and if a

sentinel value is input, the loop would terminate.

Can this loop be further expanded to include the calculation of the average as

done previously? Yes, but a count will need to be added to the loop so that the

total can be divided by the number of integers that are input as shown below:

First notice that the value of i is initialized to 1 as has been done previously, and

again it is incremented at the beginning of the loop prior to when total is calculated.

Although the increment could be placed elsewhere, it is usually a good idea to keep all

calculations together for ease of reading and modification of the code. Another thing to

notice is that the variable i does not appear in the parentheses of the while statement.

This again is because it is a sentinel controlled loop and not a count-controlled loop.

Further, note the i-1 in the if statement, because the final value in i is one more

than the number of times the loop was executed. Also notice that the total is divided by

(i – 1), because without the parentheses the division would be incorrect. However,

instead of using i - 1 twice, it might be more convenient to subtract 1 from i and

then use just i as shown in the code segment below:

i ¼ i - 1;
if(i > 0)
average ¼ (double) total / i;

else
average ¼ 0.0;

118 4 Iteration Structures

Although this method works, there is a more convenient way of solving this

problem. Even though individuals tend to start counting from the number 1, it is

often more helpful to have programs start counting from the number 0. By starting

the count from 0, the final value in i will no longer be off by 1 at the end of the

segment. This will become even more apparent in Chap. 7 on arrays, because an

array actually starts at location 0. The following code segment reflects this change:

So far the count-controlled loop and the sentinel controlled loop have been

introduced separately. Is it possible to combine both in one loop? Given the

information presented in Sect. 3.5 on logic operations, the answer is yes. For

example, what if one wanted to have a sentinel controlled loop that would accept

up to a maximum of 10 numbers? In other words, the user could keep entering data

until a sentinel value was entered, but if a sentinel value was not entered, the loop

would stop after 10 numbers had been entered. The result is that the tests for the

sentinel value and the count would need to occur in the while statement. Looking

at a portion of the previous program, an && operator could be added to the while
statement so that the body of the loop is executed only when both the value in num
is not equal to a sentinel value and the count is less than 10.

4.2 Pretest Indefinite Loop Structure 119

http://dx.doi.org/10.1007/978-1-4471-6317-6_7
http://dx.doi.org/10.1007/978-1-4471-6317-6_3

Note that the test for i is less than 10 instead of less than or equal to 10. This is
because the variable i now begins at 0 instead of 1. If the value in num is greater

than or equal to 0 and the count is less than 10, then the body of the loop is

executed. However, if either the value in num is a sentinel value or the value in i is

10 or greater, then the loop will not be executed.

What if there isn’t an acceptable value that can be used as a sentinel value?

Another possibility is to repeatedly prompt the user and ask if there is any data to be

entered. A prompt asking the user to enter a Y or N, for yes or no, respectively,

could be output using a sentinel controlled loop. Then, if there is more data, the user

could be prompted to input data for each iteration through the loop as shown below:

Note that the while loop checks for either an uppercase Y or a lowercase y to

make it convenient for the user. Also, notice that if the user does not respond with

either Y or y, it is assumed that the user entered either N or n and the loop

terminates. Further, the prompts for more data can be different as necessary, as

shown by the inclusion of the word more in the last prompt above. The disadvan-

tage to this program segment is that the user has to enter a character each time

before entering the actual data to be processed, but if a suitable sentinel value

cannot be found, then this might be the only alternative.

4.3 Posttest Indefinite Loop Structure

In addition to the pretest indefinite loop structure of the previous section, Java also

has a posttest indefinite loop structure called the do-while structure. Whereas a

pretest loop has its test at the beginning and the body of the loop may be executed

zero to many times, the posttest loop structure has its test at the end of the loop and

the body of the loop will be executed one to many times. In other words,

regardless of the result of the test, the body of the posttest loop will be executed

at least once. As before, looking at the flowchart is a good place to start as shown

in Fig. 4.3.

It is easy to notice that the test condition is now located at the end of the loop

instead of the beginning, thus showing it is a posttest loop structure. The body of the

120 4 Iteration Structures

loop is executed while the condition is true, and when it is false, the flow of control

falls through to the next statement. The above flowchart can be written in

pseudocode as follows:

i 1
do

//body of loop
i i + 1

while i � 3
output “End of Program”

As with previous pseudocode, the indenting indicates the body of the loop.

As should be suspected, the Java code looks similar as follows:

i ¼ 1;
do {
// body of loop
i ¼ i + 1;

} while(i <¼ 3);
System.out.println("End of Program");

Notice the use of a compound statement, the { }, which is not optional within the
do-while statement. Even if there is only one statement between the words do and

while, a compound statement must be included. However, since the body of a

do-while almost always has more than one statement, it is unlikely that one would

forget to include the braces. Modifying the above code segment to prompt the user

False

i ← i + 1

Output
“End of Program”

Body of Loop

i ← 1

i ≤ 3
True

Fig. 4.3 Count-controlled

do-while loop

4.3 Posttest Indefinite Loop Structure 121

to enter the number of times to loop, similar to the last section, results in the code

segment below:

System.out.print("Enter the number of times to loop: ");
n ¼ scanner.nextInt();
i ¼ 1;
do {

// body of loop
i ¼ i + 1;

} while(i <¼ n);
System.out.println("End of Program");

How many times would the body of the loop be executed in the above code

segment if the user entered a value of 0 for n? The answer is one. Unlike the answer
of zero for the pretest loop structure, the body of the loop is executed at least once

with a posttest loop structure, because the comparison is at the end after the body of

the loop has been executed. If one did not want the above code to iterate once in the

event that someone entered a value of 0 for n, how would the code need to be

modified? If one thinks about it, an if statement would need to be added at the

beginning of the body of the loop or just prior to the loop to check for a value of zero

or a negative number. Of these two choices, the if would be better placed outside

the loop so that it does not need to be checked through each iteration of the loop and

is executed only once prior to the loop as shown below:

System.out.print("Enter the number of times to loop: ");
n ¼ scanner.nextInt();
if(n >¼ 1) {

i ¼ 1;
do {

// body of loop
i ¼ i + 1;

} while(i <¼ n);
}
System.out.println("End of Program");

Although the above code segment solves the problem of iterating once through

the loop when the value of n is 0 or negative, it does appear a little cumbersome

with the use of both an if and a do-while statement. The above code segment can

be easily implemented using a simple while loop as presented in the previous

section and repeated below:

System.out.print("Enter the number of times to loop: ");
n ¼ scanner.nextInt();
i ¼ 1;
while(i <¼ n) {

// body of loop
i ¼ i + 1;

}
System.out.println("End of Program");

122 4 Iteration Structures

Clearly, the second example above using only the while loop is simpler than

the previous example using an if and do-while statements. This is not to say that

the many examples in the previous section and other problems cannot be

implemented using the do-while and an if statements (see the exercises at the

end of the chapter). Rather it is oftentimes simpler to use just the while statement

instead. It is for this reason that the while statement tends to be used more often

than the do-while statement.

Although in most cases having the test at the beginning is more convenient, there

are some special cases where the do-while can be quite useful. For example, assume

that for input a user has to input an integer between 0 and 10, inclusive. If the user
enters a number outside the range, then the user needs to be re-prompted to input the

number again. At first this might seem to be a good application for the if
statement, but what if the user continues to enter the wrong number? A single if
statement would allow the user only one chance to reenter a correct number.

Instead, a loop would be a better choice. The problem could be solved using a

while loop, but since the user has to be prompted at least once, the do-while might

be a good choice as seen below:

do {
System.out.print("Enter a number between 0 and 10, inclusive: ");

number ¼ scanner.nextInt();
} while(number < 0 || number > 10);

The above loop provides a simple way to give a user multiple attempts to correct

a problem with the input data. However, a disadvantage of the above loop is that the

user might continue on indefinitely entering the wrong number. A solution is that a

counter could be added so that after a certain number of attempts, the loop stops.

Then, an if statement after the loop could check the number of attempts and either

use a default value or exit the program.

Another disadvantage of the above code segment is that the subsequent message

output is the same as the first one, so the user might not understand what they did

incorrectly. If a more detailed message is needed, an if could be added to the body

of the loop to check a flag and offer a different message.

firstAttempt¼true;
do {

if(firstAttempt)

firstAttempt¼false;
else

System.out.println(number + " is an incorrect number");

System.out.print("Enteranumberbetween0and10,inclusive:");

number ¼ scanner.nextInt();

} while(number < 0 || number > 10);

4.3 Posttest Indefinite Loop Structure 123

Note the firstAttempt flag is set to true prior to the loop in order to indicate

the first attempt, and once in the loop, the flag is set to false to indicate

subsequent attempts. In the case of a subsequent attempt, a message is output to

the user indicating what was input so that they might see what was incorrect. Notice

that regardless of whether it was the first attempt or a subsequent attempt, a number

needs to be prompted for and input, so the prompt and input statements come after

the if statement. However, the use of the flag and if statement might seem a little

clumsy, so possibly a while loop could be used instead. The advantage here is that

the message in the body of the loop could be different than the initial message used

in the priming read as follows:

System.out.print("Enter a number between 0 and 10, inclusive: ");

number ¼ scanner.nextInt();

while(number < 0 || number > 10) {

System.out.print(number + " is an incorrect number, try
again");

System.out.print("Enteranumberbetween0and10,inclusive:");

number ¼ scanner.nextInt();

}

As suggested previously, a count could also be added so that after a certain

number of attempts, the loop would stop. Again in this case, the pretest loop seems

to be a little more appropriate than the posttest loop. In any event, a programmer

should analyze the requirements and specifications of the program to be written and

use the type of loop that best suits the task at hand.

4.4 Definite Iteration Loop Structure

As discussed in Sect. 4.2.1, the while loop can be used as a count-controlled

loop. Since loops often need to iterate a fixed number of times, most languages

include what is known as a definite iteration loop structure or what is sometimes

called a fixed iteration loop structure. In Java, this is called a for loop, and like the

while loop, it is a pretest loop.

The for loop has a flowchart similar to the one shown previously in Fig. 4.2.

However, instead of having the initialization and test as separate statements as they

are in the while loop, they are included as part of the for loop statement. To help

illustrate this in flowchart form, the diamond that has only the test portion of a

while loop can be replaced with a rectangle that contains all three parts typically

present in a loop (Fig. 4.4).

Notice that the initialization, test, and change are all located in one rectangle

signifying that all three operations are written in the same statement. The optional

internal arrows illustrate how the flow of control occurs within the statement. Notice

that the order of operations is the same as with the previous flowchart for the while
statement. The initialization is done just once prior to the loop. The test is done prior

to the body of the loop and the change occurs after the body of the loop.

124 4 Iteration Structures

The pseudocode for the for loop can be written as follows:

for i 1 to 3 incremented by 1 do
//body of loop

output “End of Program”

In the for loop, the initialization is indicated as i 1, the to 3 is the test, and the
change is the incremented by 1. Note that the use of the word do is optional and the
body of the loop is indented. As before, the Java code follows:

for(i¼1; i<¼3; i++)
// body of loop

System.out.println("End of Program");

After the for in the parentheses are the initialization i¼1, the test i<¼3, and
the change or increment i++, all separated by semicolons. Note that the increment

is using the shortcut i++ which is common in a for statement. Also notice that

there are no braces in this example around the body of the loop, because if there is

only one statement, they are unnecessary. Since the change or increment of the

variable i is in the for statement itself, it is not uncommon that there might be

only one statement in the body of a for loop. However, if there is more than one

statement in the body of the loop, the use of a compound statement is necessary. In

the above example, it is assumed that the variable i is declared elsewhere, but it is

also possible to declare the variable i within the for statement itself by preceding

the initialization of i with the word int as in for(int i¼1; i<¼3; i++).
This is also a fairly common practice and will be used on many occasions in the

future.

Note that it is possible to have more than one statement in each of the three

sections that are separated by semicolons within the parenthesis and each state-

ment would be separated by commas. This gives the for statement quite a bit of

flexibility, but this can become quite confusing and is considered by some to be

True

i ← i + 1

Output
“End of Program”

Body of Loop

i ← 1 False
i ≤ 3

Fig. 4.4 Definite iteration

loop flowchart

4.4 Definite Iteration Loop Structure 125

poor programming practice. Since anything that can be done with a for loop can

also be done by the while loop, should such a complex for loop need to be

written, the programmer is usually better off writing the loop as a while loop.

That being said, when should the for loop be used instead of a while loop?

Since the for loop is typically thought of as a fixed iteration structure, it is in

those situations where a fixed number of tasks need to be done that the for loop

should be used.

As an example of using the for loop, assume that Java did not contain the pow
function in the Math class. How could the power function be implemented using

iteration? As before, whenever trying to solve a problem using iteration, it helps to

write down an example using specific values to see if a pattern can be found,

followed by a more general solution. For example, when trying to calculate xn,
where x is the number 2 and n is an integer greater than or equal to zero, then the

following is a list of possible results:

20 ¼ 1

21 ¼ 1 * 2 ¼ 2

22 ¼ 1 * 2 * 2 ¼ 4

23 ¼ 1 * 2 * 2 * 2 ¼ 8

.

.

2n ¼ 1* 2 * 2 * 2 * . . . * 2 (n times)

Further, if x is considered to be a positive nonzero integer in this example, then

the above can be rewritten more generally as follows:

x0 ¼ 1

x1 ¼ 1 * x
x2 ¼ 1 * x * x
x3 ¼ 1 * x * x * x
.

.

xn ¼ 1* x * x * x * . . . * x (n times)

As stated above, when solving a problem, it is helpful to try and see if there is a

pattern present. In the above example, it can be seen that 20 and x0 are defined to be
1, so that might be a good starting point for initialization. Further, note that for any

value of n, there appears to be that number of multiplications present. For example,

23 is 2 multiplied by itself 3 times. This might be useful in the test part of the loop

where the loop might need to iterate n times. Further, since the loop will iterate a

fixed number of times, this would be a good fit for the for loop. Using this

information, the loop skeleton from above can be modified to solve the problem.

First, four variables will need to be declared, the loop control variable i,
variables for both x and n, and a variable for the result which could be named

answer as shown below:

int i,x,n,answer;

126 4 Iteration Structures

The values for x and n would need to be prompted for and input from the user as

in the following:

System.out.print("Enter a value for x: ");
x ¼ scanner.nextInt();
System.out.print("Enter a value for n: ");
n ¼ scanner.nextInt();

Next, if the loop needs to loop n times, then instead of having the relational

expression compare the loop control variable i to 3 as was done previously,

couldn’t it instead be compared to n? The answer is yes, where the loop would

not iterate 3 times, but rather n times. Also note that the answer for x0 is 1. Further,
each line in the definition for xn begins with the number 1, so this might be a good

initial value for the variable answer. The result is that the following code segment

could implement the power function:

int i,x,n,answer;
System.out.print("Enter a value for x: ");
x ¼ scanner.nextInt();
System.out.print("Enter a value for n: ");
n ¼ scanner.nextInt();
answer ¼ 1;
for(i¼1; i<¼n; i++)

answer ¼ answer * x;
System.out.println(x + " raised to the " + n + " power ¼ " +

answer);

Notice that answer is initialized to 1, that the loop iterates n times, and that

each time through the loop answer is multiplied by x. Also note that there is

only one statement in the body of the for loop so a compound statement is not

used. What would happen if 0 or a negative value were entered for the value of n?
The result would be that the initial value 1 in the variable i would not be less than

or equal to the value 0 in n. Since the for loop is a pretest loop structure, the loop

would not iterate, and the initial value 1 in answer would be output. Could this

problem have been solved using a count-controlled while loop? Yes, but since

the loop needs to iterate a fixed number of times, the for loop is the better choice.

As will be seen later, the for loop will be especially useful with arrays in

Chap. 7.

4.5 Nested Iteration Structures

As seen in Sect. 4.3, iteration structures can be nested within selection structures,

and the reverse can also occur. Further, iteration structures can also be nested within

other iteration structures, and when using nested loops, they require some special

considerations. To start, consider the following nested while loops:

4.5 Nested Iteration Structures 127

http://dx.doi.org/10.1007/978-1-4471-6317-6_7

int i,j;
i ¼ 1;
while(i <¼ 3) {

j ¼ 1;
while(j <¼ 2) {

System.out.println("i ¼ " + i + " j ¼ " + j);
j ¼ j + 1;

}
i ¼ i + 1;

}
System.out.println("End of Program");

First, notice that the loop control variable for the outer loop is the variable

i and the loop control variable for the inner loop is the variable j. Although
it is okay to reuse the same variable when the loops are not nested, if the same

variable is used in a nested loop, it might cause what is known as an infinite

loop as discussed in the next section. Given the above code segment, how

many times will the inner println output its message? The answer is six

times. If the outer loop iterates 3 times and the inner loop iterates 2 times,

then one can multiply the number of times each loop iterates to get the

answer, where 3 times 2 is 6. The output of the above code segment can be

seen below:

i ¼ 1 j ¼ 1
i ¼ 1 j ¼ 2
i ¼ 2 j ¼ 1
i ¼ 2 j ¼ 2
i ¼ 3 j ¼ 1
i ¼ 3 j ¼ 2
End of Program

Note that the variable j counts to 2 and then starts over again when the value of

i changes. It is often said in a description of this behavior that the value of the

inner loop control variable varies more rapidly than the outer loop control variable

which varies more slowly. Looking at another segment, how many times would

the message generated by the inner println be output in the following

example?

int n,count;
System.out.print("Enter a value for n: ");
n ¼ scanner.nextInt();
count ¼ 0;
for(int i¼1; i<¼n; i++)

for(int j¼1; j<¼n; j++)
System.out.println("count ¼ " + count++);

System.out.println("End of Program");

128 4 Iteration Structures

Although one might answer that it depends on the value in n, one can still

give answer in terms of n. Given the previous example where the number of

times the body of the loop was executed was equal to the number of times

iterated by the outer loop times the inner loop, the same principle applies here.

The outer loop is n and the inner loop is n, so n times n equals n2. As a

particular example, if the value of n was 6, then the body of the inner loop would
execute 36 times.

First, note that the variables i and j are declared in the for statements. Second,

notice that there are no compound statements in either for loop in the above code

segment. The reason is that the inner for loop has just one statement in the body of

its loop and the inner for loop is just one statement in the body of the outer for
loop so braces are unnecessary. Lastly, note the use of count++ which increments

the value of count after it has been output.

At present, the need for nested loops is not as great, but later in Chap. 7 nested

loops will be important when data needs to be sorted, for example, in ascending

order. Nested loops will also be important when dealing with what are known as

two-dimensional arrays.

4.6 Potential Problems

There are a number of problems that can occur with loops, some of which have

already been alluded to earlier in this chapter. For example, if the relation in the test

section of a loop is incorrect, the loop might iterate more or less times than was

originally intended. The best way to check for this is try going through the code

segment using a small enough number so that it is easy to walk through the segment

but a big enough number so that any pattern in the code can be observed. A good

number to test with is the number 3 as has been used frequently in this chapter.

Just as it is important to check that the final number is correct, it is also important

to ensure that the initial value is correct. For example, switching from the number 1
to the number 0 as the initial value usually requires a change in the relation in the

test as discussed in Sect. 4.2.

Other considerations are to be sure that the loop control variable is initialized in

the first place. If one forgets to initialize it, then the value in the loop control

variable would be indeterminate and the loop would iterate an unknown number of

times. Probably a more serious problem is when one forgets to include a change in

the body of a loop. Even though the loop control variable has been initialized

properly and tested correctly, if there is no change in the loop, one has what is called

an infinite loop, meaning the loop never stops. This can make it seem that the

computer is “locked up” and not responding, or the program might ask for input or

messages are output without stopping.

4.6 Potential Problems 129

http://dx.doi.org/10.1007/978-1-4471-6317-6_7

Other concerns happen when incrementing the loop control variable by a value

other than 1, such as counting by 2 and testing for only a particular value instead of

a range of values as in the following code segment:

i ¼ 0;
while(i !¼ 3) {

// body of loop
i ¼ i + 2;

}
System.out.println("End of Program");

Notice that the value of i starts with the number 0, then is incremented to 2, and
then 4, so the value in i is never equal to the number 3. Although it is okay to

increment by values other than 1, it is important that the comparison is in a range of

numbers such as <¼3 and that the loop iterates the expected number of times.

One might have noticed that the loop control variables used have always been

integers. A variable of type char can also be used as will be shown in the next

section. Although real numbers can be used, sometimes the computer cannot

represent real numbers accurately. For example, the number 0.1 cannot be

represented exactly on a computer, because it is a repeating fraction in the binary

number system (base 2) and is less than 0.1. If one wrote a program such as the

following and added the value of 0.1, ten times, the result would not be equal

to 1.0:

double i;
i ¼ 0.0;
while(i < 1.0) {

// body of loop
i ¼ i + 0.1;

}
System.out.println("End of Program");

Instead of looping ten times as might be expected, the above program actually

iterates eleven times. Again, real numbers can be used, but it is generally not good

practice.

As said previously, when writing loops, or any code for that matter, it is

important to check programs carefully with smaller data sets and to also test the

program thoroughly with actual data on the computer to help avoid the possibility

of logic errors.

4.7 Complete Programs: Implementing Iteration Structures

As in Chap. 3, the first example does not use objects and the second example

includes objects.

130 4 Iteration Structures

http://dx.doi.org/10.1007/978-1-4471-6317-6_3

4.7.1 Simple Program

Using iteration structures and selection structures, one can write programs that are

more complex and robust. Suppose that a program needs to be developed to find an

average and the highest test scores in a course. This program will:

• Allow a user to enter student exam scores assuming a score is an integer value

between 0 and 100

• Compute the average and find the highest score

• Display the average and the highest score

Since there will be more than one score that needs to be processed, instead of

storing each score in different variables, a loop will be used to input them. What

kind of loop should be used? Because most likely every class has a different number

of students, the number of iterations will not be known in advance. The program

could ask the user to enter the number of students before the loop and use a while
loop or a for loop. On the other hand, since the range of scores is given, a sentinel

value can be easily identified in order to use a sentinel loop. It is not a good idea to

use a do-while loop, because there may be no scores to be processed. Using a

sentinel of �1, a pretest indefinite sentinel controlled loop structure will be used

here. When no score is entered, there is no reason to compute an average, find the

highest score, or display them. Therefore, in that case the message, "No scores
were entered." will be output. Finding the average of numbers using a loop

was discussed in Sect. 4.2, but what about finding the highest score? Since all of the

scores are not saved, the highest value cannot be determined after the loop is

terminated by looking at all the data at once. Then, how can the highest score be

found as the scores are input? The answer is to keep the highest score among the

scores entered so far. Assuming all the variables are declared appropriately, the

following code finds the highest value entered:

// priming read
System.out.print("Enter a score or -1 to stop: ");
score ¼ scanner.nextInt();
highestScore ¼ score;
// loop to enter scores
while(score !¼ -1) {

if(highestScore < score)
highestScore ¼ score;

System.out.print("Enter a score or -1 to stop: ");
score ¼ scanner.nextInt();

}

Notice that the first score input is used to initialize the variable

highestScore which keeps the highest value up to that point. If the first

score is not �1, then in the loop the score is checked against the highest score. At
this point, only one test score has been entered; therefore, the values of score
and highestScore are the same, meaning the condition of the if statement is

4.7 Complete Programs: Implementing Iteration Structures 131

false. If the second value entered is not equal to �1, the body of the loop will

be executed again. The second input is compared with the value of

highestScore, which has the first value input at this point. If the condition

is false, it means the first value input is greater than the second. If the condition

is true, it means the most recent value input is greater than the highest one

so far, so highestScore needs to be updated. This process is repeated

until the user enters a sentinel value of �1. At the end, the value of

highestScore is the largest value of all the scores input. The complete

program is shown below:

132 4 Iteration Structures

First, notice the prompt and input prior to the loop which is the priming read. It

is necessary to determine whether to enter the loop or not by checking the first

input value against the sentinel. The prompt and input in the loop determine if the

loop should continue to iterate. As was discussed in Sect. 4.6, it is important to

make sure that the loop will eventually terminate to avoid an infinite loop. In this

program a sentinel value of �1 will stop the loop. If there are no scores and the

user enters�1 at the very beginning, the program will not execute the body of the

loop in the else section of the if-then-else, thus ensuring that division by 0 will not

occur for the calculation of the average. With the input value of �1 the output is

as follows:

Enter a score or -1 to stop: -1
No scores were entered.

With values other than �1, the variable count is incremented by 1 inside the

loop body to keep track of the number of scores and is used to find the average.

Notice that sum, which has the total of all the scores, is declared as type double.
Although score is of type int, by declaring sum as type double, the result of
the calculation sum/count to find the average will be of type double since it is a

double divided by an int. An example of the output with three scores is shown

below:

Enter a score or -1 to stop: 88
Enter a score or -1 to stop: 97
Enter a score or -1 to stop: 65
Enter a score or -1 to stop: -1

Average score is 83.33.
The high score is 97.

4.7.2 Program with Objects

Next consider an example that involves objects. An object that keeps a distribution

of scores for a particular exam is useful to figure out how many students made a

grade of A, B, C, D, or F. The Grades class defines data members, a constructor,

and three methods, enterGrade, getNumStudents, and getPercent. The
definition of the Grades class is shown below and the actual implementation of

the three methods is discussed shortly:

4.7 Complete Programs: Implementing Iteration Structures 133

Since the cutoff for the grade of A is 90, scores between 90 and 100 will receive a

grade of A. Scores between 80 and 89 will result in a grade of B because the cutoff for

the grade of B is 80, and so on. If the score is outside the range of 0–100, it is simply

ignored in the enterGrademethod. For example, what happens if the score is 95?

Since it is a valid input inside the range of 0–100, the count is incremented by 1 to

keep track of the number of scores entered. Then, it will increment the counter for the

A group by 1. The enterGrade method shown in Fig. 4.5 is used to distribute the

scores entered by the instructor into the correct grade group.

The getNumStudents method in Fig. 4.6 returns the number of scores

assigned to a particular grade and is implemented using a switch statement. It

takes a grade (A, B, etc.) in a variable of type char as a parameter and returns a

value of type int.
The getPercentmethod in Fig. 4.7 finds the percentage of scores assigned to

a designated grade level and is also implemented using a switch statement. It

takes a char value and returns a value of type double. Notice that the value

100.0 of type double is multiplied by the number of scores for the particular grade

which is a value of type int, to make the result of type double. The result is

divided by a value of type int stored in count, which results in the percentage of

134 4 Iteration Structures

type double. If an invalid character is passed as a parameter, the value of �1,
which represents an invalid value, is returned.

Like the previous Scores program, the client program using a Grades object

outputs the message "No scores were entered.", if there were no scores as

shown below:

Enter a score or -1 to stop: -1
No scores were entered.

Fig. 4.5 Implementation of

enterGrade method

Fig. 4.6 Implementation of

getNumStudents method

4.7 Complete Programs: Implementing Iteration Structures 135

An example of the output with eight scores is shown below:

The client program will create an object of the Grade class named class1 and

each score is processed as it is entered. The exam scores are input using a while
loop since the number of scores is indefinite. The result is output using a for loop

Fig. 4.7 Implementation of

getPercent method

136 4 Iteration Structures

because the number of lines is known. The table displays the distribution and

percent for each grade. The complete client program is shown below:

The first line of the table contains column titles that are printed prior to the for
loop. The second through fifth lines output the grade, distribution, and percent for

grades for A, B, C, and D using a for loop. Notice that the char variable’ letter
is used as a loop control variable in the for loop. It is initialized to 'A' at the
beginning of the for loop, and when it is incremented by one, the value of letter

4.7 Complete Programs: Implementing Iteration Structures 137

is updated to the next character in alphabetical order such as A to B, and B to

C. Because there is a gap between D and F, the information for the grade of F needs to

be printed outside the for loop at the end. Control characters, c, d, and f, are used in
the control string of the first printf statement to output the variables of type char,
int, and double, respectively, in order to format the table as described in Chap. 1.

4.8 Summary

• The while loop and the do-while loop are known as indefinite iteration loop

structures.

• The for loop is known as a definite or fixed iteration loop structure.

• The do-while loop is a posttest loop structure and can iterate one to many times.

• The while loop and the for loop are pretest loops which can iterate zero to

many times.

• The do-while loop must always use a compound statement in the body of the

loop whether there are one or many statements.

• The body of the for and while loops only need to use a compound statement

when there is more than one statement in the body of the loop. If there is only one

statement, the compound statement is unnecessary.

• When nesting loops, be sure to use a different loop control variable for each loop.

4.9 Exercises (Items Marked with an * Have
Solutions in Appendix E)

1. Identify the syntax errors in the following code segment:

int sum, i;
sum ¼ 0;
i ¼ 0;
while(i >¼ 0); {

sum ¼ sum + i;
i ¼ i + 2;

}

*2. Identify the syntax errors in the following code segment:

int product;
product ¼ 1;
for(i¼1, i <¼ n, i++)

product ¼ product * i;

138 4 Iteration Structures

http://dx.doi.org/10.1007/978-1-4471-6317-6_1
http://dx.doi.org/10.1007/978-1-4471-6317-6_BM1

*3. Determine the output from the following code segment:

4. Determine the output from the following code segment:

5. Determine the output from the following code segment:

*6. Determine the output from the following code segment:

int i, j;
for(i¼1; i<¼5; i++) {

for(j¼1; j<¼5-i; j++)
System.out.print(" ");

for(j¼1; j<¼2*i; j++)
System.out.print("*");

System.out.println();
}

4.9 Exercises (Items Marked with an * Have Solutions in Appendix E) 139

7. Rewrite the following for loop as a

A. While loop

*B. do-while loop

int total, count;
total ¼ 0;
for(count ¼ 1; count <¼ 40; count+¼3) {

total +¼ count;
}

8. Assuming n is input, rewrite the following while loop as a(n)

*A. for loop

B. if statement and a do-while loop

int total, count, n;
total ¼ 0;
count ¼ 0;
n ¼ 5;
while(count < n) {

total +¼ count;
count++;

}

9. A store is having a sale and items are either 30, 50, or 70 % off. Assuming all

the items priced between $5.00 and $50.00 are on sale, output the following

table using nested loops. Using correct formatting, make sure that the output is

exactly as shown below:

Original Price 30% off 50% off 70% off

$ 5.00 $ 3.50 $ 2.50 $ 1.50

$10.00 $ 7.00 $ 5.00 $ 3.00

$15.00 $10.50 $ 7.50 $ 4.50

$20.00 $14.00 $10.00 $ 6.00

$25.00 $17.50 $12.50 $ 7.50

$30.00 $21.00 $15.00 $ 9.00

$35.00 $24.50 $17.50 $10.50

$40.00 $28.00 $20.00 $12.00

$45.00 $31.50 $22.50 $13.50

$50.00 $35.00 $25.00 $15.00

10. Repeat Exercise 15 in Chap. 3 to allow the user to enter temperatures for any

number of cities using the best iteration structure.

140 4 Iteration Structures

http://dx.doi.org/10.1007/978-1-4471-6317-6_3

11. The Fibonacci sequence is the series of numbers which can be found by adding

up the two numbers before it as shown below:

0, 1, 2, 3, 5, 8, 13, 21, 34, . . .

Write a complete program to compute the Fibonacci number for an integer.

12. Given two numbers, the largest divisor among all the integers that divide the

two numbers is known as the greatest common divisor. For example, the

positive divisors of 36 are 1, 2, 3, 4, 6, 9, 12, 18, and 36, and the positive

divisors of 8 are 1, 2, 4, and 8. Thus, the common divisors of 36 and 8 are 1, 2,

and 4. It follows that the greatest common divisor of 36 and 8 is 4. Write a

complete program to compute the greatest common divisor of two integers.

4.9 Exercises (Items Marked with an * Have Solutions in Appendix E) 141

Objects: Revisited 5

Having learned in the previous two chapters about selection and iteration structures,

both of which allow for more complex programs, it is time to return to the topic of

objects that was introduced in Chap. 2. Objects allow programs to be created in a

more modular way that makes complex programs easier to understand. In this

chapter, topics such as passing objects to and from a method, constructor and

method overloading, class data members and methods, and the use of the reserved

word this will be discussed. At first, this chapter will use only simple objects to

illustrate these concepts so that the details can more readily be understood and then

more complex examples will be included in the complete program at the end of the

chapter.

5.1 Sending an Object to a Method

So far all that has been discussed is how primitive data types can be sent to a

method. However, data is often more complex than just a simple data type, so it

would be helpful to have a way to send not just an item or two but rather an entire

object to a method. For example, consider a method to determine the length of a line

segment. It would need to be sent the two endpoints of the line, each consisting of

x and y coordinates, which would require four arguments to be sent to the method.

Since each point has two coordinates, this would lend itself to the creation of a

simple class. Although in Java there is a Point class in the java.awt package, a

point is a simple enough concept to help explain the sending of an object to a

method that this text will define its own class for a point. Whereas the Java class

Point uses integers, the class defined here will use double precision numbers

and will be called PointD. Consider the preliminary definition of the class in

Fig. 5.1.

J.T. Streib and T. Soma, Guide to Java: A Concise Introduction to Programming,
Undergraduate Topics in Computer Science, DOI 10.1007/978-1-4471-6317-6_5,
© Springer-Verlag London 2014

143

http://dx.doi.org/10.1007/978-1-4471-6317-6_2

The PointD class definition is fairly simple with the usual get and set methods.

However, what will make it more interesting is the introduction of a method which

allows an invocation to send an object of type PointD. For this example, assume

the existence of a method called distance which will calculate the distance

between two points. Since the method will be defined within the PointD class, it

can be invoked by an object of type PointD and also use an argument of type

PointD. Assuming the existence of two points p1 and p2 of type PointD, the
method could be invoked as dist¼p1.distance(p2);. What would such a

method look like? Recall from algebra that the distance formula is

dist ¼
ffi
x1 � x2ð Þ2 þ y1 � y2ð Þ2

q

Then the code for the method could be as follows:

public double distance(PointD p) {
double dist;
dist ¼ Math.sqrt(Math.pow(x-p.getX(),2)

+ Math.pow(y-p.getY(),2));
return dist;

}

First, notice that the method returns a value of type double. Second, note that
the parameter is not of type double but rather of type PointD. Lastly, although
the local variable dist is not required to be declared as local, it makes the

subsequent contour diagram easier to follow when illustrating how objects are

passed. Using all the information above and combined into a complete program,

it could appear as shown below:

Fig. 5.1 Preliminary

definition of PointD class

144 5 Objects: Revisited

Utilizing contour diagrams, the passing of objects can easily be illustrated. Note

that some steps will be skipped since many of them were discussed thoroughly in

Chap. 2. The state of execution prior to Line 11 in the main program would be as

shown in Fig. 5.2.

Since the method distance is invoked from p1, the contour for the method

appears in the contour referenced by p1 as shown in Fig. 5.3, indicating the state of

execution just prior to Line 40 in the distance method.

In addition to the local variable dist, the method also contains a memory

location for the parameter p. Note that when passing an object to a method via a

parameter, the parameter does not contain the entire object. Rather, since the

argument p2 has a reference to an object, the parameter p contains a copy of the

5.1 Sending an Object to a Method 145

http://dx.doi.org/10.1007/978-1-4471-6317-6_2

reference to that same object. Although a straight arrow could have been drawn

directly to the object, it would have covered up some of the information within the

contour, so in this example, it is drawn around the contour diagram for the sake of

neatness. However, in the future the arrows may be drawn over parts of contours in

order to save space. Note that both the argument p2 and the parameter p are

pointing to the same contour. When the calculation for the dist is performed,

the references to x and y are to the ones globally accessible within the object

pointed to by p1, whereas the getX and getY methods access the variables in the

object referenced by p.

5.2 Returning an Object from a Method

If an object can be passed to a method, can an object be returned from a method?

The answer is yes, as will be demonstrated in the example that follows. Whereas the

previous example returned the dist of type double, this example will determine

the midpoint of a line. The equations to determine the midpoint are as follows:

main

dist ---

p1

double

PointD

PointD

double 4.0

x double 8.0

PointD

p2 PointD

x

y

y

double

double

4.0

7.0

Fig. 5.2 State of execution prior to Line 11

main

dist ---

p1

double

PointD

PointD

double 4.0

x double 8.0

PointD

p2 PointD

x

y

y

double

double

4.0

7.0

dist

p PointD

5.0double

distance

Fig. 5.3 State of execution prior to Line 40

146 5 Objects: Revisited

midx ¼ x1 þ x2
2

midy ¼ y1 þ y2
2

Since the midpoint consists of x and y coordinates, this lends itself to the creation
of a method to return an object of type PointD. The method midPoint below

implements the equations above:

public PointD midPoint(PointD p) {
PointD mid;
mid ¼ new PointD();
mid.setX((x+p.getX()) / 2);
mid.setY((y+p.getY()) / 2);
return mid;

}

Notice that in addition to the parameter, the return type is also of type PointD.
The method also creates an instance of type PointD and assigns the reference to

the variable mid which is also declared of type PointD. The method then

calculates the midpoint and sets the x and y coordinates in mid prior to the return

of the object to the invoking program.

This method can be added to class PointD, and in Fig. 5.4, it replaces the

previous method distance in order to save space.

Prior to the execution of Line 11, the contour diagram would look similar to

Fig. 5.2 in the previous example, except the variable dist of type double would

be replaced with the variable middle of type PointD. After invoking the

midPoint method, the contour diagrams would appear similar to the ones

shown in Fig. 5.3 in the previous section, except that in addition to the variable

middle appearing in the main program, the distance contour would be

replaced with the midPoint contour and the variable dist in the contour

would be replaced with the variable mid of type PointD which would be

indeterminate. However, once the body of the method midPoint is executed,

that is when the significant differences can be seen when a new object is created in

Line 39. Figure 5.5 illustrates this by showing the state of execution prior to the

return statement in Line 42.

Notice that in addition to the contour referenced by the parameter p, there is

another contour referenced by the local variable mid that contains the coordinates of

the midpoint. As with the passing of a reference to an object via a parameter, the

entire contour will not be returned to the main program, but rather only the reference

to the contour will be returned as illustrated in Fig. 5.6 which shows the state of

execution prior to Line 12.

Notice that the contour for the method midPoint no longer exists after

returning to the main program. However, the value in mid was returned back to

the invoking statement on Line 11 and assigned to the variable middle, which
now contains the reference to the object containing the midpoint values. When the

output statements refer to the getX and getY methods of the appropriate objects,

the correct values will be output.

5.2 Returning an Object from a Method 147

5.3 Overloaded Constructors and Methods

The constructor in the previous example initializes the variables x and y to 0.0 as

a default value. In addition, a constructor could have been created to initialize the

instance variables to the values wanted by a programmer as shown in the following:

Fig. 5.4 Complete program returning an object from a method

148 5 Objects: Revisited

public PointD(double xp, double yp) {
x ¼ xp;
y ¼ yp;

}

A programmer could then initialize x and y via the constructor when the object

was created as shown below:

p1 ¼ new PointD(4.0,4.0);

The advantage of this method is that a programmer does not need to invoke the

setX and setY methods to initialize the variables in the object. Does this mean

that the set methods could be deleted from the class definitions? If the values in the

variables did not need to change, then yes the set methods could be deleted.

However, what if after initializing the variables, their values needed to be changed

main

middle ---

p1

PointD

PointD

PointD

double 4.0

x

PointD

p2 PointD

x

y

y

double

double

4.0

7.0

mid

p PointD

PointD

midPoint

6.0doublex

double

y

8.0

double 5.5

PointD

Fig. 5.5 Contour just prior to the execution of the return statement in Line 42

main PointD

double 4.0

x

PointD

middle

p1

PointD

PointD

p2 PointD

x

y

y

double

double

4.0

7.0

6.0doublex

double y8.0 double 5.5

PointD

Fig. 5.6 Contour after returning to the main program prior to Line 12

5.3 Overloaded Constructors and Methods 149

later in the program? Then of course the set methods would need to be retained in

the class definition.

Given the previous constructor and the new constructor above, which of the two

is better and which one should be included in the class definition? The answer

depends on what needs to be done. For example, if the values are going to be

changed often, then the first constructor and the set methods are the best choice, but

if the values are going to be set just once, then the second constructor is probably

the better choice.

However, when the class is written, it might not be known which type of

constructor would be the best one to include. Wouldn’t it be nice to include both

constructors and allow the programmer a choice? But further, could this cause a

syntax error by having two constructors with the same name? The answer to the first

question is yes and the answer to the second question is no. The reason why this

would not cause an error is because even though the name of the constructor is the

same, the number of parameters is different because the first constructor does not

have any parameters and the second one has two parameters. This is known as

overloading. In other words, even though constructors have the same name, they

can differ by the number of parameters, the types of the parameters, or the order of

the different types of parameters. When used carefully, overloading can be a very

useful technique.

Using the knowledge gained from Sect. 5.1, it is also possible to pass an object to

a constructor. For example, if an object was already created and a copy of that

object was needed, then that object could be passed via a parameter to another

constructor to create the copy. Such a constructor would look as shown below:

public PointD(PointD p) {
x ¼ p.getX();
y ¼ p.getY();

}

Notice that instead of two parameters of type double, there is now only one

parameter of type PointD. In the body of the constructor, the coordinates are

retrieved from the object sent using the getX and getY methods and placed into

the x and y variables of the current object. The result is that if one wanted to create

two objects with the same set of coordinates, instead of writing the following code:

p1 ¼ new PointD(1.0,1.0);
p2 ¼ new PointD(1.0,1.0);

one would merely need to write the following:

p1 ¼ new PointD(1.0,1.0);
p2 ¼ new PointD(p1);

Given the two new constructors, the original PointD class could be rewritten as

follows:

150 5 Objects: Revisited

Using this new class, a programmer could create three different instances of the

PointD class as follows:

PointD p1, p2, p3;
p1 ¼ new PointD();
p2 ¼ new PointD(1.0,1.0);
p3 ¼ new PointD(p2);

Notice that the objects are being created using three different constructors. The

only difference is the number of arguments. Further, since the first constructor

ensures that coordinates referenced by p1 will be initialized to 0.0, the second

constructor initializes the variables referenced by p2 via the arguments, and the

third constructor makes a copy of the previous object which will be referenced by

p3, the set methods do not need to be called. However, if the values in the points

need to be changed later, the set methods are still there if necessary.

If a constructor is not included in a class by the programmer, the system will

generate a default constructor. Should the programmer include a constructor

without any parameters, then this constructor overrides the default constructor

generated by the system. Although a bit confusing, this constructor provided by

the programmer is also sometimes called a default constructor since it overrides the

system default constructor. However, if one writes the two new constructors above,

5.3 Overloaded Constructors and Methods 151

and a default constructor is not included by the programmer, then the system will

not generate a default constructor. In such a case, were one to code a p1¼new
PointD(); statement, a syntax error would occur. The result is if one wants to

override the system default constructor, it is a good idea to override it with a

programmer-defined default constructor to avoid a possible syntax error. Even if

overloading is not being used in the class, it is generally best for a programmer to

include a default constructor and not rely on the system default constructor.

Just as constructors can be overloaded, so can methods. As with constructors, the

name of the method can be the same, but the number of parameters, the types of the

parameters, or the order of the different types of parameters must be different. For

example, take the distancemethod from Sect. 5.1 which requires one parameter

as shown again below:

public double distance(PointD p) {
double dist;
dist¼Math.sqrt(Math.pow(x-p.getX(),2)

+ Math.pow(y-p.getY(),2));
return dist;

}

What if another method was needed to determine the distance of a point from the

origin? Certainly one could invoke the method above by having one of the two

points as the origin using the new constructors introduced in this section as follows:

PointD p1, p2;
p1¼new PointD();
p2¼new PointD(3.0,4.0);
dist ¼ p2.distance(p1);

In this example, the default constructor initializes the coordinates of p1 to 0.0,
and the second constructor initializes the coordinates of p2 to 3.0 and 4.0. But
the assumption could be that the distance will be calculated from the origin, and it

would be convenient not to need it as a parameter in the distance method. Such a

method would look as follows:

public double distance() {
double dist;
dist¼Math.sqrt(Math.pow(x,2)+ Math.pow(y,2));
return dist;

}

Instead of invoking the previous method with the dist ¼ p2.distance
(p1); statement, it could be invoked using the new method as follows:

dist ¼ p2.distance();

Again, the name of the method is the same, but the number of parameters is

different. As mentioned earlier, it is also possible to have the same number of

152 5 Objects: Revisited

parameters but different types of parameters or a different order of the different

types of the parameters.

For example, assume a method of the Student class was to be sent two

parameters: one for the number of credit hours and another to indicate whether

the student has graduated. In the main program below, notice that in one case, an

integer is in the first argument position and in the second case a Boolean value is the

first argument position. Would this cause a problem?

If there were only one method named setInformation, the answer would be
yes. However, notice the setInformation method is overloaded. The

parameters are reversed in the second method so that the order of the arguments

in the calling program does not matter. Thus, if a programmer accidently puts the

arguments in the wrong order, there is no error. As stated previously, overloading

can sometimes be helpful if used carefully and not excessively.

5.4 Use of the Reserved Word this

In looking at portion of the original PointD class from Fig. 5.1 shown below, the

parameter names in the constructor and in the two set methods are listed as

xp and yp.

5.4 Use of the Reserved Word this 153

class PointD {
private double x, y;
public PointD(double xp, double yp) {

x ¼ xp;
y ¼ yp;

}
public void setX(double xp) {

x ¼ xp;
}
public void setY(double yp) {

y ¼ yp;
}

}

What would happen if the names of the variables xp and yp were changed to

x and y, respectively? What would x and y refer to, the data members or the

parameters?

/** Caution: Incorrectly Implemented code **/
class PointD {

private double x, y;
public PointD(double x, double y) {

x ¼ x;
y ¼ y;

}
public void setX(double x) {

x ¼ x;
}
public void setY(double y) {

y ¼ y;
}

}

The answer to the second question is that the parameters and local variables

declared in a method take precedence over any globally declared variables in the

object. The answer to the first question is that the contents of the parameters x and y
would merely be assigned back into the memory locations associated with the

parameter. The result is that the private data members would not contain the new

values sent from the invoking program, and this is probably not what was intended.

Is it possible to use the same variable names for both the parameters and the

instance data members? The answer is yes. In any particular instance, the reserved

word this can be used to refer to the instance. Java uses this as a self-

referencing pointer to refer to the current object. Using the reserved word this,
the previous class can be rewritten as shown below:

class PointD {
private double x, y;
public PointD(double x, double y) {

154 5 Objects: Revisited

this.x ¼ x;
this.y ¼ y;

}
public void setX(double x) {

this.x ¼ x;
}
public void setY(double y) {

this.y ¼ y;
}

}

So, for example, consider the shortened skeleton of the program presented at the

beginning of this chapter that uses only the setX and getXmethods shown below:

In the setX method, x refers to the parameter, and the value in x is assigned to

this.x which is the data member x in the object. In a sense, this is a pointer to

the current object as illustrated in the contour in Fig. 5.7 showing the state of

execution just prior to Line 17.

Notice the arrow pointing back to the object PointD. It illustrates the word

this and shows how the data member x is referenced. Although the example in

Fig. 5.7 includes the cell for this and a self-referencing arrow, it tends to clutter

up the contour diagrams, so in general it will not be included because its existence is

understood. Notice that the constructor and the getX do not use the reserved word

this on Lines 12, 13, and 19. In this case the word this is not necessary.

Although one could still include the word this, it can be distracting to use it

when it is not needed. As a result, this text will not use the word this unless it is

necessary.

5.4 Use of the Reserved Word this 155

The reserved word this can also be used in situations beyond just referring to

variables. It can refer to constructors and methods as well. For example, consider

the three constructors presented in the previous section and relisted below using the

reserved word this in the second constructor:

In one sense, the first constructor is just a special case of the second constructor,

so it could be defined in terms of the second constructor. In other words, it could

invoke the second constructor with the values 0.0 for the x and y coordinates. But

how could it invoke the second constructor? Again, since it is the current object that

needs to be referenced, the reserved word this could be used as shown below:

public PointD() {
this(0.0,0.0);

}

Even the third constructor could be written to invoke the second constructor as:

public PointD(PointD p) {
this(p.getX(),p.getY());

}

main

p1 PointD

PointD

double 4.0

setX

x

y double 0.0

this

x

pointD

double 4.0

Fig. 5.7 State of execution prior to Line 17

156 5 Objects: Revisited

Since an object of type PointD is being passed to the constructor, the methods

getX and getY can be invoked to retrieve the values in x and y, which in turn can
be sent as arguments to the second constructor. In order to invoke the second

constructor, it is referred to using this.
The advantage of the above technique is that if later a change needs to be made

to the constructors, it might not need to be made to all three constructors, but

possibly only one of them. This reduces the possibility of introducing unintended

errors into the program, and the result of the modifications introduced in this section

can be seen below:

As with variables and constructors, it is possible to use the word this when

referring to methods in the same object. For example, suppose that a method needed

to access another method such as the previous distance method within the same

class. It could be invoked as this.distance(), but although the method can

be invoked using the reserved word this, there is no need to do so. As a result, the
use of the word this prior to the invoking of a method should be avoided.

5.5 Class Constants, Variables, and Methods

This section will discuss how constants, variables, and methods can be declared not

only within a method and in each instance of a class but also how they can be

declared in the class itself. First, it looks at constants, then variables, and lastly

methods.

5.5.1 Local, Instance, and Class Constants

If a constant needs to be used only within a single method, then it can be declared

within that method. However, if several methods in the same class use the same

constant, it could be declared within each method but that will take up more

memory. If that constant needs to be changed, then it will need to be changed in

5.5 Class Constants, Variables, and Methods 157

more than one location. Although there already exists the Math.PI constant

discussed in Sect. 1.7, consider for example, the following program which includes

the user-defined constant PI:

In addition to the existence of the local variables c and a to help with under-

standing the contour diagrams, notice that both methods have their own locally

declared constant PI at Lines 24 and 30. When each method is executed, its own

copy of the constant is allocated. The contour diagram in Fig. 5.8 illustrates that

each method has its own copy and shows the state of execution prior to Line 33.

Even though one contour is deallocated (indicated by the shaded contour) before

the next one is invoked, it still had to allocate the constant. While this is only a

minor problem now, any local constants can take up much more space in a recursive

algorithm as will be discussed in Chap. 8. Since there is a potential for wasted

memory, it would be better if the constant were not associated with each method,

158 5 Objects: Revisited

http://dx.doi.org/10.1007/978-1-4471-6317-6_1
http://dx.doi.org/10.1007/978-1-4471-6317-6_8

but rather with the object as illustrated in the following section showing the

Circle class:

Only the class is shown here because the main program has not changed. Again,

the local variables in the method remain to help with the contour diagrams, but

notice that the declaration of the constant is no longer within each method, but

rather in the class at Line 16. An immediate obvious advantage is that should the

constant need to change, it needs only to be changed in one location. The contour

diagram representing the state of execution prior to Line 32 is shown in Fig. 5.9.

Note that the constant PI no longer appears in each of the methods, but rather is

located in an instance of the Circle class. The advantage to declaring the constant

in the class as opposed to each individual method is that the constant only needs to

be allocated once.

main

radius 3.0

c

double

Circle

Circle

double 3.0r

circumference

area

PI

c

double 3.14

double

doublePI

a

3.14

18.84

28.26

double

Fig. 5.8 State of execution prior to Line 33

5.5 Class Constants, Variables, and Methods 159

However, what if more than one object was declared? Then there would be one

constant allocated within each of the objects. Consider the following modification

to the main program that declares and allocates two objects:

double radius1, radius2; // Line 3
Circle c1,c2; // Line 4
c1 ¼ new Circle(); // Line 5
c2 ¼ new Circle(); // Line 6
radius1 ¼ 3.0; // Line 7
radius2 ¼ 4.0 // Line 8
c1.setRadius(radius1); // Line 9
c2.setRadius(radius2); // Line 10

Using the same Circle class as before, without invoking any of the methods

except for the constructor, note the state of execution just prior to Line 9 in the main

program in Fig. 5.10. Notice that the constant PI appears in both instances of the

Circle class. Just like with the methods when the constant was moved from the

individual methods, wouldn’t it be nice if the constant could be moved so that it

main

radius 3.0

c

double

Circle

Circle

double 3.0r

circumference

area

c

double

doublea

18.84

28.26

double

PI 3.14

Fig. 5.9 State of execution prior to Line 32

main

radius1 3.0

c1

double

double

Circle

double 0.0r

doublePI 3.14

c2

radius2

Circle

4.0

Circle

r

PI

double

double

0.0

3.14

Circle

Fig. 5.10 State of execution prior to Line 9

160 5 Objects: Revisited

would be accessible by both objects? This can be accomplished by using what is

known as a class constant. Showing the new complete program below, a class

constant is created by using the reserved word static as shown in Line

24 below:

Executing the first few lines of the program as done previously, the contour

diagram in Fig. 5.11 shows the state of execution just prior to Line 9. Notice that

each of the instances does not have a local constant PI. As mentioned previously in

Sect. 2.7, just as the main program has a contour around it, as shown in Fig. 5.11, so

does the class Circle. Using the word static creates the class constant PI that

does not get allocated each time a new instance of the class Circle is created.

When there is a reference to the constant PI, it is not found in the instance, but

5.5 Class Constants, Variables, and Methods 161

http://dx.doi.org/10.1007/978-1-4471-6317-6_2

rather in the class. As can be seen, this saves memory, especially when many

objects are created.

In contour diagrams, how can one distinguish the contour for the class itself from the

contours associated with the instances of the class? One way is to note that variables of

typeCircle point to the instances of theCircle class.However, anotherway to help

the reader is to allow the contour associated with the class itself to have the name of the

class (in this case Circle) and then use a superscript for each instance of the class to
indicate the order in which the objects were created as shown in Fig. 5.11. When

necessary to help make this distinction clear, this text will use superscripts.

Just as this text has previously not drawn the contour around the main program in

the interest of saving space, it would also help to save space to not draw the contour

around all the instances of each object. As can be seen in Fig. 5.11, it could get rather

cumbersome to draw such large contours. However, on occasion it is still helpful to

draw a contour to represent the class, so instead of drawing it around all the instances,

it is sometimes convenient to draw it separately, with the understanding that all the

instances are within that contour. This second alternative is shown in Fig. 5.12.

Figure 5.11 is the ideal drawing and it will be used as necessary. However, generally

and if needed, the contour for the class using a class constant will be drawn as shown

in Fig. 5.12, with the understanding that all instances will be within that contour.

5.5.2 Local, Instance, and Class Variables

Local and instance variables are similar to local and instance constants. In fact, the

variables c and a representing the circumference and area in the previous section

are local variables in the methods, and the variable r representing the radius in a

Circle object is an instance variable. In trying to decide where a variable needs to

be declared, it helps to ask which methods need access to the variable. For example,

the variables c and a were used only by the circumference and area
methods, so it made sense to declare them there. However, the variable r is used

main

radius1 3.0

c1

double

double

Circle

double 0.0r

doublePI 3.14

c2

radius2

Circle

4.0

Circle

r double 0.0

Circle1

Circle2

Example

Fig. 5.11 State of execution prior to Line 9

162 5 Objects: Revisited

by both methods; hence, it makes sense to declare it once within the object instead

of in both methods.

Although using the two local variables wasted a little memory, it made under-

standing the contours easier, and in this case it is not much of a problem. In fact,

these variables are not even needed, because the expression to calculate each value

could have been included in the return statement, as shown below:

public double circumference () {
return 2 * PI * r;

}
public double area() {

return PI * r * r;
}

It is sometimes helpful to write the initial version of the code using extra memory

to help understand how it works and help debug any logic errors, and then later the

extra memory locations can be removed to make the code more efficient. This

technique will become even more helpful when learning about recursion in Chap. 8.

As with the constants in the previous section, just as some variables are better

placed in the object as instance variables instead of as local variables in the methods,

there are caseswhere some variables should be declared as class variables instead of as

instance variables. For example, what if one wanted to count each time a new object

was created? Although this could be done in the main program, what if an object other

than the main program was also creating the objects to be counted? In this case, the

main program could not count them, nor could an instance variable be used, because

each instance could not count howmany other objects of its own typewere created. As

one might suspect, this would be a good candidate for a class variable.

A class variable is declared similarly to a class constant except the reserved word

final is not used as shown in Line 15 of the following program which simulates a

program that creates objects for charge cards that contain an account number:

main

radius1 3.0

c1

double

double

Circle

double 3.0r

doublePI 3.14

c2

radius2

Circle

4.0

Circle

r double 4.0

Circle1

Circle2

Fig. 5.12 Alternative contour diagram illustrating class constants

5.5 Class Constants, Variables, and Methods 163

http://dx.doi.org/10.1007/978-1-4471-6317-6_8

Although it would be nice to create an indefinite number of objects, that would

be difficult to illustrate using contours and would also be difficult to implement

without the use of arrays which will be introduced in Chap. 7. Instead, this program

creates only three ChargeCard objects to help illustrate the class variable

cardCount. Notice that their class variable is initialized by the compiler to 0 in

Line 15. Then each time a new instance of the class is created, the class variable

cardCount is incremented in the constructor. The contour in Fig. 5.13 illustrates

the state of execution just prior to Line 10 in the main program.

main

card1

card3

ChargeCard

ChargeCard

ChargeCard

int 12345678accNum

intcardCount 3

card2

ChargeCard
ChargeCard1

ChargeCard2

accNum

ChargeCard3

accNum

int

int

23456789

34567890

Fig. 5.13 State of execution prior to Line 10 in main

164 5 Objects: Revisited

http://dx.doi.org/10.1007/978-1-4471-6317-6_7

As can be seen, the class variable is shown in the ChargeCard contour which

is accessible by all of the instances of that class, as discussed in the previous

section. Also note that instead of using a variable such as card1 to gain access

to a class variable, the name of the class ChargeCard in Line 11 is used instead.

Further, the reader might have noticed that whereas the class constant in the

previous section was declared as private, the class variable cardCount is

declared as public. In one sense this might seem convenient, because the class

variable is accessible in the main program in Line 11. However, as mentioned in

Chap. 2 and as will be discussed in the next section, it is usually better to declare

variables as private and access them using a public method.

5.5.3 Class Methods

Although declaring a class variable as public allowing it to be accessed from the

main program works, it is not necessarily the best way to access class variables. Just

as it is not a good idea to declare instance variables as public, the same applies to

class variables. As before, it is better to declare class variables as private and then

access them via a public class method. This is accomplished by declaring a method

using the reserved word static as shown in the following modified program:

5.5 Class Constants, Variables, and Methods 165

http://dx.doi.org/10.1007/978-1-4471-6317-6_2

First, notice that the method getCardCount has been added at Line 27. The

use of the reserved word static makes it a class method instead of an instance

method. Also note that the method is declared as public and the class variable

cardCount at Line 15 is now declared as private. Next, notice in Line 11 that
instead of accessing the class variable, the class method getCardCount is

invoked to return the value of cardCount. As before, the class method is invoked

using the class name ChargeCard.
What is interesting to see is that when the main program invokes the class

method getCardCount, the contour is not in one of the objects, but rather in

the contour for the class ChargeCard as illustrated in Fig. 5.14 which shows the

state of execution prior to Line 28 in the class method getCardCount. When

Line 28 in the class method getCardCount is executed, it has access to the

private class variable cardCount and will return the value 3 back to Line 11 in

the main program.

Given the above, one needs to plan carefully where various constants,

variables, and methods are declared. As a general rule, it makes sense to declare

constants as class constants since they cannot be modified, they are accessible to

all methods in the objects within the class, and they save memory. As another

rule of thumb, it is generally a good idea to declare all variables as locally as

possible. This helps organize a program and makes it easier to understand and

maintain. However, if a method or object needs to communicate information

with other methods or objects, then declaring the variables as instance or class

variables makes sense. Although it might seem easy and be tempting to declare

all variables as instance and class variables, this can make a program difficult to

main

card1

card3

ChargeCard

ChargeCard

ChargeCard

int 23456789accNum

intcardCount 3
card2

ChargeCard
getCardCount

ChargeCard2

accNum

ChargeCard3

accNum

int

int

12345678

34567890

ChargeCard1

Fig. 5.14 State of execution prior to Line 28 in the getCardCount method

166 5 Objects: Revisited

maintain and debug in the future. Likewise with methods, they should usually be

declared as instance methods unless individual objects need to share a method,

and then it should be declared as a class method. The key is to take the time

when designing and creating a program to determine where each variable and

method should be declared.

5.6 Complete Programs: Implementing Objects

The first complete program implements overloaded methods, and the second

utilizes class data members and class methods.

5.6.1 Program Focusing on Overloaded Methods

After defining the PointD class earlier this chapter which represents a point, a

class that represents a line will be developed in this section. Since a line consists of

points, the PointD class can also be used. The main program will:

• Set points and lines

• Compare two lines

• Find the distance between a line and a point

A line can be defined in slope-intercept form y ¼ mx + b, where m is the slope

and b is the y-intercept, and the class will be named LineSI. The slope and

y-intercept are kept in private instance variables, slope and intercept.
Because a user may like to define a line in several different ways and to

reinforce the concept of overloaded constructors, six constructors will be

provided. The default constructor without any parameters will set the value of

the slope and the y-intercept to 0.0. The next constructor accepts the value

for the slope as a parameter and sets the y-intercept to 0.0 creating a line going

through the origin. The third constructor receives a LineSI object and copies

the slope and y-intercept of the line to the new object, essentially creating an

identical line. This constructor is sometimes referred as a copy constructor. The

fourth constructor accepts two parameters and assigns these values to the

instance variables, slope and intercept. A line can also be defined in

two-point form as

y� y0 ¼
y1 � y0
x1 � x0

x� x0ð Þ

where (x0, y0) and (x1, y1) are two different points on the line. So, the fifth

constructor accepts two PointD objects, calculates the slope and the y-intercept,
and assigns the results to appropriate data members. The last constructor receives

5.6 Complete Programs: Implementing Objects 167

the x and y coordinates of two points and calculates the slope and y-intercept.
Initial implementations for the six overloaded constructors are shown below:

All six overloaded constructors have the same name as the class and they are

differentiated by their parameter lists. The first constructor has no parameters, the

second and third constructors have one parameter, the fourth and fifth constructors

have two parameters, and the sixth constructor has four parameters. Although both the

second and third constructors have one parameter, the types are different; the second has

one of type double and the third has one of type LineSI. The fourth and fifth

constructors have two parameters; the fourth has two parameters of type double and

the fifth has two parameters of type PointD.

168 5 Objects: Revisited

The reserved word this in a constructor invokes the other constructor with

the corresponding parameter list within the same class. So, calling the default

constructor in the main method to create a LineSI object causes the fourth

constructor to be called as well. The second, third, fifth, and sixth constructors

also call the fourth constructor by using the reserved word this. As was

discussed in Sect. 5.4, the advantage of using the word this is that if a change

needs to be made to a common feature of all the constructors, only the fourth

constructor needs to be modified. Also, notice that in the fourth constructor, the

keyword this is used in order to distinguish between the data member and the

parameter. This ensures that values in the parameters are correctly copied into

the data members.

There will be two usual mutators to set each instance data member and two

accessors to get the value of two data members as shown below:

In addition to the two mutators above, there will be three more mutators

named setLine to set both instance data members at the same time. Like

constructors, methods can also be overloaded. The setLine method is

overloaded; one takes the values of the slope and the y-intercept, another takes
the x and y coordinates of two points as parameters, and the last takes two

PointD objects. Even though the first and the second setLine methods have

the same number of parameters, the types are different; the first setLine

5.6 Complete Programs: Implementing Objects 169

method has two parameters of type double and the second has two parameters

of type PointD. The detailed implementations of these three overloaded

methods are shown below:

First, notice that the second and third setLinemethods use the first setLine
method. This is similar to the constructors, where all the other constructors invoked

the fourth constructor.

If one looks carefully, it can be seen that the implementation of the fourth

constructor and the first setLine method is the same. Also, notice that the code

for the fifth constructor appears similar to the code for the second setLine
method except that the constructor is invoking the fourth constructor and the

setLine method is calling the first setLine method with the corresponding

parameter list defined within the class. The calculations for the slope and y-intercept
used as the formal parameters in the methods are exactly the same. The same thing

can be said for the sixth constructor and the third setLine method. How can one

avoid having duplicate code in the program? The answer is to invoke the setLine
method in the constructor instead of repeating the same code twice. This would

make sense when more complex computations need to be performed several

times in the separate methods within the class as in the second and third

setLine methods. The modification to the fourth, fifth, and sixth constructors is

illustrated below:

170 5 Objects: Revisited

The first setLine method can be further modified to avoid duplicate code.

Notice that the two statements this.slope ¼ slope; and this.inter-
cept ¼ intercept; are also in setSlope and setIntercept methods,

respectively. Therefore, the original first setLine method can be rewritten as

follows:

// First setLine method, modified:
public void setLine(double slope, double intercept) {

// using setSlope and setIntercept methods
setSlope(slope);
setIntercept(intercept);

}

In order to understand the nesting of method calls in overloaded constructors and

methods, consider what would happen when a LineSI object is created using a

default constructor in the main method. Calling the default constructor would result

in the fourth constructor being invoked. The fourth constructor will call the first

setLine method which calls the setSlope and setIntercept methods to

set the values of slope and intercept. Although at first this might seem more

complicated, the purpose is to eliminate duplicate code making the program easier

to maintain.

The last two methods are named compareLines and distance. The

LineSI object, which calls the method compareLines, will be compared to

the LineSI object passed to the method. It returns true when the two lines are

the same and false when they are different. The LineSI object, which calls the

method distance, calculates the distance from the object to the point passed as a

parameter.

5.6 Complete Programs: Implementing Objects 171

All the pieces are put together in the following class:

172 5 Objects: Revisited

Notice that along with the two private instance variables, the private class

constant, DEFAULT_VALUE, was defined. It was declared as a class data member

so that any method defined in the class can use it as a constant because the value

does not need to be changed during execution. By declaring it as a class constant, it

will avoid allocating memory for the same constant twice when it was used in the

first and second constructors.

TheLines class in Fig. 5.15will test themethods defined inLineSI. It will create
two points and six lines using six different constructors. Then it will output the

properties of the lines and the result from the compareLines and distance
methods.

5.6 Complete Programs: Implementing Objects 173

Fig. 5.15 A client program for LineSI and PointD classes

174 5 Objects: Revisited

The output from the above program is given below:

line1: slope ¼ 0.5, intercept ¼ 3.5
line2: slope ¼ 0.5, intercept ¼ 3.5
line3: slope ¼ -1.0, intercept ¼ 3.0
line4: slope ¼ 0.5, intercept ¼ 3.5
line5: slope ¼ 0.0, intercept ¼ 0.0
line6: slope ¼ 2.0, intercept ¼ 0.0
line1 and line2 are the same.
line4 and line5 are not the same.
The distance between line3 and pt1 is 1.41.
The distance between line6 and pt2 is 3.58.

5.6.2 Program Focusing on Class Data Members
and Class Methods

In this section, the ChargeCard class defined in Sect. 5.5.3 will be modified.

Assume that a cardholder travels to Europe and uses the card for shopping. The

amount charged in Euros should be converted into US dollars and added to the

balance of the card. Using the application, a user should be able to:

• Open an account to receive a card

• Make purchases in either US dollars or Euros

• Print the current balance of the card

The program should perform the conversion from Euros to US dollars. The

calculation used in conversion is the same for any purchase made in Euros;

therefore, all the Card objects can share the code for the conversion. For this

reason, the convertEurosToDollars method will be declared as a class

method. The program also keeps track of the conversion rate named rate in the

program. Since rate is used in the class method and a class method does not

have an access to an instance data member, rate should be declared as a

class data member. Because the conversion rate changes frequently, it

should be declared as a variable, not a constant. The mutator and accessor for

rate will also be class methods since they deal with a class data member.

The following code segment implements the class data member and class methods

discussed so far:

5.6 Complete Programs: Implementing Objects 175

So far there is no instance data member or instance method implemented in

the Card class; therefore, all the methods can be used without creating an object.

The following mainmethod will set the rate and output its value and the result of

the conversion of 1.00 Euro to US dollars:

public class Purchases {
public static void main(String[] args) {

// output the information for Euros conversion
Card.setRate(1.2128);
System.out.println("rate ¼ " + Card.getRate());
System.out.printf("1.00euroisequalto%.2fdollars.",

Card.convertEurosToDollars(1.00));
System.out.println();

}
}

Notice that the three class methods are invoked using the class name Card in the

dot notation. The following is the output from the above program:

rate ¼ 1.2128
1.00 euro is equal to 1.21 dollars.

Now the data members, constructors, and instance methods can be added to the

Card class. The additional data members include two class constants,

DEFAULT_ACCOUNT_NUMBER and DEFAULT_BALANCE, and two instance

variables, accountNum and balance. There will be two constructors: one

default constructor and another constructor that has two formal parameters to

store values in the instance variables. The setAccountNum method is a mutator

to set the value of the variable accountNum. Both the purchaseInDollars
and purchaseInEuros methods receive a formal parameter and increment the

balance by the amount in the parameter. In the purchaseInEuros method,

176 5 Objects: Revisited

the amount of Euros passed to the method is converted to US dollars by calling the

convertEurosToDollars method. There will also be two accessors,

getAccountNum and getBalance, to get the values of the two instance

variables. The following program defines the Card class:

5.6 Complete Programs: Implementing Objects 177

The complete main method in Fig. 5.16 includes the creation of a Card object,

two purchases, one each in US dollars and Euros, and the output of the balance after

each purchase.

Fig. 5.16 A client program for Card class

178 5 Objects: Revisited

The following is the output from the above program:

rate ¼ 1.2128
1.00 euro is equal to 1.2128 dollars.
after spending 100.00 dollars
card: Account Number ¼ 12345, balance ¼ 100.00 dollars
after spending 100.00 euros
card: Account Number ¼ 12345, balance ¼ 221.28 dollars

5.7 Summary

• In addition to primitive data types, objects can be sent to and returned from

methods.

• Constructors and methods can be overloaded by having the same name but must

have a different number of parameters, different types of parameters, or

parameters of different types in a different order.

• The reserved word this is used to refer to instance variables when there are

parameters of the same name and to constructors when one constructor is defined

in terms of another.

• If a constant or variable is declared within a constructor or method, it is known as

a local constant or variable.

• If a constant or variable is declared within an object, they are known as an

instance constant or variable and can be accessed by any constructor or method

within the object.

• The reserved word static causes a constant, variable, or method to be a

class constant, variable, or method that can be accessed by an instance of the

class.

• Take the time to determine where variables and methods should be declared to

help balance readability, communication, debugging, maintainability, and mem-

ory allocation.

5.8 Exercises (Items Marked with an * Have Solutions
in Appendix E)

1. Identify the valid and invalid overloaded constructors in the following code:

5.8 Exercises (Items Marked with an * Have Solutions in Appendix E) 179

http://dx.doi.org/10.1007/978-1-4471-6317-6_BM1

2. Identify the valid and invalid overloaded methods in the following code:

180 5 Objects: Revisited

3. A hexahedron is a three-dimensional shape with six faces. In this problem, a

class which represents a hexahedron with squares at the top and the bottom as

shown below will be implemented.

height

side

Assume that hexahedrons are made of different materials; therefore, the

weight needs to be kept along with the side and the height in order to

describe a particular hexahedron. The following code implements data members

and a portion of the constructors of Hexahedron class. Complete the first six

constructors to call the last one by using the reserved word this.

5.8 Exercises (Items Marked with an * Have Solutions in Appendix E) 181

4. Draw contour diagrams to show the state of execution right after the execution of

the statement line1 ¼ new LineSI(pt1, pt2); in Fig. 5.15 in

Sect. 5.6.1.

5. Draw contour diagrams to show the state of execution right after the execution of

the statement card.purchaseInEuros(100.00); in Fig. 5.16 in

Sect. 5.6.2.

6. Implement a class Rectangle which represents a rectangle shape as described

below:

*A. The Rectangle class has one private class constant DEFAULT_VALUE
that should be initialized to 0.0.

*B. The Rectangle class has two private instance data members, sideX and

sideY, of type double.

182 5 Objects: Revisited

*C. The first constructor is a default constructor and calls the third constructor

(described below) using the reserved word this to set instance data

members to the default value.

D. The second constructor calls the third constructor (described below) using

the reserved word this. It retrieves a Rectangle object as a formal

parameter and copies sideX and sideY of the object to the new object.

E. The third constructor calls the setSides method (described below). Two

formal parameters are used as the parameters for the setSides method.

*F. The mutator methods, setSideX and setSideY, each has one formal

parameter and stores them in the instance data member.

G. Another mutator method, setSides, has two formal parameters and stores

them in the instance data members by using the setSideX and setSideY
methods (described above).

H. The accessor methods, getSideX and getSideY, return the value of the

appropriate instance data member.

I. A method named calcArea computes the area of a rectangle and returns

the computed area.

Next, write a client program to test the Rectangle class defined above. This

class should be named Rectangles and should contain the main method

which performs the following tasks:

a. Declare three Rectangle objects.

b. Create three Rectangle objects using the three different constructors.

c. Output the contents of sideX and sideY of the three objects.

d. Output the area of the third rectangle.

Here is some sample output:

rectangle1: sideX ¼ 0.0, sideY ¼ 0.0
rectangle2: sideX ¼ 3.0, sideY ¼ 4.0
rectangle3: sideX ¼ 3.0, sideY ¼ 4.0
rectangle3: area ¼ 12.0

7. Expand the PointD class discussed in this chapter to include the quadrant

information of a point. The x-axis and y-axis divide the plane into four regions

called quadrants. The quadrants are labeled starting at the positive x-axis and
going around counterclockwise as shown below:

Quadrant 2
X < 0
Y > 0

x

y

Quadrant 1
X > 0
Y > 0

Quadrant 3
X < 0
Y < 0

Quadrant 4
X > 0
Y < 0

5.8 Exercises (Items Marked with an * Have Solutions in Appendix E) 183

Write the new PointD class as described below. Points falling on the x-axis and
y-axis are not considered to be in any quadrant, and therefore return the default

value, 0:
A. The PointD class has two private class constants, DEFAULT_VALUE of

type double and DEFAULT_QUADRANT of type int, that should be

initialized to 0.0 and 0, respectively.
B. The PointD class has two private instance data members, x and y, of type

double.
C. The PointD class has one private instance data member quadrant of

type int.
D. The first constructor is a default constructor and calls the third constructor

(described below), by using the reserved word this, to set the instance data
members to the default values.

E. The second constructor receives a PointD object as a formal parameter and

stores the x, y, and quadrant of the object as the values of the instance

data members.

F. Third constructor calls the setPoint method (described below). Its two

formal parameters are used as the parameters for the setPoint method.

G. The mutator methods, setX and setY, have one formal parameter and call

the setPoint method (described below). The setX method changes the

value of data member x to the value of the parameter. The setY method

changes the value of data member y to the value of the parameter.

H. Another mutator method, setPoint, has two formal parameters and stores

these values in the instance data members, x and y. It also sets the correct

value for the data member quadrant depending on the values of the two

parameters.

I. The accessor methods, getX, getY, and getQuadrant, return the value

of the appropriate instance data member.

Next, write a client program to test the PointD class defined above. Call this

class Points. The main method should perform the following tasks:

J. Declare five PointD objects.

K. Create five PointD objects using the three different constructors. The

points should be in three different quadrants and also the origin.

L. Output the contents of x, y, and quadrant for the five objects.

M. Change the value of x or y for one of the points using a mutator so that the

point will move to a different quadrant.

Here is some sample output:

point1: (0.0, 0.0) in quadrant 0
point2: (2.0, -5.0) in quadrant 4
point3: (2.0, -5.0) in quadrant 4
point4: (2.0, 5.0) in quadrant 1
point5: (-2.0, 5.0) in quadrant 2
after calling set method
point3: (-2.0, -5.0) in quadrant 3

184 5 Objects: Revisited

Strings 6

6.1 Introduction

Up till now, this text has focused on numerical values such as integers and real

numbers. In this chapter the focus is text values. Characters are another fundamen-

tal type of data used on a computer, and a string in Java is a sequence of characters.

Each programming language supports a particular character set which is a list of

characters in a particular order. The ASCII (American Standard Code for Informa-

tion Interchange) character set is the most common one. The basic ASCII set uses

seven bits per character to support 128 different characters including letters,

punctuation, digits, special symbols, and control characters. In order to support

more characters and symbols from many different natural languages, Java uses the

Unicode character set, which uses 16 bits per character, supporting 65,536 unique

characters. ASCII is a subset of the Unicode character set.

Strings are not represented as a primitive data type such as int, double, or
char but as an object of the String class. Text values can also be passed as an

argument to methods such as system.out.print as described in Chap. 1.

Similar to numbers, strings can be assigned to variables and manipulated using

operators and methods defined in the String class.

6.2 String Class

The String class is a standard class, like the Math or Scanner classes, defined

in the java.lang package. The following illustrates how a String variable is

declared and a String object is created:

String fullName;
fullName ¼ new String("Maya Plisetskaya");

After the variable fullName is declared as type String, the second statement

creates an object with a value "Maya Plisetskaya" and then a reference to

J.T. Streib and T. Soma, Guide to Java: A Concise Introduction to Programming,
Undergraduate Topics in Computer Science, DOI 10.1007/978-1-4471-6317-6_6,
© Springer-Verlag London 2014

185

http://dx.doi.org/10.1007/978-1-4471-6317-6_1

the new object is placed in the variable, fullName. The contour diagram in

Fig. 6.1 illustrates the state of execution after the above two statements.

Because the String class is a predefined class, a variable name is not in the

contour diagram of the String object. Although the String class is not a

primitive data type, a String object can be created by assigning a string within

double quotes to a String variable, for example,

String fullName;
fullName ¼ "Maya Plisetskaya";

Even though it looks like the text value is directly assigned to the variable, the

variable fullName does not contain an actual value, like with a primitive data

type, but rather an address of the object. The contour diagram after the above two

statements will be exactly the same as the one shown in Fig. 6.1.

Further, notice that the following statements using the keyword new will assign

a null value to the variable:

String fullName;
fullName ¼ new String();

The same thing will also happen with a simple assignment statement:

String fullName;
fullName ¼ null;

The differences between creating String objects using new statements and

assignment statements will become more apparent in Sect. 6.4. Except for on a few

occasions, the new statement will be used to create a String object in order to

reinforce the ideas of object creation. In either case, once a String object is

created, the string value inside of the object cannot be modified, which means that

any of the characters in the string cannot be changed, nor can the string be shortened

or lengthened. This property is called being immutable. If a string needs to be

modified, an object of type StringBuffer which is a mutable sequence of

characters can be used, but this is beyond the scope of this text.

6.3 String Concatenation

Although strings cannot be modified, there are a number of operators that can be

used with strings. A useful String operation is concatenation accomplished by

the use of a plus symbol, +, which was introduced briefly in Chap. 1 to support

fullName String

String

"Maya Plisetskaya"

Fig. 6.1 An object of String class

186 6 Strings

http://dx.doi.org/10.1007/978-1-4471-6317-6_1

output. Two strings can be combined to create a new string. Consider the following

example code segment:

String firstName, lastName, fullName;
firstName ¼ new String("Maya");
lastName ¼ new String("Plisetskaya");
fullName ¼ firstName + " " + lastName;

A first name and a last name are assigned to separate variables, firstName and

lastName, respectively, and then combined together using a string concatenation

operator. A contour diagram for fullName is again exactly the same as the one in

Fig. 6.1. Notice that a space is concatenated between firstName and lastName.
Without it, fullName would have the first name and a last name combined

together as in "MayaPlisetskaya".
A plus symbol was introduced as an arithmetic addition and as a concatenation in

the output statements in Chap. 1. When an operator represents more than one

operation, it is called an overloaded operator. What happens if overloaded

operators appear in the expression with mixed types? The Java compiler treats + as

an arithmetic addition when both the left and right operands are numbers, otherwise

it will treat it as a string concatenation. Remember that the plus symbol is evaluated

from left to right and the result of an expression with mixed types is String type.

For example, what would the output be for the following code segment?

int num1, num2;
String str1, str2;
num1 ¼ 2;
num2 ¼ 3;
str1 ¼ new String("num1 + num2 ¼ ");
str2 ¼ new String(" ¼ num1 + num2");
System.out.println(str1 + num1 + num2);
System.out.println(num1 + num2 + str2);
System.out.println(str1 + (num1 + num2));

The first print statement results in

num1 + num2 ¼ 23

Since the left operand of the first plus symbol is String and the right operand is

int, it will treat the contents of num1 as String. Because the first plus sign was

treated as concatenation, the left operand of the second plus sign is a String type.

Further, the right operand of the second plus symbol is int; it will again treat the

contents of num2 as a String.
How about the second print statement? The first plus sign is treated as an arithmetic

addition because the left and the right operands of the first plus sign are both int
types. Then, the second plus symbol is treated as a string concatenation since the last

operand is of type String and it is mixed-type operands. The output will be

5 ¼ num1 + num2

6.3 String Concatenation 187

http://dx.doi.org/10.1007/978-1-4471-6317-6_1

In the third print statement, parentheses will force (num1 + num2) to be

evaluated first. Therefore, the second + is treated as an arithmetic addition. The

result will be

num1 + num2 ¼ 5

Another operator that can be used on String objects is a shortcut operator, +¼.

It has the same effect as the shortcut of arithmetic addition discussed in Chap. 1 and

is left as an exercise at the end of the chapter.

6.4 Methods in String Class

There are over 50 methods defined in the String class that can be found in the

Java API specification document on the Oracle website at

http://docs.oracle.com/javase/7/docs/api/java/lang/String.html

In this section, six of the most commonly used ones will be discussed: length,
indexOf, substring, equals, equalsIgnoreCase, and charAt.

6.4.1 The length Method

In order to find the number of characters in a String object, the length method

is used. For example, if the variable fullName refers to the string "Maya
Plisetskaya", then

fullName.length()

will return the value 16 because there are 16 characters in the string. Notice that a

space between the first name and the last name is counted as a character. If the string

is empty, applying the length method results in 0.

6.4.2 The indexOf Method

A character in a string can be referred to by its position, or in other words its index,

in the string. The index of the first character is 0, the second character is 1, and so

on as illustrated in Fig. 6.2.

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
M a y a P l i s e t s k a y a

Fig. 6.2 Index of characters in the string

188 6 Strings

http://dx.doi.org/10.1007/978-1-4471-6317-6_1
http://docs.oracle.com/javase/7/docs/api/java/lang/String.html

To find the position of a substring of a string, the indexOfmethod can be used.

The method will return the position of the first character of the substring in the

string. Here are some examples using fullName:

statement return value

fullName.indexOf("Maya") 0

fullName.indexOf("set") 8

fullName.indexOf("Set") -1

fullName.indexOf("ya") 2

fullName.indexOf(" ") 4

The first statement returns 0 because "Maya" occurs at the beginning of the

string. The word "set" starts at the position 8. The return value �1 from the

third statement indicates that the substring does not exist in the string. Since it

performs a case-sensitive search, it did not find "Set" starting with an upper-

case letter. There are two occurrences of "ya" at the position 2 and 14. Since if

there is more than one occurrence of the substring in the string, the position of the

first character of the first matching substring is returned, the fourth statement

returns 2. As it was mentioned before, a space is considered to be a character;

therefore, the last statement returns 4 which is the position of the space in the

string.

6.4.3 The substring Method

On some occasions, one’s name needs to be printed in a format of a last name, a

comma, a space, and a first name. How can it be formatted if the full name is given

in a first name, a space, and a last name? The answer is that the first name and the

last name can be extracted from the full name and rearranged. In order to extract a

substring from a string, a substring method can be used. A substring
method takes two integers as arguments: the position of the first letter of the

substring and the position of the last letter of the substring + 1. Using the string

in Fig. 6.2, this means that the statement fullName.substring(8, 11);will

return "set". Here are some more examples:

statement return value

fullName.substring(0, 4) Maya

fullName.substring(2, 2) an empty string

fullName.substring(10, 6) runtime error

fullName.substring(18, 20) runtime error

The second statement will create a String object with empty string. The third

example gives a runtime error because the first argument should be the same as or

6.4 Methods in String Class 189

smaller than the second. In the fourth example, the arguments should be in the range

of 0–16, otherwise they are out of bounds and cause a runtime error.

Obtaining a first name, "Maya" from fullName is not very difficult. A

statement fullName.substring(0, 4) would work. However, consider

when the fullName contains a different name, for example, "George
Balanchine". fullName.substring(0, 4); would return Geor,
which is not the first name. How can this be changed so that the statement will

extract the first name from any full name? Notice that the first name and the last

name are separated by a space. So, using a position of the space spacePos ¼
fullName.indexOf(" "), a first name can be easily extracted from any full

name as in fullName.substring(0, spacePos). Once the first name is

obtained, how can the last name be extracted? Remember the last name starts right

after the space, so the position of the first letter of the last name is spacePos +
1. When does it end? It ends at the end of the string. Since fullName.length
() returns 16 for "Maya Plisetskaya", which is the position of the last letter
of the last name + 1, this is perfect for the second parameter of substring
method for extracting a last name. All the pieces are put together in the following

program:

190 6 Strings

Alternatively, without declaring variables, spacePos and len, one could use

return values from indexOf and length methods as arguments for the

substring method.

firstName ¼ fullName.substring(0, fullName.indexOf(" "));
lastName ¼ fullName.substring(fullName.indexOf(" ")+1,

fullName.length());

Which way is better? The first option allocates memory for two more variables,

spacePos and len; however, it does not call indexOf method twice as in the

second option. For a small example like this, it does not matter which option one uses.

For large programs, try to remember not to waste too much memory by declaring

unnecessary variables and also try not to invoke complex methods multiple times.

One should always be aware of a trade-off between space and time and make a very

good balance between them when developing a large application.

An example of the input and output from the above program is shown below:

Enter full name, first name followed by last name: Maya Plisetskaya

Plisetskaya, Maya

6.4.4 Comparison of Two String Objects

While a double equal sign, ¼¼, was used to compare primitive data types, compar-

ing two String objects takes extra care. Examine the following code segment:

String str1, str2;
str1 ¼ new String("saddles");
str2 ¼ new String("saddles");
System.out.println(str1 ¼¼ str2);

Is the output true or false? As a matter of fact, it prints false. Why does

the comparison of str1 and str2 return false? Both String variables seem

to contain the same value, "saddles", but remember that a String variable

contains a reference to the String object, not the string itself. Since str1 and

str2 are two completely different objects, two variables refer to different

addresses shown below:

str1 String

String

"saddles"

str2 String
String

"saddles"

6.4 Methods in String Class 191

The correct way to compare the contents of String object is to use a String
method, equals.

System.out.println(str1.equals(str2));

The above statement will output true since both str1 and str2 have the

same value. The equals method does not compare the references, but rather the

contents of the strings being referenced. What about when a String object is

created by assigning a string literal?

String str3, str4;
str3 ¼ "halters";
str4 ¼ "halters";
System.out.println(str3 ¼¼ str4);
System.out.println(str3.equals(str4));

Interestingly, both print statements return true. This is because when the value
is assigned to str4, the Java compiler will search the existing String objects for

an exact match. If it finds one, which is the case here, a new String object is not

created. Instead, the variable is assigned a reference to the existing String object

show below:

str3 String

String

"halters"

str4 String

Of course, if the contents of one String variable is copied to another String
variable, both variables would point to the same object as shown below because

what is copied is the address of the object:

String str5, str6;
str5 ¼ new String("bridles");
str6 ¼ str5;
System.out.println(str5 ¼¼ str6);
System.out.println(str5.equals(str6));

str5 String

String

"bridles"

str6 String

As can be seen in the above contour diagram, both print statements return true.
Recall that this is exactly the same situation discussed in Sect. 2.9, where variables of

Number objects, num1 and num2, are referencing the same object containing the

192 6 Strings

http://dx.doi.org/10.1007/978-1-4471-6317-6_2

integer 5 after the assignment statement num1 ¼ num2 shown in Fig. 2.24 repeated

below:

main

num1

num2

Number

Number

Number

x int 5

x int 0

Number

The contour diagram showed that the intended task of copying the integer 5
from num1 to num2 was not accomplished. In general it is not a good idea to have

two variables pointing to the same object, unless it is a String object. If the

contents of the object num1 is referring to were modified by using a mutator

method, the contents of the object num2 is referring to would be automatically

changed because they are pointing to the same object. Is it the same way with

String objects? If one were to execute the following statement to modify the

contents of str5,

str5 ¼ "reins";

the Java compiler would search the existing String objects for one containing

"reins". So far, two objects with "saddles", one object with "halters",
and one object with "bridles" have been created. Since it does not find an object

with "reins", a new String object will be created. Therefore, str5 and str6
will be referencing different String objects as shown below:

str5 String

String

"reins"

str6 String
String

"bridles"

Now, the following statements will both return false:

System.out.println(str5 ¼¼ str6);
System.out.println(str5.equals(str6));

6.4 Methods in String Class 193

http://dx.doi.org/10.1007/978-1-4471-6317-6_2

Unlike with num1 and num2, because of the immutable characteristic of

String type, there is no danger of modifying the content of one object when

two String variables are referencing the same object.

6.4.5 The equalsIgnoreCase Method

Assume that a program to play a Tic Tac Toe game has been written. At the end of

each game, a user will be asked if he or she would like to play another game. For

example, consider the code segment in Fig. 6.3:

Because of the !, the condition of the if statement is true when a user does

not enter yes. Then, the variable selection will be changed to false, and
eventually the program stops. What happens if a user wanted to play another game

and entered Yes instead of yes? Because the equalsmethod checks for an exact

match, the if condition again is true. In case the user types yes in different

ways, the if condition can be modified to

if(!(response.equals("yes") || response.equals("Yes") ||
response.equals("YES")))
selection ¼ false;

Then, the user can enter "yes", "Yes", "YES" to continue. Actually, there is a

way to include all the combinations of upper- or lowercase characters in the word

“yes” such as"yEs", "yeS", and "yES". One can compare the content ofString
objects ignoring the case of characters in the string. An equalsIgnoreCase
method compares the content of a String object to that of another String object

ignoring case considerations. Two strings are considered to be equal if they are of the

same length and corresponding characters in the two strings are equal ignoring the

case of the characters. In other words, the search can be done in a case-insensitive

way. One can rewrite the if condition as

if(!response.equalsIgnoreCase("yes"))
selection ¼ false;

Fig. 6.3 Use of a method from String class to compare strings

194 6 Strings

Given the equalsIgnoreCase method, the user can enter "yes", "Yes",
"YES" or any other combination of uppercase or lowercase characters in the word

“yes” to continue.

6.4.6 The charAt Method

The charAt method returns the character stored at the specified position in the

string. For example, if the variable name refers to the string "George
Balanchine", then fullname.charAt(0) will return the value 'G' because
the character 'G' is the first character. The statement fullname.charAt(2)will

return the value 'o' because the index of the character 'o' is 2. Suppose one likes to
know the number of occurrences of certain character in a string, for instance, the

character 'G' in fullname. Each character in the fullname can be checked

using the charAt method inside the loop and a counter can be incremented. The

following code segment counts the number of 'G' characters in "George
Balanchine":

An output from the above code segment would be

The name George Balanchine contains 1 character 'G'.

Notice that it only counts the capital letter 'G' and ignores lowercase letter 'g'. If
both uppercase and lowercase letters need to be counted, the if condition would

look like

if(letter ¼¼ 'G' || letter ¼¼ 'g')

and the code will return 2 because one uppercase 'G' and one lowercase 'g' exist in
"George Balanchine". A summary of some of the methods in the String
class can be found in Table 6.1.

6.4 Methods in String Class 195

6.5 The toString Method

The overriding method, toString, receives no parameters and returns a String
type. Although overriding methods will be discussed further in Chap. 9, it is

introduced here because it is a useful method that helps output data stored in

objects. Prior to demonstrating how toString works, the PointD class from

Fig. 5.4 in Chap. 5 is relisted in Fig. 6.4.

The main method in Fig. 6.4 creates objects of the PointD class and finds the

midpoint of the two points. After executing the program, the output is

The mid-point between (4.0,4.0) and (8.0,7.0) is (6.0,5.5)

What would happen if the last five print statements of the main method were

replaced by the following statement?

System.out.println(middle);

This statement is trying to output middle which is a PointD object. Does it

output the contents of x and y of middle? The answer is no. Instead, the output
would look like the following:

PointD@ae3364

What is this? Is it garbage? The answer to the second question is no, it is not garbage.

However, it is not very useful information at this level of programming. The System.
out.println outputs the name of the class PointD, an @ symbol, and the memory

address of the object in hexadecimal (base 16) representation. Since each time the

program is run the object might be in a different location in memory, the output may be

different every time the program is executed. In order to output the contents of x and y,
one needs to use accessor methods, such as getX and getY as done in Fig. 6.4.

However, wouldn’t it be nice if there was a method to return the contents of an object?

A toString method could be written in the PointD class to return a string

representation of the contents of the data members of an object. The method could

return x and y as the location of a point in the format (x,y) and would be written as

follows:

public String toString() {
return "(" + x + "," + y + ")";

}

Table 6.1 Various methods in the String class

Method Function preformed Arguments

Value

returned

charAt(pos) Returns character at given index int char

equals(str) Compares strings String boolean

equalsIgnoreCase(str) Compares strings ignoring case String boolean

indexOf(str) Returns index of first occurrence of substring String int

length() Returns length of string None int

substring(pos,pos) Returns substring of string int, int String

196 6 Strings

http://dx.doi.org/10.1007/978-1-4471-6317-6_9
http://dx.doi.org/10.1007/978-1-4471-6317-6_5
http://dx.doi.org/10.1007/978-1-4471-6317-6_5

Since the values in x and y are concatenated with strings, they are converted to

type String and would be returned as a String. Then, in the following

statement, the object middle can call the toString method

System.out.println(middle.toString());

and the above statement will produce an output of

(6.0,5.5)

Fig. 6.4 A client program and PointD class

6.5 The toString Method 197

Now, if the last five print statements in the main method in Fig. 6.4 were

replaced by the following code,

System.out.println("The mid-point between "
+ p1.toString() + " and " + p2.toString() + " is "
+ middle.toString());

it would produce the same output as the original code as follows:

The mid-point between (4.0,4.0) and (8.0,7.0) is (6.0,5.5)

The usefulness of a toString method will be appreciated more when objects

are discussed further in Chap. 9.

6.6 Complete Program: Implementing String Objects

In this section, an application which outputs course information will be developed.

The program will:

• Ask the user for a name of a class. The input consists of a department code, a

course number, and a course title, such as "CS 360 Theory of
Computation".

• Process the input.

• Output the title of the class, level of the class, and the department that offers

the class.

An example of the input and output for the Theory of Computation course

would be

Enter the course: CS 360 Theory of Computation

The class, "Theory of Computation", is a
junior level class offered by the
Computer Science department.

and the input and output for a Calculus course could be

Enter the course: MA 213 Calculus I

The class, "Calculus I", is a
sophomore level class offered by the
Mathematics department.

When the user provides input, the program will create an object and store pieces

of information inside of the object. The name of the department will be determined

by the department code which is the first piece of the input. The course number is

the second piece of the input, and the course title is the rest of the input. The level of

the course will be obtained by checking the course number. Figure 6.5 contains

the code defining the class for a Course object.

198 6 Strings

http://dx.doi.org/10.1007/978-1-4471-6317-6_9

The Course class consists of four data members that are all instance variables,

two constructors, and mutators and accessors for each data member. The

setDepartment method accepts a department code as a parameter, then the

if-then-else structure determines the department, and the value is assigned to the

data member. The setLevelmethod uses the value of data member, number, to
figure out the level of the class. In order to use a case structure, the first character of

number is extracted as a String and converted to a character since only char,
byte, short, or int types can be used in the case statement. The charAt
method is used to convert a string to a character. It takes a position of a character in

a string and returns a character. The main program which uses Course class is

shown in Fig. 6.6.

After the user enters an input, pieces of information are extracted and used to

create a Course object. Notice that in order to include a double quote in a string

literal, a backslash is used as in \", which was discussed in the output section of

Chap. 1. This application can be extended to accommodate more departments and

graduate level classes. Course objects can also be stored in an array for further

manipulation which will be discussed in Chap. 7.

Fig. 6.5 Course class

6.6 Complete Program: Implementing String Objects 199

http://dx.doi.org/10.1007/978-1-4471-6317-6_1
http://dx.doi.org/10.1007/978-1-4471-6317-6_7

6.7 Summary

• A String object can be created by using new, ¼, or +¼ operators.

• String objects are immutable, which means their contents cannot be changed.

• When a String object is created by assigning a string literal, the Java compiler

will search the existing String objects for an exact match. If it finds one, the

variable is assigned a reference to the existing String object.

• When a String object is created using the keyword new, a new object will be

created even if there already exists an object with the same string value.

• Individual characters of a string are numbered starting from 0.

• When an equals method is applied to String objects, it compares the

contents of the objects being referenced.

Fig. 6.5 (continued)

200 6 Strings

• To compare the contents of String objects, a ¼¼ operator cannot be used

since it compares the references to objects.

• Some String methods include indexOf, length, substring, equals,
equalsIgnoreCase, and charAt.

6.8 Exercises (Items Marked with an * Have Solutions
in Appendix E)

1. Identify the errors in the following code segments:

A. String text1;
text1 ¼ new String(girth);

*B. String text2;
text2 ¼ new Text("shedding blade");

C. String text3;
text3 ¼ new Sting("grazing muzzle");
text3.indexOf('muzz');
text3.length(5);

Fig. 6.6 A client program for Course class

6.8 Exercises (Items Marked with an * Have Solutions in Appendix E) 201

http://dx.doi.org/10.1007/978-1-4471-6317-6_BM1

2. Determine the return value for each of these expressions, assuming the follow-

ing declaration:

String org;
org ¼ new String ("American Quarter Horse Association");

A. org.substring(5, 8)
*B. org.length()
C. org.substring(9, 22)

*D. org.substring(17, 19) + org.substring(20, 22)
E. org.substring(15, 16) + org.substring(18, 19)

+ org.substring(13, 14)
+ org.substring(org.length()–5, org.length())

F. org +¼ org

3. Draw contour diagrams to show the state of execution after the execution of the

following code segment:

String s1, s2, s3, s4;
s1 ¼ new String("stirrup irons");
s2 ¼ "stirrup irons";
s3 ¼ new String("stirrup irons");
s4 ¼ s2;

4. Determine the output from the following code segment:

String star;
star ¼ "*";
int i;
for (i¼0; i<5; i++) {

System.out.println(star);
star +¼ star;

}

5. Write a program that asks the user for a positive integer, receives input as a

String, and outputs a string with commas in the appropriate places. For

example, if the input is

1000000

then the output is

1,000,000

6. Write a program for a given word and string that will

a. Check if the word is in the string.

b. Count all occurrences of the word in the string.

c. Remove all occurrences of the word from the string.

*7. With a given String object called org containing a value "American
Quarter Horse Association", write a program to output an abbrevia-

tion of the string, AQHA.

8. Modify the previous program to ask a user for a name of his or her organization

and print an abbreviation of the name. Realize that the name of the organization

consists of any number of words.

202 6 Strings

Arrays 7

7.1 Introduction

Similar to a string which can store a group of characters, an array can be used to

store numbers of type int or double. Not only can arrays store numbers, but

they can also be used to store strings, objects, and even other arrays. Arrays are

extremely useful to store data that needs to be processed more than once, such as

data that needs to be searched or sorted.

Related to an array are the predefined Array and Vector classes which are

beyond the scope of this text, because before learning how to use these classes, it is

good to understand how to input, process, and output data using arrays. This chapter

will first introduce the reader to declaring an array, and as in the past the best way to

learn is to get started with an example.

7.2 Array Declaration

When declaring an array, the type of data that will be stored in the elements

of the array must be specified. For example, to declare a memory location to store

a reference to an array of type int called number, one would write the

following:

int number[];

Alternatively, and used more often, the above could be declared as

int[] number;

This reserves a memory location called number, the square brackets indicate

that it will be an array, and the word int indicates that each element of the array

J.T. Streib and T. Soma, Guide to Java: A Concise Introduction to Programming,
Undergraduate Topics in Computer Science, DOI 10.1007/978-1-4471-6317-6_7,
© Springer-Verlag London 2014

203

can contain an integer. Initially, the memory location number will contain a null
reference, which means it does not initially reference anything.

number null

In order to create an array of three elements, the following instruction is

needed:

number ¼ new int[3];

Although the word new has also been used to create a new object, here it is used

to create a new array. The number in the square brackets indicates the length of the

array, in this case three elements. In this example, the first element is number[0]
and the last one is number[2]. As with simple variables, the contents of the array

are initialized to 0, but as in Chap. 1 this text will assume that the contents are

indeterminate. Lastly, a reference to the array is placed into the memory location

number via the assignment symbol and is represented as an arrow in the following

diagram:

number

[0]

[1]

[2]

Alternatively the previous two lines could be combined as follows:

int[] number ¼ new int[3];

Although this takes up less space, the other two statements will be used more

frequently to reinforce the concepts of declaration and allocation. As another

alternative, a constant can be declared and used in the new statement. The advan-

tage to this technique is that when iterating in a loop to process or output an array,

the same constant can be used both to declare the array and as the end value of a

for loop as will be seen in the next section:

final int ARRAYSIZE ¼ 3;
int[] number;
number ¼ new int[ARRAYSIZE];

As another alternative, an array can be declared and initialized using the

following technique:

int[] number ¼ {0,0,0};

While this is somewhat useful for small arrays, it would be impractical to

initialize hundreds of elements. Though often smaller arrays will be initialized

this way in order to save space, an alternative is presented in the next section.

204 7 Arrays

http://dx.doi.org/10.1007/978-1-4471-6317-6_1

7.3 Array Access

Assuming that an array has been created at the beginning of the program using the

statements in the preceding section, the array can now be accessed. In order to

access an individual element of an array, the name of the array is followed by the

index of the element to be accessed. For example,

number[0] ¼ 5;

indicates that the 0th element of the array, the first element, takes on the value of 5.
This is illustrated in the following diagram:

number
5

[0]

[1]

[2]

Be sure not to confuse the index, 0, with the contents of the array, 5. Notice that
the 0th element of the array now contains the number 5. Should the contents of the

first element need to be copied into the third element, it could be accomplished

as follows:

number[2] ¼ number[0];

and would be represented as shown below:

number
5

5

[0]

[1]

[2]

When accessing various elements of an array, be careful not to try to access or

alter any elements outside the range of the array. In the example above, do not try to

access number[�1] or below, or try to access number[3] or above, because an

execution error will occur.

Although the accessing of individual elements can be useful in particular

instances, it is often more practical to be able to access all of the array elements.

As an example, what if the elements of the array need to be initialized to zero? If

only three elements need to be initialized, the technique illustrated at the end of the

previous section could be used, but what if instead of three elements, one hundred

elements needed to be initialized? Clearly, listing out one hundred individual zeros

would be impractical. Instead, as mentioned previously in Chap. 4, this can be

accomplished by using an iteration structure. Though any of the loop structures can

be used, under different circumstances some iteration structures are better choices

than others.

7.3 Array Access 205

http://dx.doi.org/10.1007/978-1-4471-6317-6_4

For example, if each element of the above array needs to be initialized to zero,

which loop would be the best choice? Since there is a fixed number of elements to

be initialized, then a fixed iteration loop structure could be used, specifically the

for loop as shown below:

for(int i¼0; i<3; i++)
number[i] ¼ 0;

Notice that the loop control variable is of type int and iterates from 0 to 2
corresponding to the three elements of the array. For each iteration of the loop, the

number 0 is placed into the ith element of the array. As when accessing individual

elements of an array, be careful not to have the loop try to access elements that are

outside the range of the array, such as number[�1] or number[3] because

again an execution error will occur.

Assuming the declaration of the constant ARRAYSIZE in the previous section,

the above code segment could be rewritten as follows:

for(int i¼0; i<ARRAYSIZE; i++)
number[i] ¼ 0;

Another alternative to the programmer-defined constant ARRAYSIZE is to use

the public constant length associated with the array as shown in the following

code segment:

for(int i¼0; i<number.length; i++)
number[i] ¼ 0;

Although this would not be helpful in creating the array, this is otherwise helpful

because one would not have to remember the name of the programmer-defined

constant. Also notice that a set of parentheses does not appear after the word

length as it does with strings, as in .length() as discussed in Chap. 6. The

reason is that .length() is a method with an empty argument list for use with

strings, whereas .length is a public constant associated with an array. At first

it can be a little hard to distinguish between the two, but with time and practice, it

becomes easier to remember.

In both cases, whether using either the programmer-defined constant or the

public constant, they can be convenient when inputting, processing, or outputting

the contents of an entire array. However, there are many times when an array is not

entirely filled, so using either type of constant is not as useful as one might think as

shown in the next section.

7.4 Input, Output, Simple Processing, and Methods

Although initializing an array is useful in some circumstances, more often data will

need to be input by the user. The data input into the array is often processed and the

array might subsequently be output. The first subsection examines the input, the

206 7 Arrays

http://dx.doi.org/10.1007/978-1-4471-6317-6_6

second shows how to output an array, the third demonstrates some simple processing,

and the fourth subsection illustrates passing an array to and from a method.

7.4.1 Input

As in the preceding section, assume that the following declarations are made at the

beginning of the program and prior to the following input code segments:

int[] number;
number ¼ new int[3];

If there are exactly three items that need to be input into the three element array

above, then the for loop is again the logical choice. As with input of data into

simple variables, a prompt should be used:

for(int i¼0; i<3; i++) {
System.out.print("Enter integernumber "+ (i+1) + ": ");
number[i] ¼ scanner.nextInt();

}

Note that the loop control variable is part of the prompt to help the user know

what number is being entered. Although the array elements are numbered 0 to 2,
the i+1 in the prompt allows the user entering the data to think in the more familiar

terms of 1 to 3. Further note that the i+1 is in parentheses so the plus sign will

be treated as addition instead of concatenation. Lastly, since the value of i+1 in the

prompt is not assigned back into i, the value of the loop control variable and

the index for the array is not altered. The format of the prompts with sample input is

as follows:

Enter integer number 1: 5
Enter integer number 2: 7
Enter integer number 3: 10

Of course as discussed in Chap. 4 and assuming the declaration of the integer

variable n, a user could be prompted for the number of integers to be entered as in

the following:

System.out.print("Enter the # of integers to be entered 1 - 3: ");

n ¼ scanner.nextInt();

for(i¼0; i<n; i++) {

System.out.print("Enter integer number " + (i+1) + ": ");

number[i] ¼ scanner.nextInt();

}

However, what if the user needs to enter fewer items into the array than were

initially allocated? In the above example, if the user only needs to enter two items,

then only the last element would go unused. Further, what if an array were declared

to hold 1,000 elements, but the user only needed to enter 20 items? The result would

7.4 Input, Output, Simple Processing, and Methods 207

http://dx.doi.org/10.1007/978-1-4471-6317-6_4

be that there would be 980 empty elements in the array, which would be a waste of

memory. More problematic is what if the user of the above code segment needed an

array of size 100 rather than an array of size 3 elements? Although the program

could be modified and recompiled, this is not a viable option for a user who does not

know how to program. Fortunately, there is a solution to this problem. The

following declaration of the variable to hold the reference to the array would still

occur at the beginning of the program as follows:

int[] number;

Then, instead of having the allocation of memory using the new statement and a

constant prior to the input code segment, it could appear after the prompt for the

number of items to be entered into the array as follows:

System.out.print("Enterthe#ofintegerstobeentered:");
n ¼ scanner.nextInt();
number ¼ new int[n];
for(i¼0; i<n; i++) {

System.out.print("Enterintegernumber"+(i+1)+":");
number[i] ¼ scanner.nextInt();

}

Notice that the reference to the array is created after the prompt and input for the

number of integers to be entered into the variable n. The advantage to this technique
is that no wasted memory locations are declared. More importantly there are

enough elements in the array for the user to enter the data and the user is not

limited to a fixed number of data items.

However, as discussed in Chap. 4, a problem with the above code is what if the user

miscounts the number of data items to be entered and enters the wrong number of items

to be input? Although the array will be declared to the size entered, the user might end

up having more data to enter than was allowed for in the array or the user might have

less data than expected and the for loop might iterate more times than needed.

As before, a better solution might be to use a sentinel control loop. If one uses the

code from Chap. 4 and alters it to substitute an array element instead of a simple

variable, one might write something similar to the following code segment. How-

ever, there is still a problem with this code segment:

// *** Caution: Incorrectly implemented code ***
i ¼ 0;
System.out.print("Enter a non-negative integer ");
System.out.print("or a negative integer to stop: ");
number[i] ¼ scanner.nextInt();
while(number[i] >¼ 0) {

i++;
System.out.print("Enter a non-negative integer ");
System.out.print("or a negative integer to stop: ");
number[i] ¼ scanner.nextInt();

}

208 7 Arrays

http://dx.doi.org/10.1007/978-1-4471-6317-6_4
http://dx.doi.org/10.1007/978-1-4471-6317-6_4

As indicated by the comment prior to the code, the above code segment is

implemented incorrectly. Although it appears to input all the valid data into the

array, what is the problem? The problem is that the sentinel value is also input into

the array. While this is not a major issue, the array would have to be declared to be

one element larger to accommodate the sentinel value. Further, one would need to

write all subsequent code to not process or output the sentinel value, which could be

a potential source of logic errors.

The best solution is not to put the sentinel value in the array in the first place.

How could this be done? The problem is that both input statements put the values

directly into the array. As an alternative, the value could be input to a temporary

variable and checked to see whether it is a sentinel value before putting it into the

array. However, instead of adding a couple of extra if statements, note that the

while loop already checks for the sentinel value. If the value in the temporary

variable is not a sentinel value, the body of the loop is entered and the value in the

temporary variable can be copied into the array. On the other hand, if the value in

the temporary variable is a sentinel value, the loop is not executed and the sentinel

value is not placed in the array. A good name for the temporary variable is temp as

in the following segment:

i ¼ 0;
System.out.print("Enter a non-negative integer ");
System.out.print("or a negative integer to stop: ");
temp ¼ scanner.nextInt();
while(temp >¼ 0) {

number[i] ¼ temp;
i++;
System.out.print("Enter a non-negative integer ");
System.out.print("or a negative integer to stop: ");
temp ¼ scanner.nextInt();

}

However, what is preventing the user from entering more data than there is space

for in the array? Assume that the array is fixed at a particular size as in the following

declaration and allocation:

final int ARRAYSIZE ¼ 10;
int[] number;
number ¼ new int[ARRAYSIZE];

Note that a constant is being used for the allocation of the array. The while
statement in the above code segment can now be altered using the constant to ensure

that the user does not enter more data than was allocated for the array as shown below:

while(temp >¼ 0 && i < ARRAYSIZE) {

or alternatively

while(temp >¼ 0 && i < number.length) {

7.4 Input, Output, Simple Processing, and Methods 209

Whereas the previous example using the for loop had the advantage that the

array was the exact size the user wanted, the disadvantage was that the user might

miscount the number of data items to be entered. However, the advantage of the

sentinel controlled loop above is that it does the counting for the user, but the

disadvantage is that it is still using a fixed-size array. Can’t the user enter the size of

the array? It is possible that they could, but then same problem could occur as

before and the user might miscount the number of items to be input. Further, the

code in the sentinel controlled loop is doing the counting of the number of items,

and the array has to be declared before the data is input.

In the field of computer science, there are always trade-offs, and it is up to the

designers of the algorithms to determine the best possible solution to the problem at

hand. As will be seen in subsequent courses in computer science, the concept of a

linked list is helpful in solving the above problem, but it should be noted that that

solution is not without its own set of limitations. Another possible solution to the

current problem, when there are more data items to be entered into an array than has

been allocated, is to have the program allocate an array of a larger size, say twice as

large, then copy the contents of the old array into the new one and allow the user to

continue to enter data into the new array. Although this solution might slow down

the processing, it does avoid the consequences of an array that is not large enough

and this is left as an exercise at the end of the chapter. However, in this text when

using the sentinel controlled loop, the emphasis will be on selecting the right size

array in the first place.

7.4.2 Output

The output of an array could be done as the data is input, but then the output would

be intermixed with the input. A better solution is to output the contents of the array

after all the data has been input. But how does one know how many data items have

been input when using a sentinel controlled loop? The answer is with the variable i
used in the previous code segment. Since a fixed number of values have been input,

a for loop is the best choice for output. The for loop could be written to iterate i
times, but since i is typically used as a loop control variable, it might be better to

copy the value in i to another variable such as n and then have the for loop reuse

the variable i as a loop control variable and iterate n times. It is also helpful to add

a column heading prior to the output of the contents of the array as shown in the

following code segment:

n ¼ i;
System.out.println();
System.out.println("Integers");
System.out.println();
for(i¼0; i<n; i++)

System.out.println(" " + number[i]);

210 7 Arrays

Note that a blank line is output both before and after the column heading,

Integers. Assuming some values have already been input to the array, the output

would look as shown below:

Output

Integers

5
7
9

Also note that the underlined word Output is not part of the output from the

code segment but rather helps one see where the output begins and the blank line

both before and after the column heading.

7.4.3 Simple Processing

What if the data needs to be modified prior to output? As a simple example, what if

the output was to be the original number doubled? There are two ways that this can

be accomplished. The first is to just output the number doubled but not alter the

contents of the array as follows:

for(i¼0; i<n; i++)
System.out.println(" " + (number[i] * 2));

However, what if the specifications actually indicate that the contents of the

array should be altered and then output? This can be accomplished by the following

code segment:

for(i¼0; i<n; i++)
number[i] ¼ number[i] * 2;

for(i¼0; i<n; i++)
System.out.println(" " + number[i]);

Notice that in this instance the contents of the array are actually altered in the

first loop and then output in the second loop. However, as an aside, can this be done

in only one loop? The answer is yes as can be seen below:

for(i¼0; i<n; i++) {
number[i] ¼ number[i] * 2;
System.out.println(" " + number[i]);

}

7.4 Input, Output, Simple Processing, and Methods 211

Clearly, the second solution is the better of the two. Although there will be times

when there is no choice but to have a separate loop for processing the data in an

array, as will be seen in the next section, it is usually better to combine the two tasks

into one loop, if at all possible.

Returning to the previous example of not altering the array and only modifying

the output or writing code to actually alter the array prior to output, which one is the

correct solution to the problem? It depends upon the specifications for the program

and how the program might be modified in the future. If the specifications require

only the output of the new numbers and the array needs to retain the original values

for subsequent processing, then the first version is the preferred method. However,

if the specifications indicate that the numbers are to be altered and subsequent

processing depends upon the altered numbers, then the second way is better. If it is

unclear, it is usually better to ask to determine which of the two is the best way to

solve the problem, and in this text if it is not specified, it should be assumed that the

contents of the array ought to be altered.

7.4.4 Passing an Array to and from a Method

An array can be passed to and from a method fairly easily. For simplicity, assume

there is a 3-element array to be input and output. From the main program, one

method could be called to input data into the array and another method to output the

array as follows:

int[] number;
number ¼ inputNumber();
outputNumber(number);

The call to inputNumber will prompt for and input integers into a local

3-element array as shown below:

public int[] inputNumber() {
int[] num ¼ new int[3];
for(int i¼0; i<number.length; i++) {

System.out.print("Enter an integer: ");
num[i] ¼ scanner.nextInt();

}
return num;

}

Since the array is allocated locally, there is no reason to allocate an array in the

main program. At the end of the method, a reference to the array is returned to the

calling program. Note that a copy of the entire array is not returned, but only

the reference. The variable num in the method points to the array, a copy of the

212 7 Arrays

reference is passed back to the main program, and the copy is assigned to the

variable number as shown in the following diagram:

num

5

7

[0]

[1]

[2]

3

number

Just as a reference to an array can be sent back from a method, it can be sent to a

method too. Again, a copy of the entire array is not passed to the method

outputNumber, but only the reference is sent to the method via a parameter:

public void outputNumber(int[] num) {
for(int i¼0; i<number.length; i++)

System.out.println(num[i]);
}

Since arrays can become quite large, sending and returning only the reference

makes it very practical.

7.5 Reversing an Array

As an example of a type of processing that can be done with an array, what if one

wanted to output the integers that were input in reverse order? Although one does

not need to reverse the contents of an array very often, it does introduce a number of

interesting ideas that pertain to processing data in an array and will help in

subsequent sections. There are two ways that this reversing can be accomplished.

The first is to input the values using a loop such as the sentinel controlled loop in the

previous section and then output the contents of the array in reverse order. How can

this be accomplished? Instead of starting at zero, the loop would need to start at the

opposite end of the array. But where should this be? If the array is called number
as in the last section and instead its length is 8, should it start at position 8,
ARRAYSIZE, or number.length? No, because recall that an 8-element array

would be numbered from 0 to 7, not 1 to 8. So should it start from position 7,
ARRAYSIZE-1, or number.length-1? That depends on how many integers

are in the array. If there are only six integers in the array, then it should not start

from position 7, but rather from position 5. Why not 6? For the same reason just

mentioned, if there are six integers in an array, they would typically occupy

elements 0 to 5. So if there are n integers in an array, the output should start

from position n-1 as shown in the following code segment:

for(i¼n-1; i>¼0, i--)
System.out.println(number[i]);

7.5 Reversing an Array 213

Notice that the loop control variable starts at n-1, the loop continues while i is

greater than or equal to 0, and that i is decremented each time through the loop.

Although this would output the array in reverse order to the user, have the values in

the array changed? The answer is no. So what if instead of outputting the array in

reverse order, one actually wanted to reverse the contents of the array? One way to

accomplish this task is to declare another array and then copy the contents of the

first array into the second array in reverse order. However, what is a possible

drawback with this solution? The problem is that it takes two arrays or twice as

much memory. In this example, it would require two 10-element arrays for a total of

20 elements. For a small array this is not much of a problem, but for a very large

array, this would entail a substantial amount of memory. Instead, the solution is to

reverse the array in place, thus using only one array.

The algorithm takes the first data item and the last data item and swaps them.

Then, the second data item and the second to the last data item are swapped, and so

on as shown in Fig. 7.1.

Again, one needs to be careful not to swap elements that do not contain values.

When n equals 6, element 0 is swapped with the n-1 element, then element 1 is

swapped with the n-2 element, and so on. The loop control variable can be used for

elements 0, 1, and 2, but how does one access elements n-1, n-2, and n-3? One
solution is to use a second variable such as j so that when the loop control variable,

say i, is incremented, the variable j is decremented. But are two variables really

needed? If one thinks about it, one should be able to see a pattern in accessing both

ends of the data. When i is zero, the contents of location 0 needs to be swapped

with location n-1. Although a little difficult to see here, in the first instance i is

equal to 0, so n-1 could be thought of as n-i-1. However, sometimes a pattern is

difficult to see in the first instance, but can be seen a little better in subsequent

instances. Consider the next case when i is 1, it needs to be swapped with n-2.
Since i would be equal to 1, n-2 could again be thought of as n-i-1. So instead

of using two indexes, only one index is needed, which is a little more elegant.

Lastly, the matter of the swap needs to be considered. If the contents of two simple

variables need to be swapped, how can this be accomplished? When the value of one

variable is transferred to another variable, the previous contents of the variable being

[0]
[1]
[2]
[3]
[4]
[5]
[6]
[7]

2
3
5
6
7

8

number
Fig. 7.1 Reversing an array

214 7 Arrays

swapped into are destroyed, so the previous contents need to be stored in a temporary

memory location, often calledtemp. First the contents of the variablex need to be put

aside in the temporary memory location temp using a temp ¼ x; instruction.

x

y
temp

5

7
5

Once the contents of variable x have been moved into temp, the contents of

variable y can be copied into the variable x using an x ¼ y; instruction.

x

y
temp

7

7
5

Now that the contents of y have been copied into x, the contents of temp can be

copied into the variable y using a y ¼ temp; instruction.

x

y
temp

7

5
5

The whole sequence of instructions is as follows:

temp ¼ x;
x ¼ y;
y ¼ temp;

So how can this be used with an array? Instead of using simple variables, the

corresponding location of the array can be substituted using the variables i and

n-i-1 as discussed above and shown below:

temp ¼ number[i];
number[i] ¼ number[n-i-1];
number[n-i-1] ¼ temp;

Assuming i is equal to 0 and n is equal to 6, then going from left to right in

Fig. 7.2 the execution of the three instructions is shown in the dashed boxes above

each array.

Putting it all together with the loop results in the following code segment.

However, one needs to be careful when writing the code to solve this problem.

For example, can the error in the following code segment be spotted?

// *** Caution: Incorrectly implemented code ***
for(i¼0; i<n; i++) {

temp ¼ number[i];
number[i] ¼ number[n-i-1];
number[n-i-1] ¼ temp;

}

7.5 Reversing an Array 215

The swapping is okay, but what about the number of times the for loop

iterates? At first one might think that the for loop is iterating one more or one

less time than it should, but look at the code again. The problem is that after i gets

halfway through the loop and has swapped the first half with the second half of the

array, the loop continues and swaps the second half back with the first half of

the array. This can be a tough problem for a beginning programmer to detect,

because after supposedly reversing the array, and subsequently outputting the

array, there appears to be no change in the order! Rather, the loop should only go

halfway through the array and then stop. This makes sense when there is an even

number of values in the array, but what if there is an odd number of items in the

array as in Fig. 7.3?

Certainly, one does not need to swap the center item with itself. If there are

7 items in the array and n equals 7, then 7 divided by 2 is 3. Isn’t it 3.5? No, recall
that when an integer is divided by an integer, the answer is an integer. The result is

[0]
[1]
[2]
[3]
[4]
[5]
[6]
[7]

2
3
5
6
7
8

9

number
Fig. 7.3 Reversing an odd

number of items in an array

[0]
[1]
[2]
[3]
[4]
[5]
[6]
[7]

8
3
5
6
7
2

number

temp 2

number[n-i-1] = temp;

[0]
[1]
[2]
[3]
[4]
[5]
[6]
[7]

8
3
5
6
7

8

number

temp 2

number[i] = number[n-i-1];

[0]
[1]
[2]
[3]
[4]
[5]
[6]
[7]

2
3
5
6
7
8

number

temp 2

temp = number[i];

Fig. 7.2 Swapping items in an array

216 7 Arrays

that the loop will iterate 3 times and swap the first three data items with the last

three in the array. The correct code can be found below:

// *** Correctly implemented code ***
for(i¼0; i<n/2; i++) {

temp ¼ number[i];
number[i] ¼ number[n-i-1];
number[n-i-1] ¼ temp;

}

After reversing the array, it can be output. Since the output looks the same as

when just outputting the array in reverse order without actually reversing the

contents of the array, the difference between the two ways of approaching the

problem might seem subtle to a beginning programmer. However, that is exactly

the point that is trying to be made in the previous section. Just because the output

might look the same does not mean the code has been written correctly. It is

important to understand the specifications before attempting to write a program.

Does the user or instructor just expect a listing in reverse order, or is there a plan to

have subsequent code process the data in reverse order? Of the two, the second

example is probably the better choice because if any subsequent code expects the

array to be modified, it is important to actually reverse the array. A code segment

illustrating the input, reversing, and output is given in Fig. 7.4.

Fig. 7.4 Code segment to input, reverse, and output

7.5 Reversing an Array 217

As can be seen, the segment uses a sentinel controlled loop to count and input the

integers into the array and then copies the number of integers into n. It then reverses
the integers in the array and lastly outputs the contents of the array.

7.6 Searching an Array

One of the benefits of storing data on a computer is that it can easily be retrieved.

For example, once data has been placed into an array, it can subsequently be

searched to see if a particular item is in the array. There are two common ways to

search for data in an array, the sequential search and binary search.

7.6.1 Sequential Search

A sequential search is just as it sounds; the data in the array is searched in sequence

from the beginning of the array to the end. It is similar to an instructor hunting for a

particular exam in a stack of random exams on a desk, where he or she would start

at the top of the pile of exams and proceed to the end. If he or she were lucky, in the

best-case scenario, it might be the first one on the pile of exams. In the worst-case

scenario, it would be the last one in the pile of exams. If there are n exams in

the stack, it could take 1 to n times of picking up and looking at the exam to

determine whether it is the correct one. However, usually it will be somewhere

in between the first and last exams, and one could say that on average it will take

n/2 times to find the exam. Of course, once the exam is found, there is no need to

continue looking through the pile of exams and the searching can stop. Further, if

the instructor is searching for more than one of the student’s exams in the stack,

then searching would continue until the end of the stack. Lastly, it is possible

that the exam is not in the pile of exams, so in that case it is not found.

This is essentially the algorithm that can be used when performing a sequential

search on an array. Searching through the pile of exams is equivalent to searching

through an array which can be accomplished using a loop. If the number of items in

the array is known, such as n, a for loop could be used. Then, each element in the

array can be compared to the item being searched. However, once it is found, there

is no reason to continue searching through the array, so the loop should stop before

reaching the end. Since there are two reasons why the loop might stop, the for loop

might not be the best choice. Although a for loop could be used, the code for it is

rather unstructured and the while loop is probably the better choice. Once the item

being searched for is found, a boolean flag can be set and checked in the while
loop to indicate that further iteration is no longer necessary. What if there are

duplicates in the array? The iteration would need to continue and the possibility of

searching for duplicates is left as an exercise at the end of the chapter.

The name of the flag variable could be anything, but since it is indicating

whether or not the item was found, the variable name found is a good one. Before

entering the loop, the item has not been found, so the found flag can be initially set

218 7 Arrays

to false. The loop can then search until either the item is found or all the values in

the array have been searched. Then, for each iteration of the loop, an if statement

can compare whether the current item in the array is equal to the item being

searched, and if so, the found flag is set to true. Otherwise, the found flag

remains false. Assuming the array already contains various values, the code in

Fig. 7.5 prompts for and inputs the value to be searched.

When the execution of the code segment is complete, if item was found, then

the found flag will be true and i will indicate the location it was found. If the

item was not found in the array, the found flag will remain false. Note that

an && is used in the while statement, because only while both i is less than n and

found is false should the loop continue to iterate. Also notice that !found is

used in the while loop instead of found !¼ true or found¼¼ false. Since
the found flag is a boolean variable, it will contain either true or false, so it
is not necessary to compare it to true or false. Likewise, in the if statement

after the while loop found ¼¼ true is not used because if the found flag is

true, it is unnecessary to compare it to true.

7.6.2 Binary Search

A sequential search is useful when items are in random order, but what if the data to

be searched are not in random order? Returning to the pile of exams, what if they

were in alphabetical order? Wouldn’t it be easier and faster to find the particular

exam in question? For example, if a person’s last name began with the letter A, then

it would appear toward the top of the stack of exams, and if a person’s last name

began with the letter Z, then it would appear toward the bottom. If someone’s last

name began with the letter T, it would not make sense to start at the top and work

their way down. Although unlikely, it is possible that the stack of exams contains

only people whose last names begin with the letters S through Z, so starting at the

other end might not be a good idea either.

Fig. 7.5 Sequential search

7.6 Searching an Array 219

The safe route is to just split the stack of exams into two halves and determine

whether the Ts are in the top half or the bottom half. In the case where the names on

the exams begin with A through Z and in the middle is a name starting with

the letter M, an exam with a name beginning with the letter T would be in the

bottom half. In the case where the stack contains names that start with the letters

S though Z, and if the name on the exam in the middle starts with the letter X, then

the exam with the letter T would be in the top half. In either case, with just one

comparison, the task of searching has been cut in half.

The beauty of this technique is that after the stack of exams has been cut

in two, the process can be repeated. Using the first example with the second

half of exams from M through Z, it could then be cut in half again, where maybe

the middle exam has a name that starts with the letter S and again the letter T

would be in the second half. When the half with names starting with S through Z

is cut in half again, and assuming the middle exam has a name that starts with

the letter V, then the letter T would be in the first half. If at any time when the

stack is cut in half and the exam being searched for happens to be in the

middle, the processing would stop. This process would continue until there is

only one exam left, and if it is not the exam being searched for, then the exam

is not found.

Consider the code segment in Fig. 7.6 which searches any array of integers.

Notice that i is the lower index, j is the upper index, and mid is the middle

position of the array to be searched.

Should item be the middle integer, then it is found. Otherwise, depending on if

the item is less than or greater than the middle integer, j or i takes on the value of

mid - 1 or mid + 1, respectively. The search continues until item is found in the

middle or i is greater than j indicating that item is not in the array.

Note that whereas the sequential search can work with either unsorted or sorted

data, the binary search can only work with sorted data. Further, if the data is

unsorted, then only the sequential search can be used.

Fig. 7.6 Binary search

220 7 Arrays

7.6.3 Elementary Analysis

Although at first the binary search might seem a little slow, it really is quite fast. For

example, to make it simple, assume that there are 64 items (which is a power of 2) to

be searched and the item is not in the list. When the array of 64 is cut in half, there

would be 32 items to be searched. When 32 is cut in half, there are 16 to be searched,

and 16 cut in half is 8. Half of 8 is 4, half of 4 is 2, and half of 2 is 1. The original

stack of 64 is cut in half 6 times. That means with just 6 comparisons, the item would

be found or not found in the worst-case scenario. With a sequential search, the

worst-case scenario would take 64 times, where 6 is clearly better than 64.

When one is first learning about logarithms, they are usually in base 10. Recall that

103 is equal to 1,000 and log10 1,000 ¼ 3. However, since the above example is a

binary search and if one thinks about it, 26 is equal to 64 and log2 64 equals 6. One

will find in computer science that many algorithms will be binary in nature so when

one sees a logarithm, it will usually be log2. Further, should the subscript be missing,

then in the field of computer science, it can usually be assumed that the default is log2.

Returning back to the binary search, it was seen that a group of 64 could be

searched in 6 comparisons. If 1,024 integers were in an array, it would take just

10 comparisons in the worst case to find the item being searched, since 210 equals

1,024 and log2 1,024 equals 10. This is much better than the sequential search

which would take 1,024 comparisons to find an integer in an array in the worst case,

and on average it would take 1,024/2 times which equals 512. What if the number

of items being searched is not a power of two? For example, what if there were

1,000 items to be searched? The answer is that it would be no worse than the next

highest power of two, which in this case would be 1,024.

So far, only concrete numbers have been used, but can this idea be generalized to an

unknown number of items in an array?Yes, assume that there aren items in an array. If a

sequential search were used, then the average case would be n/2 and the worst case

would ben, whereas with the binary search the worst case would be log2n. This concept
of comparing algorithms is a very important one in the field of computer science, where

the relative speed of algorithms can be compared with each other. A common notation is

touse thecapital letterO tocompare the relativeorderofmagnitudeofvariousalgorithms,

and the use of the capital letter O is called BigO notation (pronouncedBigOh). So in the

worst case the sequential search is said to be of order n or O (n) and in the worst case the
binary search is said to be of order logn, or O (logn). Although introduced here and used
on occasion elsewhere in this text, this concept becomes much more frequent in

subsequent courses such as a second course in computer science that examines data

structures or a course on advanced data structures and/or algorithm analysis.

7.7 Sorting an Array

As has been seen, the binary search is much faster than the sequential search. Its

disadvantage is that the data must be in order. But how does the data get in the

proper order? One way is to have the data entered in the proper order to begin with.

7.7 Sorting an Array 221

However, that would require a lot of effort on behalf of the person entering the data.

Instead, wouldn’t it be more convenient to just enter the data in any order and let

the power of the computer do the work of sorting the data? The answer is yes as will

be seen shortly.

There are many algorithms that have been developed to sort data. Some

are sufficiently fast with small sets of data, but as the number of items to be

sorted becomes larger, they are not very efficient. There are other algorithms

that excel at large amounts of data but are not as efficient on smaller sets. There

are still other algorithms that work well on data that has already been partially

sorted, and others that are more efficient when the data is totally random. The

more efficient an algorithm, the more complicated it is, and these are usually

learned in subsequent computer science courses or texts. For now, this text will

examine one of the simpler algorithms known as the bubble sort. As a way to

help understand the bubble sort, this text breaks it into two separate sorting

algorithms, where the basics are presented as the simplified bubble sort and

then modified to help its efficiency, where the modified version is the true

bubble sort.

7.7.1 Simplified Bubble Sort

Assuming one wants to sort data in ascending order (from the smallest to the

largest), the bubble sort gets its name from the way the smaller values slowly

move up toward the top of an array, as bubbles might slowly move up in a glass of

soda. The bubble sort works by comparing pairs of adjacent integers and if the pair

is out of order, swapping the two integers as shown in Fig. 7.7 which should be read

from left to right, top to bottom.

As can be seen, the first and second integers are compared, and if they are in the

correct order, they remain as they are, but if the integers are out of order, they are

swapped. This process is repeated for each pair of adjacent integers. Given an array

of 5 data items, four pairs of integers are compared.

After the first pass through the array, note that the smallest integer has moved up

one position. Also, note that the bottom integer in the array is now the largest one.

After one pass, there is no need to subsequently compare the bottom integer. So

when going through a second pass comparing the pairs of integers, the loop can

iterate one less time.

But how many of these passes need to be made? If the first time through

there are four pairs of integers to be compared and the second time there is one

less integer to be sorted, then the second time through there would be only three

pairs of numbers to be compared. It would follow that the third time through there

would be two pairs and the fourth time there would be only one pair of integers to

be compared. The result is that for 5 integers, there would be four passes through

the array, each comparing one less pair of integers. If there were n integers in

an array, then it would follow that n-1 passes would need to occur. To make

222 7 Arrays

this happen in a program, it should be apparent that a loop is needed. Further,

the loop would need to iterate n-1 times. Since it is a number based on n, then
a for loop would be a good choice.

If the number of passes needs a loop, it should seem clear that the comparison

of the pairs of integers within each pass also needs a loop. However, the number of

pairs of integers to be compared is different each time. How can this problem be

resolved? Notice that the number of pairs of integers that need to be compared

decreases by one each time. Is there a variable that could be used for this? If

there are n-1 comparisons the first time, n-2 the second time, and so on, and

further if the outer loop control variable, say i, is going from 0 to 3, then that

variable could be used to determine the number of comparisons. So when i is 0 the

first time, n-i-1 would be equal to 4; then when i is equal to 1 the second time,

then n-i-1 would be equal to 3; and so on. The expression n-i-1 should look

familiar from the code for reversing an array, and this expression comes in handy on

many occasions.

Lastly, which two elements would need to be compared each time? Since i is

used for the outer loop, then j could be used for the inner loop. So for the first time

through when j is equal to 0, the 0th and 1st elements would be compared, which

would be the j and j+1 elements, and when j is equal to 1, it would compare the

1st and 2nd elements and so on. The swap would be similar to the one developed in

[0]
[1]
[2]
[3]
[4]
[5]

3
6
9
5
2

number

Swap

[0]
[1]
[2]
[3]
[4]
[5]

3
9
6
5
2

number

Compare

[0]
[1]
[2]
[3]
[4]
[5]

3
9
6
5
2

number

No Swap

[0]
[1]
[2]
[3]
[4]
[5]

3
9
6
5
2

number

Compare

[0]
[1]
[2]
[3]
[4]
[5]

3
6
5
2
9

number

Swap

[0]
[1]
[2]
[3]
[4]
[5]

3
6
5
9
2

number

Compare

[0]
[1]
[2]
[3]
[4]
[5]

3
6
5
9
2

number

Swap

[0]
[1]
[2]
[3]
[4]
[5]

3
6
9
5
2

number

Compare

Fig. 7.7 First pass of the bubble sort

7.7 Sorting an Array 223

the previous section, except it would be between the two compared elements,

j and j+1, as shown in the following code segment:

for(i¼0; i<n-1; i++)
for(j¼0; j<n-i-1; j++)

if(number[j]>number[j+1]) {
temp ¼ number[j];
number[j]¼ number[j+1];
number[j+1] ¼ temp;

}

The reader is encouraged towalk through the code segment to see how the algorithm

works. Again, notice how the smallest number slowly moves or bubbles its way to the

top of the array during each pass, thus giving the name to the bubble sort. To analyze the

speed of this algorithm, it should be noticed that the outer loop iterates n-1 times.

However, when doing analysis like this, the one less time thann that it loops is not very

significant for a very large numbern, so it is said to be of ordern. The inner loop iterates
one less time on each pass going from n-1 to 1 times, where it could be said that it

loops on average n/2 times. But again, for a very large n, the division by two would
still be a large number, so it is also said to be of order n. Recall from Chap. 4 that two

nested loops each iterating n times the total number of iterations would be n*n, or n2.
Since in the current example, one loop is nested inside the other and also each loop is

iterating approximately n times, this algorithm is of order n2, or O(n2).

7.7.2 Modified Bubble Sort

In the previous simplified sorting algorithm, does it make any difference whether

the data in the array is in reverse order, random order, or already sorted? The answer

is no, because the outer loop will still iterate n-1 times and the inner loop will still

iterate n/2 times. Although this does not make a difference if the array is in reverse

order, nor does it make a lot of difference if the array is totally random, what if the

array is already sorted? Granted this might not happen very often, but if it was

already sorted, it would still take O(n2) to sort an already sorted array. Is there some

way that this can be improved? During the first pass through the array, if there are

no swaps between any of the pairs of elements, then it would be known that the

array is already in order. Can the program be modified to take advantage of this

scenario? Yes, a boolean flag can be used to indicate whether a swap has or has

not occurred, and a good name for this flag is swap.
The first for loop could be replaced with a while loop that not only checks to

see how many passes have occurred but also checks to see if a swap has occurred. If

a swap has not occurred, then another pass is not necessary. Initially the swap flag

could be set to true prior to any code to indicate that a swap has occurred. This

would force the execution of the first time through the outer loop. The first thing to

be done inside to the loop is to reset the swap flag to false, so in case there are no
swaps during the inner loop, then no subsequent passes through the outer loop need

224 7 Arrays

http://dx.doi.org/10.1007/978-1-4471-6317-6_4

to occur. Lastly, should a swap occur in the if statement, the swap flag is sent to

true, thus forcing another pass through the outer loop:

swap ¼ true;
i ¼ 0;
while(i < n-1 && swap) {

swap ¼ false;
for(j¼0; j<n-i-1; j++)

if(number[j] > number[j+1]) {
swap ¼ true;
temp ¼ number[j];
number[j] ¼ number[j+1];
number[j+1] ¼ temp;

}
i++;

}

As before, notice that swap is used in the while loop instead of swap¼¼ true
or swap !¼ false. Also notice the addition of the extra set of braces for the while
loop, because now syntactically there are three statements in the body of the loop: the

setting of swap to false, the for statement, and the increment of i. Lastly, notice
that if there is more than one swap in the innerfor loop, theswap is set repetitively to

true. Although this seems a little redundant, it is quicker and easier to just keep setting

swap back to true than adding code to check to see if it is already set to true.
The result is that if the data in the array is in reverse order, there is no increase in the

speed of the algorithm. However, if the data is already in order, then there is only one

pass through the outer loop, and the inner loop iterates n-1 times. So, this algorithm

with data already sorted is O(n), and the bubble sort is one of the fastest sorting

algorithms for data that is already in order. Although this might seem a little confusing

to use a sorting algorithm with data that is already sorted, the algorithm also works

fairly well for data that is close to being in order. If only a few items need to be

swapped, then the outer loop will only iterate a few times, until there is a pass without

any swaps, in which case the outer loop stops iterating. So in cases where data is

possibly in order, or close to being in order, the bubble is a very good sort. However,

for large amounts of data that is in reverse order, close to being in reverse order, or

totally random, the bubble sort is not the best choice. As will be seen in later courses,

there are a number of other sorting algorithms that can handle these situations much

faster. Nonetheless for this text, the bubble sort provides a good starting point for

understanding how sorting algorithms work and can be used to sort small sets of data.

7.8 Two-Dimensional Arrays

The preceding sections introduced how to declare variables for one-dimensional

arrays, how to create them, and how to access elements in them. One-dimensional

arrays work well when dealing with a set of data such as a collection of grades for

7.8 Two-Dimensional Arrays 225

one student. However, what if there are multiple sets of data, such as grades for

several students? Then, the data could be stored in a two-dimensional array, which

are sometimes called a 2D array.

7.8.1 Declaration, Creation, and Initialization

Suppose that there are four students in a class and they each took three exams.

Instead of creating four separate one-dimensional arrays in order to record the exam

scores for each student, one two-dimensional array can be used to store all the

scores. Three exam scores for each student are kept in a row; therefore, there will be

four rows and three columns in the table. Assume that the scores are of type int
and the name of the array is scores. To declare a two-dimensional array, two sets

of brackets are required. The first one is for the rows and the second one is for the

columns as shown below:

int scores[][];

which is equivalent to

int[][] scores;

The two sets of brackets could be after or prior to the name of the array and the

second example above is used more often. A diagram after the declaration is shown

below:

scores null

The following creates a two-dimensional array of four by three integer values:

scores ¼ new int[4][3];

The number 4 in the first set of brackets specifies the number of rows and the

number 3 in the second set of the brackets specifies the number of columns. The

diagram in Fig. 7.8 illustrates the array after its creation. Notice that a

two-dimensional array is actually an array of one-dimensional arrays, meaning

that it consists of an array in which each element is a one-dimensional array.

An array can be declared and created at the same time using the following

statement:

int[][] scores ¼ new int[4][3];

The diagram for the above statement is the same as that in Fig. 7.8. Again, in

order to reinforce the concepts of declaration and allocation, two separate

instructions are used in this text.

To access the data in a two-dimensional array, two subscripts or indices are used,

one for the row number and the other for the column number. As in a

one-dimensional array, each index is of type int and starts from 0 in the array.

226 7 Arrays

The first exam score of the first student is stored in scores[0][0], the second
exam score is stored in scores[0][1], and the third exam score is stored in

scores[0][2]. The scores for the second student are kept in scores[1][0],
scores[1][1], and scores[1][2]. The scores for the third and fourth

students are stored in a similar fashion. Suppose that the first student made a

72 on the first exam, an 85 on the second exam, and a 91 on the third exam.

Then, the following statements store the scores for the first student in the appropri-

ate positions in the array:

scores[0][0] ¼ 72;
scores[0][1] ¼ 85;
scores[0][2] ¼ 91;

If the second student made 95, 89, and 90 on the three exams, the statements

below will initialize the scores for the second student:

scores[1][0] ¼ 95;
scores[1][1] ¼ 89;
scores[1][2] ¼ 90;

Scores for the third and fourth students can be entered in a similar manner. The

diagram in Fig. 7.9 shows the two-dimensional array after the initialization.

scores
[0]

[1]

[2]

[3]

--- --- ---

--- --- ---

--- --- ---

--- --- ---

[0] [1] [2]

[0]

[1]

[2]

[3]

Fig. 7.8 After creation of 2D array

scores
[0]

[1]

[2]

[3]

72 85 91

95 89 90

77 65 73

97 92 93

[0] [1] [2]

[0]

[1]

[2]

[3]

Fig. 7.9 After initialization of 2D array

7.8 Two-Dimensional Arrays 227

Alternatively the following statement will declare, create, and initialize a

two-dimensional array:

int[][] scores ¼ {{72, 85, 91},
{95, 89, 90},
{77, 65, 73},
{97, 92, 93}};

The size of the array is determined by the number of values provided in the set of

braces without explicitly specifying it inside the brackets. The diagram after the

above statement is equivalent to the one in Fig. 7.9.

7.8.2 Input and Output

Although the techniques of assigning data used in the previous section are adequate

for testing programs, how can the data be entered by the user? It is similar to a

one-dimensional array, but instead of using a simple for loop, a nested for loop is

used as shown below:

int[][] scores;
scores ¼ new int[4][3];
for(int i¼0; i<4; i++) {

for(int j¼0; j<3; j++) {
System.out.print("Student " + (i+1) + ", exam "

+ (j+1) + ": ");
scores[i][j] ¼ scanner.nextInt();

}
System.out.println();

}

Notice that each position in the array can be accessed using two index variables,

i and j, for the row number and the column number, respectively, inside the loop.

A portion of the output with sample input is as follows:

Student 1, exam 1: 72
Student 1, exam 2: 85
Student 1, exam 3: 91

Student 2, exam 1: 95
Student 2, exam 2: 89
Student 2, exam 3: 90

. . .

Alternatively, the number of rows and columns could be entered by the user, and a

two-dimensional array could then be created dynamically as discussed in Sect. 7.4.

Once scores are in the array, one can output them using a nested for loop. Suppose

228 7 Arrays

three exam scores for each student are to be output in a row. The code segment below

outputs the column labels first followed by the row labels and scores:

System.out.println(" exam 1 exam 2 exam 3");
for(int i¼0; i<4; i++) {

System.out.print("Student " + (i+1));
for(int j¼0; j<3; j++)

System.out.print(" " + scores[i][j]);
System.out.println();

}

Notice that the print statement for the column headings is outside the nested for
loop, since they are only output once. The print statement for the row label is

located prior to the inner for loop, which means it is output every time the control

variable i of the outer for loop changes. Also notice that three scores for each

student are output on the same line using the print in the inner for loop. The

println after the inner for loop moves the cursor to the next line for the next

student. The output from the above code segment is as follows:

exam 1 exam 2 exam 3
Student 1 72 85 91
Student 2 95 89 90
Student 3 77 65 73
Student 4 97 92 93

What if all the scores of thee exams need to be output line by line as shown

below?

Student 1 Student 2 Student 3 Student 4
exam 1 72 95 77 97
exam 2 85 89 65 92
exam 3 91 90 73 93

Again, a nested for loop can be used. In order to access all the scores in one

column of the array before going to the next column, the column number has to

remain the same in an outer for loop, while the row number is changing in the

inner for loop. This is left as an exercise at the end of the chapter.

7.8.3 Processing Data

Using the array scores, how can the average of the three exam scores for the first

student be calculated? All the scores for the first student are stored in the first row of

the two-dimensional array. In order to find the average, the values in the first row

have to be added together and divided by the number of exams. The following

formula will find the average for the first student:

(scores[0][0] + scores[0][1] + scores[0][2])/3;

7.8 Two-Dimensional Arrays 229

The average exam scores of other students can be found in the similar way.

However, if the instructor would like to find the averages for a large class, it would

not be efficient to list the formula for each student.

To process arrays, the length field is useful as discussed earlier in this chapter.

When an array is created, a reference to the array is stored in the variable. At the

same time, the length of the array is stored in an instance constant named length.
For a one-dimensional array, the length holds the number of elements in the

array. Since a two-dimensional array is an array of one-dimensional arrays, there

are several length fields associated with it. They keep track of the number of

rows and the number of columns for each row. With the array shown in Fig. 7.9, the

length of the array scores can be obtained by scores.length which is the

size of the one-dimensional array that the variable scores is referring to.

In this case, the value would be 4 indicating the number of rows. As shown in

Fig. 7.9, the elements of the array, scores[0], scores[1], scores[2], and
scores[3], are references to one-dimensional arrays. Therefore, their length can

be obtained by scores[0].length, scores[1].length, scores[2].
length, and scores[3].length. Since it is a four by three array, all of them

have a value of 3 indicating that the number of columns of the array scores is 3.

Returning back to finding the average of all the exam scores for the first student,

a for loop can be used as shown below:

double total, average;
total ¼ 0.0;
for(int j¼0; j<3; j++)

total ¼ total + scores[0][j];
average ¼ total/3;

The variable total contains the total of the three exam scores and the variable

average holds the average. The variable total is initialized to 0.0 at the

beginning, and inside the for loop, the three test scores, scores[0][0],
scores[0][1], and scores[0][2], are added together. The row number is

fixed at 0 and the value of the index variable j changes from 0 to 2 accessing the

scores of the first student. Since there are three exams, the totalwas divided by 3.
Although the elements of the array scores are of type int, the value for

average most likely requires more precision. Therefore, both the total and

average were declared as type double in order to avoid integer division. Using

the length field, the above code can be rewritten as

double total, average;
total ¼ 0.0;
for(int j¼0; j<scores[0].length; j++)

total ¼ total + scores[0][j];
average ¼ total/scores[0].length;

Notice that scores[0].length gives the number of the columns of the

two-dimensional array, which is 3 in this example, indicating the number of exams.

How can the above code be changed to find the average exam scores of all four

230 7 Arrays

students? Since the formula to find the average is the same for all the students, a

nested for loop can be used as shown below:

double total, average;
for(int i¼0; i<4; i++) {

total ¼ 0.0;
for(int j¼0; j<scores[i].length; j++)

total ¼ total + scores[i][j];
average ¼ total/scores[i].length;
System.out.printf("average for student " + (i+1) +

": %5.2f", average);
System.out.println();

}

Notice that the outer for loop is used to specify the particular student. All the

0’s in the brackets in the previous code indicating the first student are replaced by

the index variable i which changes from 0 to 3 for the 4 students in the class. Of

course, the value 4 can be replaced by the length field as shown below:

double total, average;
for(int i¼0; i<scores.length; i++) {

total ¼ 0.0;
for(int j¼0; j<scores[i].length; j++)

total ¼ total + scores[i][j];
average ¼ total/scores[i].length;
System.out.printf("average for student " + (i+1) +

": %5.2f", average);
System.out.println();

}

The scores.length gives the number of rows of the two-dimensional array.

In this example it is 4, which is the number of students. Assuming that the size of

the array is the same as the number of student and exams, the advantage of using the

length field is that no matter how many students or exams, the same code can be

used to find the average.

The next question is can the average of the first, second, and third exams be found

using a loop? The answer is yes. However, careful consideration should be taken

concerning the order of the elements accessed in a two-dimensional array. In the

previous example, the elements of the array were accessed in row-wise fashion. In

order to find the average score for each exam, they have to be accessed in column-wise

fashion. The key is the index variables i and j. In order to access all the data in one

column, the column number has to remain the samewhile the row number is changing.

The following code illustrates how the averages of the three exams are calculated:

7.8 Two-Dimensional Arrays 231

double total, average;
for(int j¼0; j<scores[0].length; j++) {

total ¼ 0.0;
for(int i¼0; i<scores.length; i++)

total ¼ total + scores[i][j];
average ¼ total/scores.length;
System.out.printf("average for Exam " + (j+1) +

": %5.2f", average);
System.out.println();

}

In the above code, the outer and innerfor loops are swapped from the previous code

segment, so that while the value ofj remains the same, the value ofi changes inside the

innerfor loop. Notice that the value ofj changed from 0 to 2 indicating there are three

exams. Even though the scores[0]. length is used in the condition of the outer

for loop, any of the values from scores[1].length through scores[3].
length could be used since they all have the same value for the number of columns.

7.8.4 Passing a Two-Dimensional Array to and from a Method

A two-dimensional array can be passed to a method just as a one-dimensional array

can be passed to a method. The following program implements a method that

calculates and outputs the average of the exam scores for each student in the

class. The studentsAvg method is called from the main method:

232 7 Arrays

The output from the above code is shown below:

average for student 1: 82.67
average for student 2: 91.33
average for student 3: 71.67
average for student 4: 94.00

Alternatively, since a two-dimensional array is an array of one-dimensional

arrays, each row can be passed to the method separately. The method

studentAvg implemented below takes a one-dimensional array of exam scores

for one student as a parameter, calculates the average, and returns it:

public static double studentAvg(int[] inRow) {
double total, average;
total ¼ 0.0;
for(int i¼0; i<inRow.length; i++)

total ¼ total + inRow[i];
average ¼ total/inRow.length;
return average;

}

How is the method above invoked? Since the method accepts an array of three

scores for one student, as in studentAvg(scores[0]), it will return the

average score for the first student. The average score for each student can be

found by calling the method inside the loop as shown below:

double average;
for(int i¼0; i<scores.length; i++) {

average ¼ studentAvg(scores[i]);
System.out.printf("average for student " + (i+1)

+ ": %5.2f", average);
System.out.println();

}

Notice that when the method studentAvg was called, score[i] was sent to

the method as an argument. Further, it is an element of a one-dimensional array

which has a reference to another one-dimensional array that has the scores for one

student.

Just like a two-dimensional array can be sent to a method, it can be returned from

a method. The following example shows how a two-dimensional array is created

inside the method getScores and returned to the mainmethod. There is no need

to create an array in the mainmethod after the declaration because the reference to

the newly created array in the method getScores will be assigned to the variable

scores when the flow of control returns from the method:

7.8 Two-Dimensional Arrays 233

Notice that the return type of the method getScores is int[][], which
means it will return the reference to a two-dimensional array of int type.

7.8.5 Asymmetrical Two-Dimensional Arrays

Suppose that nonstop flights from several cities need to be recorded. A

two-dimensional array can be used to keep this information. Each row can contain

the list of destinations from a particular city. For example, there may be direct

flights to Chicago, St. Louis, and Dallas/Fort Worth from City1, while Dallas/Fort

Worth may be only the city reached from City2, and so on. It is possible that each

city has a different number of nonstop flights to the destinations, which means that

each row could have a different number of columns. Can a two-dimensional array

have rows of unequal lengths? The answer is yes, because a two-dimensional array

is an array of one-dimensional arrays, each one-dimensional array can be created

separately using a different size. Before creating an asymmetrical two-dimensional

array, consider the example from the previous section. Instead of creating an array

scores using the following statements,

int[][] scores;
scores ¼ new int[4][3];

a one-dimensional array of size 4 can be created first and then for each row a

one-dimensional array of the size 3 can be created next as shown below:

int[][] scores;
scores ¼ new int[4][];
scores[0] ¼ new int[3];
scores[1] ¼ new int[3];
scores[2] ¼ new int[3];
scores[3] ¼ new int[3];

234 7 Arrays

The same thing can be accomplished using a loop.

int[][] scores;
scores ¼ new int[4][];
for(int i¼0; i<4; i++)

scores[i] ¼ new int[3];

Returning back to the flights example, the second alternative above can be used

to create a two-dimensional array with rows of unequal lengths. Suppose there are

three cities and the first city has three nonstop flights, the second city has one, and

the third city has two. The following will declare and create an array city:

String[][] city;
city ¼ new String[3][];
city[0] ¼ new String[3];
city[1] ¼ new String[1];
city[2] ¼ new String[2];

The code below will assign values (ORD for Chicago, STL for St. Louis, and

DFW for Dallas/Fort Worth) in the one-dimensional array for the first city:

city[0][0] ¼ "ORD";
city[0][1] ¼ "STL";
city[0][2] ¼ "DFW";

Alternatively the following statement will accomplish declaration, creation, and

initialization in one statement:

String[][] city ¼ {{"ORD", "STL", "DFW"},
{"DFW"},
{"ORD", "DSM"}};

The following diagram shows the array city:

city
[0]

[1]

[2]

"ORD" "STL" "DFW"

"DFW"

"ORD" "DSM"

[0] [1] [2]

Two-dimensional arrays are examples of multidimensional arrays. The same

principle can be applied to n-dimensional arrays, where n can be any integer value.
A three-dimensional array is left as an exercise at the end of the chapter.

7.8 Two-Dimensional Arrays 235

7.9 Arrays of Objects

Looking at the scores example from Sect. 7.8, the two-dimensional array scores
keeps only students’ exam scores. It would be nice if the names of the students were

associated with their scores. So far arrays with only primitive data types, strings,

and arrays have been discussed. As seen in the preceding sections, an array is a

collection of data of the same type regardless of the number of dimensions.

Therefore, the scores of type int and the student names of type String cannot

be stored together in a simple array, because a two-dimensional array whose

columns contain values of different data types is not allowed.

To get around this problem, a one-dimensional array of String type can be

used for the name along with a two-dimensional array scores. The array could be
declared as studentName which would be of size 4 containing the names of four

students. The three scores in the one-dimensional array scores[0] would corre-

spond to the student at studentName[0], the scores in scores[1] would be

made by the student at studentName[1], and so on. This technique of using two
separate arrays, called parallel arrays, is useful when a programming language does

not support objects or other structures.

In Java, instead of using parallel arrays, associated data can be encapsulated into

an object, and a one-dimensional array of these objects can be created. Objects that

represent the name of the student and the test scores can be described by the class

Student. The name of the student and their test scores will be declared as instance

variables, and a constructor and four accessors for each data member are defined in

the class Student as shown below:

236 7 Arrays

In the mainmethod, a one-dimensional array of type Student is declared, and

an array of size four is created using the following statements:

Student[] scores;
scores ¼ new Student[4];

The execution of the above code will result in the diagram shown below:

scores
[0]

[1]

[2]

[3]

null

null

null

null

Notice that only the array is created and the elements of the array scores are

initially null. Therefore, each individual object has to be created and the reference
to it has to be placed in the array. Each object of type Studentwill contain the last

name of the student and three test scores. The following statement will create an

object and assign the reference to the object to the first position of the array,

scores[0]:

scores[0] ¼ new Student("Fonteyn", 72, 85, 91);

Similar statements will be used to place the other students in the array. Figure 7.10

illustrates the array of objects. The following program will output the contents of the

array scores, using a loop and accessors:

7.9 Arrays of Objects 237

Notice that scores[i] refers to an object of type Student in the array

scores. Here an indexed expression is used to refer to an object instead of a

simple variable. Therefore, the same syntax can be used to call the object’s method

such as in scores[i].getName() . The output from the above code is shown

below:

Name Exam 1 Exam 2 Exam 3
Fonteyn 72 85 91
Pavlova 95 89 90
Baryshnikov 77 65 73
Nureyev 97 92 93

The average test scores of each student or each exam can be calculated using the

accessors defined in the class Student.

7.10 Complete Program: Implementing an Array

Using an array, a program which calculates the standard deviation of a set of data

will be developed in this section. The program will:

• Allow the user to enter the number of items and the actual data

• Compute the standard deviation of the data

• Display the standard deviation

The standard deviation, represented by the symbol sigma, σ, is a measure of the

spread of the data. If the distribution is roughly bell shaped and symmetric, then

most of the data, approximately 68 %, lie within one standard deviation of the mean

between (mean � σ) and (mean + σ), and almost all the data, approximately 95 %,

scores
[0]

[1]

[2]
91

Student

Student

etc.

[3]

FonteynStringname

72int

int 85

int

exam1

exam2

exam3

name String

int 95

Pavlova

exam1

int 89exam2

int 90exam2

[0]

[1]

[2]

[3]

Fig. 7.10 Array scores with four objects of the type Student

238 7 Arrays

lie within two standard deviations of the mean between (mean � 2σ) and

(mean + 2σ). The definition of the standard deviation is

σ ¼
ffi
1

n

Xn
i¼1

xi � xð Þ2
s

First, the mean x is determined, which is the sum of the data divided by the

number of data values. Then, the mean is subtracted from every number xi � xð Þ to
get the list of deviations. Next, the resulting deviations are squared giving xi � xð Þ2.
Then, the squares are added to get their sum ∑i=1

n xi � xð Þ2. The result is divided

by the number of items in the list to get the variance. Lastly, to obtain the standard

deviation, the square root of the variance is calculated.

If only the mean of the numbers was to be calculated, there is no reason to

store the data in an array. Inside a loop the numbers the user enters can be

summed and then the average can be computed outside the loop. However, to

find the standard deviation, the data must be stored in some way because the

deviations need to be calculated by the formula xi � xð Þ using the mean and the

original data.

Declaring variables to store all the numbers is one way, but using an array is a

better solution when the size of the data is large. Assuming that the numbers are all

stored in an array named array, the following code will find the mean of the

numbers in the array:

total ¼ 0;
for(int i¼0; i<array.length; i++)

total ¼ total + array[i];
mean ¼ total/array.length;

The next step is to square each of the differences and add them together as shown

below:

total ¼ 0;
for(int i¼0; i<array.length; i++)

total ¼ total + Math.pow(array[i] - mean, 2);

Note that the method pow from the Math class is useful here. The following

code calculates the variance by dividing the total by the number of items in the

array:

variance ¼ total/array.length;

Finally, the standard deviation can be computed by taking the square root of the

variance as illustrated below:

sigma ¼ Math.sqrt(variance);

7.10 Complete Program: Implementing an Array 239

Notice another method sqrt in the Math class is used here. In the complete

program, three methods are defined to get data from the user, calculate the standard

deviation, and output the result. These threemethods,getData,computeStdDev,
and outputStdDev, will be called from the mainmethod. The complete program

is shown below:

240 7 Arrays

When the above code is compiled and executed using the sample input of 39,
40, 38, 96, 42, 47, 50, 44, 46, and 50, the output of the program looks like the

following:

Enter the number of data: 10
Enter the data 1: 39
Enter the data 2: 40
Enter the data 3: 38
Enter the data 4: 96
Enter the data 5: 42
Enter the data 6: 47
Enter the data 7: 50
Enter the data 8: 44
Enter the data 9: 46
Enter the data 10: 50
Standard deviation: 17.00

7.10 Complete Program: Implementing an Array 241

7.11 Summary

• Do not confuse the index of an array element with the contents of an array

element.

• Be careful not to access elements outside the bounds of the array.

• A sequential search works on data that is sorted or unsorted, whereas the binary

search works only on data that is sorted.

• On average or in the worst-case scenario, the sequential search is O(n), whereas
the binary search is on average or in the worst-case scenario O(log n).

• The simplified bubble sort is O(n2) on already sorted data, whereas the modified

bubble sort is O(n) on sorted data.

• On random data or data in reverse order, both the simplified and modified bubble

sorts are O(n2).
• A two-dimensional array is an array of one-dimensional arrays.

• An array can have any number of dimensions, although most arrays are either

one or two dimensional.

• A two-dimensional array can have rows of unequal lengths.

• Elements of an array can be either a primitive data type or an object.

7.12 Exercises (Items Marked with an * Have Solutions
in Appendix E)

1. Indicate whether the following statements are syntactically correct or incorrect.

If incorrect, indicate what is wrong with the statement:

A. int[] array[];
*B. double data[] ¼ new data[];
*C. int[] ¼ [2, 4, 6];
D. double[][] doubleArray[10];

*E. Student[5] class;
F. Student[] student ¼ new Student[26];

*2. Assume that a one-dimensional array named intArray of type int is

declared, created, and initialized correctly. Write a code segment to compute

the sum of all numbers stored in the even-numbered elements, i.e., intArray
[0] and intArray[2].

3. Using the array intArray described in the previous exercise, write a code

segment to output all the even numbers in the array, regardless of their position

in the array.

4. What is the output from the following code segment?

double[][] grades;
grades ¼ new double[34][15];
System.out.println(grades[11].length);
System.out.println(grades[34].length);
System.out.println(grades.length);
System.out.println(grades[7][5].length);

242 7 Arrays

http://dx.doi.org/10.1007/978-1-4471-6317-6_BM1

*5. What is the output from the following code segment?

int[][] intArray ¼ {{2, 5, 4}, {6, 3}, {9, 7, 1, 5}};
System.out.println(intArray[0].length);
System.out.println(intArray[2].length);
System.out.println(intArray.length);

6. Write the following code segments concerning a three-dimensional array.

A. Write a statement to declare a 3 by 2 by5 three-dimensional array of typeint.
B. Write a statement to create the array declared in the previous question.

C. Using i, j, and k as index variables, write a code segment to store the value

i*j*k in every position of the three-dimensional array created previously.

*7. Using the array scores discussed in Sect. 7.8.2, write a code segment to

output all the exam scores stored in the array. Each row should contain scores

for all four students as shown below:

Student 1 Student 2 Student 3 Student 4
exam 1 72 95 77 97
exam 2 85 89 65 92
exam 3 91 90 73 93

8. Using the array scores discussed in Sect. 7.8, write a method to find the

average for a particular exam. The method should take a reference to a

two-dimensional array and a column number as arguments. Then, implement

a main method to find the average for each exam by calling a method inside a

loop and output them.

9. Using the array scores discussed in Sect. 7.9, write a code segment to find the

lowest score in the entire array and output it.

10. Using the array scores discussed in Sect. 7.9, write a code segment to find the

highest score for each exam and output the score along with the student’s name.

11. Write a code segment to perform a sequential search on a one-dimensional

array. Assume that the set of data could contain duplicates. If the item being

searched for is found in the array, record the number of the occurrences also.

12. Develop a program to store names in a one-dimensional array. The program

should initially create a one-dimensional array which holds 10 String values.

As the user enters names one by one, each name will be stored in the array.

Whenever the array becomes full, create a new array that is twice the size of the

previous array, copy the data over to the new array, and continue input.

7.12 Exercises (Items Marked with an * Have Solutions in Appendix E) 243

Recursion 8

8.1 Introduction

In Chap. 4, the topic of iteration was discussed as a way to solve various problems

using loop structures. In this chapter, an alternative method to solve similar

problems using recursion is presented. Whereas iteration tends to use less memory

and is faster, recursion tends to use more memory and is slower. If recursion is not

as efficient in terms of speed and memory, why would one want to use it? The

reason is that some problems lend themselves better to a recursive solution than to

an iterative solution. Many mathematical solutions are expressed more clearly

using a recursive definition, and many data structures and algorithms can be written

easier using recursion resulting in a less complicated program.

Since many programmers learn iteration first, sometimes the subsequent change to

recursion can be a little difficult, although the reverse can be true as well. However, by

using simple examples and contours, this transition can bemade easier.With time and

practice, one learns that recursion is a powerful tool for solving complex problems.

8.2 The Power Function

Recall from Sect. 4.4 the assumption that Java did not contain the pow method in

the Math class, so a for loop was used to calculate the power function, xn. As a
brief review, the iterative solution to the problem began by initializing the variable

answer to 1, used a for loop that iterated n times, and each time through the loop

the variable answer was multiplied by x.
Just as there was a pattern to finding an iterative solution, there is a pattern to

solving a problem recursively. As with iteration, recursion also needs three parts:

initialization, test, and change.However, instead of typically starting the first casewith

the number 1 and working forward as with iteration, in a sense recursion tends to look

at the last case and work backward. So instead of starting at1, recursion starts with the
largest number as its initialization. As with iteration, it helps first to see if a pattern can

J.T. Streib and T. Soma, Guide to Java: A Concise Introduction to Programming,
Undergraduate Topics in Computer Science, DOI 10.1007/978-1-4471-6317-6_8,
© Springer-Verlag London 2014

245

http://dx.doi.org/10.1007/978-1-4471-6317-6_4
http://dx.doi.org/10.1007/978-1-4471-6317-6_4

be found using specific values. For example, assume x is equal to 2 for the power

function xn with the pattern presented in Sect. 4.4 repeated below:

20 ¼ 1

21 ¼ 1 * 2 ¼ 2

22 ¼ 1 * 2 * 2 ¼ 4

23 ¼ 1 * 2 * 2 * 2 ¼ 8

.

.

2n ¼ 1* 2 * 2 * 2 * . . . * 2 (n times)

First, note that 23 is equal to 1*2*2*2 and that 22 is equal to 1*2*2. Given this,

couldn’t the definition of 23 be thought of in terms of 22? In other words, couldn’t

1*2*2*2 be defined as 22*2? The answer is yes, where 22 can substitute for the 1*2*2
portion of 1*2*2*2 and 23 can be defined recursively in terms of 22. This process can

continue, where 22 can be defined as 21*2 and 21 can be defined as 20*2. Just as
something needs to change in the body of a loop, this is the change portion of recursion.

Given there can be an infinite loop in iteration, there can also be “infinite”

recursion. However, instead of looping forever, the program would recurse trying to

solve the power function in terms of 2�1, 2�2, and so on until there is nomorememory.

Just as there needs to be a test to ensure that iteration does not continue indefinitely,

there needs to be a test so that recursion does not continue indefinitely. Since 20 equals

1, this is where recursion should stop and this is often known as the base case or

terminal case. Rewriting part of the pattern from above, it would look as follows:

20 ¼ 1

21 ¼ 20 * 2 ¼ 2

22 ¼ 21 * 2 ¼ 4

23 ¼ 22 * 2 ¼ 8

This is good for 23, but what about 2n? Looking at the above pattern, notice that

each time the value for n is decreased by 1. Again, note that 23 ¼ 22*2, 22 ¼ 21*2,
and so on. In terms of n, this can be rewritten as 2n ¼ 2n�1*2, so the last line of the
original definition could be

2n ¼ 2n�1 * 2

Further, instead of using 2 for x, the entire definition could be rewritten in terms

of x as follows:

x0 ¼ 1

x1 ¼ x0 * x
x2 ¼ x1 * x
x3 ¼ x2 * x

.

.

xn ¼ xn�1* x

246 8 Recursion

http://dx.doi.org/10.1007/978-1-4471-6317-6_4

However, the above still looks like an iterative definition, and there is a much

more concise way of writing a recursive definition. For the sake of convenience, it

helps to assume that neither x nor n is negative and that x and n are not both 0, since
00 is undefined. Then for all cases where n is greater than 0, the last line could be

used. In the case where n is 0, the first line could be used as the base or terminal

case. The resulting recursive definition is as follows:

xn ¼ {if n > 0, then xn�1 * x, otherwise 1}

This forms the basis of the method which could be written as follows:

public static int power(int x, int n) {
int answer;
if (n > 0)

answer ¼ power(x,n-1)*x;
else

answer ¼ 1;
return answer;

}

Notice the method is declared as static, so that a class does not need to be

defined nor does an object need to be created as discussed in Chap. 5. Further, note

that a local variable answer has been declared. As will be discussed later, this will

waste memory in recursion, but for now using a memory location will be very helpful

in tracing through the program using contour diagrams. After the code is understood

using contours, the method can be rewritten to save memory as will be shown later.

More importantly, notice that the powermethod is calling itself. Is that legal? Yes it

is, but as discussed above, there needs to be a way to stop the recursion, and that is the

purpose of the else section and the terminal case of answer¼1. Of course a main

program will need to be written to drive the method as shown in Fig. 8.1 with line

numbers to help facilitate seeing the code execute via contours.

Before calling the powermethod, notice that the main program checks whether

x is greater than or equal to 0, that n is greater than or equal to 0, and that x and n
are not both 0. It is often best to first test the base case to ensure that it is working

properly. So to start, assume that the user has entered a value of 2 for x and 0 for n.
Since n is not greater than 0, there should be no recursion, and answer is assigned

a value of 1 which is returned to the main program and output. Because this is a

simple instance, a contour will not be written for this case.

However, what if x is equal to 3 and n is equal to 2? This is when things start to
get interesting and contours are very helpful. Figure 8.2 shows the state of execu-

tion just prior to Line 22 in power.
As discussed inChap. 1, although typically the contour forCh8Sample1would not

be drawn, it is helpful to see it in this case. Since the powermethod is static, notice
that an object is not created nor is there a reference to an object. Instead, the contour for

power is drawn in the class Ch8Sample1, just as the main method which is also

declared asstatic. As can be seen in the contour forpower, there is a new cell called

ret. This is not the value returned from a method, but rather indicates where the

8.2 The Power Function 247

http://dx.doi.org/10.1007/978-1-4471-6317-6_5
http://dx.doi.org/10.1007/978-1-4471-6317-6_1

method will return upon completion. Whereas previously it was fairly clear where a

method was returning, with recursion and its multiple calls, it might not be so obvious.

The ret cell also has listed a type of addr which is an abbreviation for address.

Ch8Sample1

power

x 3

2n

int

int

int ---answer

main

x

n

int

int

answer int

ret addr L14 main

3

2

Fig. 8.2 Contour prior to the execution of Line 22 in the first call to power

Fig. 8.1 main program and power method

248 8 Recursion

Although there is not a type associated with this cell as there is with other variables and

parameters, the address is the place where the flow of control will be transferred when

the method is finished. Lastly, note that the line number is abbreviated as L14 and the

name of the method main is included in the cell. Although in this case it should be

apparent that Line 14 is inmain, indicating the name of themethodwill be important as

will be seen shortly.

Since n is greater than 0, once Line 23 has begun to execute, the first thing that

needs to be done is recursively call the power function. Figure 8.3 shows the state

of execution just prior to Line 22 in the second call to the power method.

As can be seen, there are now two contours depicting the power method.

Similar to when there was more than one object of the same type in Chap. 5, notice

that superscripts have again been employed to distinguish between the two

contours. Also note that when calling power a second time, the value of n has

been decremented by 1. Lastly, notice that the ret field points back to Line 23 in

the first call to power. Of course, when Line 22 in the second call to power is

executed, n is still greater than 0, and there is another call to power as shown in

Fig. 8.4 illustrating the state of execution prior to Line 22.

The third contour has now been added, where the return is to Line 23 in the

second call to power and n is equal to 0. This time when Line 22 is executed, n is

no longer greater than 0, but rather equal to 0, so instead of making the recursive

call in the then section of the if statement, the else section is executed. This is the

terminal case and no more recursive calls will occur. Instead 1 is assigned to

answer, and Fig. 8.5 shows the state of execution prior to Line 26 in the third

call to power.

Ch8Sample1

power1

x 3

2n

int

int

int ---answer

main

x

n

int

int

answer int

ret addr L14 main

3

2

L23 power1

3

1

power2

x

n

int

int

answer int

ret addr

Fig. 8.3 Contour prior to the execution of Line 22 in the second call to power

8.2 The Power Function 249

http://dx.doi.org/10.1007/978-1-4471-6317-6_5

Ch8Sample1

power1

x 3

2n

int

int

int ---answer

main

x

n

int

int

answer int

ret addr L14 main

3

2

L23 power1

3

1

power2

x

n

int

int

answer int

ret addr

x

n

int

int

answer int

ret addr L23 power2

3

0

power3

Fig. 8.4 Contour prior to the execution of Line 22 in the third call to power

Ch8Sample1

power1

x 3

2n

int

int

int ---answer

main

x

n

int

int

answer int

ret addr L14 main

3

2

L23 power1

3

1

power2

x

n

int

int

answer int

ret addr

x

n

int

int

answer int

ret addr L23 power2

3

0

1

power3

Fig. 8.5 Contour prior to the execution of Line 26 in the third call to power

250 8 Recursion

After the execution of Line 26, the value in answer is returned to Line 23 in the

second call to power. Then the value 1 is multiplied by the value 3 in x. The result
is then placed into the variable answer, and Fig. 8.6 shows the state of execution

prior to Line 26 in the second call to power.
Of course, the first thing one notices is that the contour for the third call to

power is now shaded light gray to indicate that it is deallocated. Also, the value 3
is in answer ready to be returned to the first call to power. As before, contours
can simply be erased as done in Fig. 8.7 which shows the state of execution prior to

Line 26 in the first call to power.

Ch8Sample1

power1

x 3

2n

int

int

int ---answer

main

x

n

int

int

answer int

ret addr L14 main

3

2

L23 power1

3

1

3

power2

x

n

int

int

answer int

ret addr

x

n

int

int

answer int

ret addr L23 power2

3

0

1

power3

Fig. 8.6 Contour prior to the execution of Line 26 in the second call to power

Ch8Sample1

power1

x 3

2n

int

int

int ---answer

main

x

n

int

int

answer int

ret addr L14 main

3

2

9

Fig. 8.7 Contour prior to the execution of Line 26 in the first call to power

8.2 The Power Function 251

Notice that the value 3 returned from the second call to power has been

multiplied by the value 3 in x and the result 9 is placed in answer. The flow of

control continues to Line 26, and the value 9 is returned back to the calling

program. The 9 is then placed into answer as illustrated in Fig. 8.8 which

shows the state of execution just prior to Line 15 in main.
Looking back at the base case in Fig. 8.5, notice that there were a lot of memory

locations used to find answer in Fig. 8.8. If recursion takes up so much memory,

why use it? Again, some problems are more naturally expressed using recursion

than iteration. Further, with memory being much less expensive than it was in the

past, the use of recursion is much less costly. Still, some larger problems can use

quite a bit of memory, and there are some techniques to cut down on its usage. For

example, the previous method used a variable answer each time a contour was

created. Instead of assigning the result of the calculation to a variable, it can simply

be returned to the calling method as shown in the following segment:

public static int power(int x, int n) {
if (n > 0)

return power(x,n-1)*x;
else

return 1;
}

Of course, the method uses two return statements, which is considered

unstructured programming. Again, if memory is a concern, this might be a justifi-

able trade-off. It is often helpful to initially write an algorithm with some built-in

inefficiencies to ensure that it is working properly and then optimize the code,

rather than initially try to optimize the code and risk, creating a code that does not

work correctly in the first place.

Ch8Sample1

x 3

2n

int

int

int 9answer

main

Fig. 8.8 Contour prior to the

execution of Line 15 in the

first call to main

252 8 Recursion

8.3 Stack Frames

Notice that each time a recursive call occurs, another contour is drawn, and each

time a new contour is created, more memory is used. Contours are helpful in

understanding of the process of recursion. But how is this actually accomplished

in the computer? It is done using a stack. A stack is known as a LIFO structure,

which stands for Last In First Out. That means that the last item put on the stack is

the first one taken off the stack, not unlike a stack of papers on a desk. The process

of putting an item on a stack is known as a push operation, and the task of removing

an item is known as a pop operation.

When a method is called the first time, the values are stored in the variables, like

when the first contour is drawn. However, in the program there is only one set of

variables. What would happen when there is a recursive call to a method? What

happens to the values in the variables? Instead of drawing a new contour, the

variables in the contour need to be reused. The result is that all the variables in

the method, along with some other possible information associated with the

method, form what is known as a stack frame and it is pushed onto the stack.

Once the values from the variables are stored on the stack, new values can now be

stored in the variables. Each time there is another recursive call, the process is

repeated. When there is a terminal case, the process reverses itself. As a simple

example, assume there is only one recursive call. The values are pushed onto the

stack and the variables reused. Then after the terminal case, the values can be

popped off the stack and be placed back into the variables, and the processing can

complete.

Using the same example from the previous section calculating 32 and using only

a partial contour diagram, Fig. 8.9 is the state of execution just prior to Line 26 in

the program in Fig. 8.1 in the third call to power.
Figure 8.9 corresponds to Fig. 8.5 in Sect. 8.1. Note first that there is only one

contour for power. Even though it represents power3, it is just labeled power
since the contour is used for all calls to power. As each call is made, the contents

of the power contour are pushed onto the stack. When power1 called power2,

the variables in power1 were pushed onto the stack so that power2 could use the

variables in the contour. Then when power3 was called, the contents for power2

were pushed onto the stack so that power3 could use the contour. Once power3 is

ready to return to power2, the stack frame for power2 is popped off the stack and

put back into the contour, and so on. Simply stated, each new contour created after

the first one means another stack frame needs to be pushed onto the stack, and each

time a contour is deallocated, that means that a stack frame is popped off the stack.

Note that the names of the cells and their types are not pushed onto the stack, but

only the contents are pushed onto the stack. However, also notice that the order in

which they are pushed is the same as they occur in the contour so one can determine

which cell is which. Although one could draw the stack with the other information,

it gets a little cumbersome, and this is one of the reasons why contours are

sometimes a little more convenient.

8.3 Stack Frames 253

But wasn’t it said that each recursive call wastes memory? The answer is yes,

because the stack is implemented in the computer’s memory and each time a stack

frame is pushed onto the stack, more memory is used. If infinite recursion occurs,

oftentimes a message will be output saying something to the effect that there is a

stack overflow, meaning that the stack is full and no memory is available to push

more items onto the stack.

Notice that using contours and stack frames are just twoways of looking at the same

process. Although the stack frame model is more accurate, it is a little more cumber-

some to draw, whereas the contour model is easier to draw and makes it easier to keep

track of previous values. The importance of keeping track of previous values will

become even more apparent in the next section with a more involved use of recursion.

8.4 Fibonacci Numbers

Another example of the use of recursion is the calculation of Fibonacci numbers

that one may have encountered in a mathematics course. The Fibonacci numbers

can be defined as follows:

Fibonacci(0) ¼ 0

Fibonacci(1) ¼ 1

Fibonacci(2) ¼ 0 + 1 ¼ 1

Ch8Sample1

power

x 3

2n

int

int

int ---answer

main

x

n

int

int

answer int

ret addr L23 power2

3

0

1

L23 power1

3

1

L14 main

3

2

Top of stack

push pop

Stack frame
for power2

Stack frame
for power1

Fig. 8.9 Contour and stack prior to the execution of Line 26 in the third call to power

254 8 Recursion

Fibonacci(3) ¼ 1 + 1 ¼ 2

Fibonacci(4) ¼ 1 + 2 ¼ 3

Fibonacci(5) ¼ 2 + 3 ¼ 5

Fibonacci(6) ¼ 3 + 5 ¼ 8

Although this is an iterative definition, it can help in the finding of a recursive

definition. First, notice the base or terminal cases for 0 and 1. Then notice that any

other given line is the addition of the two previous lines. For example, Fibonacci(6)

is the sum of the numbers 3 and 5, which are the answers for the fourth and fifth

Fibonacci numbers. In other words, couldn’t Fibonacci(6) be defined in terms of

adding Fibonacci(5) and Fibonacci(4)? The answer is yes, but what would the nth
Fibonacci number look like? It would be as follows:

Fibonacci(n) ¼ Fibonacci(n � 1) + Fibonacci(n � 2)

Putting the base case and the nth case together, the definition of the Fibonacci

numbers for nonnegative integers would be as follows:

Fibonacci(n) ¼ { if n=0 or n=1, then n,
otherwise Fibonacci(n�1) + Fibonacci(n�2)}

Given this definition, the code can then be written. As in the previous sections, it

helps to use local variables to make the reading of contour diagrams easier.

public static int fib(int n) {
int answer1,answer2,answer;
if (n > 1) {

answer1 ¼ fib(n-1);
answer2 ¼ fib(n-2);
answer ¼ answer1 + answer2;

}
else

answer ¼ n;
return answer;

}

Again notice that the method is static and the name of the method is fib to

save space in subsequent contour diagrams. Putting the above method together with

a main program and adding Line numbers results in the program in Fig. 8.10.

The main program checks for a negative number before calling the fib method.

In the case where the input of n is either a 0 or 1, the result is just a simple call to the

terminal case, and a corresponding value of 0 or 1 is returned to the main program

and output. However, more interesting is a nonterminal case, such as when n is

equal to 3. Figure 8.11 shows the state of execution just prior to Line 21 in the first

call to fib.
As before, notice L12 main in the ret cell and the superscript for fib

indicating the first call. Since 3 is greater than 1, the then portion of the if is

8.4 Fibonacci Numbers 255

taken. Then a recursive call is made as shown in Fig. 8.12 just prior to the execution

of Line 21 in the second call to fib.
In the second call to fib, the parameter n has been decremented by 1. Since 2 is

greater than 1, another call is made, and Fig. 8.13 shows the state of execution prior

to Line 21 in the third call to fib.
At Line 21, since n is no longer greater than 1 and the condition for the if

statement is false, the else portion is executed and answer is set to 1. This value
is then returned to Line 22 in the second call to fib, and the value 1 is stored in the

variable answer1 as shown in Fig. 8.14 just prior to the execution of Line 23.

Notice that the variable answer in the third call to fib is 1 and that the contour

is shaded gray. Further, note that there are no values in answer1 and answer2 in

the third call to fib, because it was a terminal case and no recursive calls were made.

Again, notice the value 1 has been returned to the second call to fib and stored in

Fig. 8.10 Fibonacci program

256 8 Recursion

Ch8Sample2

fib1

3n int

int ---answer

main

n

answer1

int

int

answer

int

ret addr L12 main

3

---answer2

int ---

Fig. 8.11 Contour prior to the execution of Line 21 in the first call to fib

Ch8Sample2

fib1

3n int

int ---answer

main

n

answer1

int

int

answer

int

ret addr L12 main

3

---answer2

int ---

fib2

n

answer1

int

int

answer

int

ret addr L22 fib1

2

---answer2

int ---

Fig. 8.12 Contour prior to the execution of Line 21 in the second call to fib

8.4 Fibonacci Numbers 257

Ch8Sample2

fib1

3n int

int ---answer

main

n

answer1

int

int

answer

int

ret addr L12 main

3

---answer2

int ---

fib2

n

answer1

int

int

answer

int

ret addr L22 fib1

2

---answer2

int ---

fib3

n

answer1

int

int

answer

int

ret addr L22 fib2

1

---answer2

int ---

Fig. 8.13 Contour prior to the execution of Line 21 in third call to fib

Ch8Sample2

fib1

3n int

int ---answer

main

n

answer1

int

int

answer

int

ret addr L12 main

3

---answer2

int ---

fib2

n

answer1

int

int

answer

int

ret addr L22 fib1

2

1

---answer2

int ---

fib3

n

answer1

int

int

answer

int

ret addr L22 fib2

1

---answer2

int 1

Fig. 8.14 Contour prior to the execution of Line 23 in the second call to fib

258 8 Recursion

answer1. However, instead of the flow of control returning back to the first call

to fib as it did in the power example, there is another call to fib to calculate

answer2. So Fig. 8.15 shows the state of execution prior to Line 21 in the fourth

call to fib.
At first glance, it might appear that the contour for the third call to fib is no

longer shaded gray. However, look carefully and notice that it is not the third call

but rather it is labeled the fourth call to the method fib, the value for n is 0, and ret
references Line 23 in the second call to fib. This is the calculation for the second

part of the second Fibonacci number. As before, n is not greater than 1, so the else

section of the if statement is executed and answer is assigned a value of 0 that is

returned to the second call. Figure 8.16 illustrates the state of execution prior to

Line 24 in the second call to fib.
As before, the contour for the fourth call to fib has been shaded to indicate

deallocation, and the value 0 is returned to answer2 in the second call to fib.
When Line 24 is executed, the values in answer1 and answer2 are added

together and stored in answer. Then answer in the second call to fib is returned

to answer1 in the first call to fib as shown in Fig. 8.17 illustrating the state of

execution just prior to Line 23.

Note now that the fourth call to fib has been erased so as not to cause confusion

with the second call to fib which is now shaded to indicate it has been deallocated.

Also, answer in the second call to fib now contains the sum of answer1 and

answer2. Further, the value 1 in answer in the second call to fib has been

Ch8Sample2

fib1

3n int

int ---answer

main

n

answer1

int

int

answer

int

ret addr L12 main

3

---answer2

int ---

fib2

n

answer1

int

int

answer

int

ret addr L22 fib1

2

1

---answer2

int ---

fib4

n

answer1

int

int

answer

int

ret addr L23 fib2

0

---answer2

int ---

Fig. 8.15 Contour prior to the execution of Line 21 in the fourth call to fib

8.4 Fibonacci Numbers 259

Ch8Sample2

fib1

3n int

int ---answer

main

n

answer1

int

int

answer

int

ret addr L12 main

3

---answer2

int ---

fib2

n

answer1

int

int

answer

int

ret addr L22 fib1

2

1

0answer2

int ---

fib4

n

answer1

int

int

answer

int

ret addr L23 fib2

0

---answer2

int 0

Fig. 8.16 Contour prior to the execution of Line 24 in the second call to fib

Ch8Sample2

fib1

3n int

int ---answer

main

n

answer1

int

int

answer

int

ret addr L12 main

3

1

---answer2

int ---

fib2

n

answer1

int

int

answer

int

ret addr L22 fib1

2

1

0answer2

int 1

Fig. 8.17 Contour prior to the execution of Line 23 in the first call to fib

260 8 Recursion

returned to answer1 in the first call to fib. Even though there have been a number

of calls, the second half of the calculation still needs to be determined. Figure 8.18

shows the state of execution prior to Line 21 in the fifth call to fib.
As before, notice this is not the second call to fib, but rather it is the fifth call to

fib to calculate answer2 in the first call to fib. Since n is not greater than 1, the
else portion of the if statement in the fifth call to fib is executed, and a 1 is placed

in answer and returned back to the first call to fib. Figure 8.19 shows the state of

execution prior to Line 24 in the first call to fib.
The fifth call to fib is now shaded indicating deallocation, and the value in

answer is returned to answer2 in the first call to fib. The values in answer1
and answer2 in the first call to fib are then added together and stored in answer,
which is returned and assigned to answer in main. Figure 8.20 shows the state of
execution prior to answer being output in Line 13 in main.

As can be seen, the first call to fib is shaded to indicate deallocation, and

answer in main contains the value 2 that was returned. Granted, this seems

like a lot of work to calculate a Fibonacci number, but it shows the amount of

memory that would be involved. Although there were a total of five calls to fib,
only three contours were activated at any given time. As with the power method

previously, the number of memory cells can be decreased by eliminating the

Ch8Sample2

fib1

3n int

int ---answer

main

n

answer1

int

int

answer

int

ret addr L12 main

3

1

---answer2

int ---

fib5

n

answer1

int

int

answer

int

ret addr L23 fib1

1

---answer2

int ---

Fig. 8.18 Contour prior to the execution of Line 21 in the fifth call to fib

8.4 Fibonacci Numbers 261

Ch8Sample2

fib1

3n int

int ---answer

main

n

answer1

int

int

answer

int

ret addr L12 main

3

1

1answer2

int ---

fib5

n

answer1

int

int

answer

int

ret addr L23 fib1

1

---answer2

int 1

Fig. 8.19 Contour prior to the execution of Line 24 in the first call to fib

Ch8Sample2

fib1

3n int

int 2answer

main

n

answer1

int

int

answer

int

ret addr L12 main

3

1

1answer2

int 2

Fig. 8.20 Contour prior to the execution of Line 13 in main

262 8 Recursion

temporary variables answer1, answer2, and answer as shown in the following

code segment:

public static int fib(int n) {
if (n > 1) {

return fib(n-1) + fib(n-2);
else

return n;
}

As before, this introduces the unstructured practice of two return statements,

but if memory is an issue, then this is a possible alternative. An even more efficient

solution is to use iteration, which was an exercise in Chap. 4.

As with the power function, a stack could also be used to represent recursion,

but with more complex algorithms, it can be a little confusing. Yet another way to

represent recursion is to use a tree of calls. The tree is drawn from the top down with

the first call at the top which is called the root. Then each call after that represents a

branch and terminal calls are referred to as leaves. The tree of calls for the

Fibonacci number problem is shown in Fig. 8.21.

Notice that main makes a call to fib1(3), which then calls fib2(2), which
then calls fib3(1). Once it is calculated, fib3 returns the value 1 back to fib2,

which calls fib4 to calculate fib(0). Then the sum of those two can be returned to

fib1which calls fib5 to calculate fib(1). When that is completed, a 1 is returned to

fib1, which then adds the two numbers and returns a 2 to main.
Which is a better method to walk through recursion: stack frames, a tree of calls,

or contours? It depends on the situation. As stated previously, stack frames are the

most realistic but it is harder to use to keep track of each call. A tree of calls is short

and convenient but lacks much of the detail. Given the drawbacks of these two

extremes, this is why contours are used in this text. As one gets more proficient with

1

2

0

1

1

main

fib1(3)

fib2(2)

fib4(0)fib3(1)

fib5(1)

Fig. 8.21 Tree of calls for

fib(3)

8.4 Fibonacci Numbers 263

http://dx.doi.org/10.1007/978-1-4471-6317-6_4

recursion, one might gravitate to using a tree of calls for a simple problem, but still

using contours when a problem gets more complicated or using stack frames when

an accurate picture is needed.

8.5 Complete Program: Implementing Recursion

A program which computes the greatest common divisor of two integers using

recursion will be developed in this section. The program will

• Ask the user to enter two integers

• Compute the greatest common divisor

• Display the result

Of all the integers that divide the two numbers given, the largest is known as the

greatest common divisor. For example, the positive divisors of 36 are 1, 2, 3, 4, 6, 9,

12, 18, and 36, and the positive divisors of 8 are 1, 2, 4, and 8. Thus, the common

divisors of 36 and 8 are 1, 2, and 4. It follows that the greatest common divisor of

36 and 8 is 4. The Euclidean algorithm which computes the greatest common

divisor of two integers starts with a pair of positive integers. It forms a new pair

that consists of the smaller number of the two and the remainder which is obtained

by dividing the larger number by the smaller number. This process repeats until one

number is zero, and then the other number is the greatest common divisor of the

original pair. The following illustrates how the greatest common divisor of 36 and

8 is found. First, 36 divided by 8 is 4 with a remainder of 4 (4 ¼ 36 � 4 � 8).

Then, 8 divided by 4 is 2 with a remainder of 0 (0 ¼ 8 � 2 � 4). Since the last

remainder is zero, the algorithm ends with 4 as the greatest common divisor of

36 and 8.

A recursive method to find the greatest common divisor of two positive integers

can be defined by the following:

gcd num1, num2ð Þ= if num2 � 1, then gcd num2,mod num1, num2ð Þð Þ,f
otherwise, num1g

Recall from Sect. 1.7 that % is the mod operator and if num1 and num2 are

integers, num1%num2 returns the remainder. For example, 36%8 is 4. The imple-

mentation of the method gcd is shown below:

public static int gcd(int num1, int num2) {
if(num2 >¼ 1)

return gcd(num2, num1%num2);
else

return num1;
}

264 8 Recursion

http://dx.doi.org/10.1007/978-1-4471-6317-6_1

The above method can be invoked for the pair 36 and 8 by

int result;
result ¼ gcd(36, 8);

After the execution of the method, the variable result will contain 4. In order
to compute the greatest common divisor of 36 and 8, how many method calls were

made? The first method call was gcd(36, 8), the next call was gcd(8, 4), and
then gcd(4, 0) which was the last method call, resulting in a total of three

method calls. The complete program with a main method is shown below:

When the above code is compiled and executed using the sample input of 36 and

8, the output of the program is as follows:

Enter first number: 36
Enter second number: 8

The greatest common divisor of 36 and 8 is 4.

8.5 Complete Program: Implementing Recursion 265

8.6 Summary

• It helps to hunt for patterns when trying to create a recursive definition.

• Be sure to identify the base or terminal case.

• Without a base case, “infinite” recursion will occur.

• When using contours, it is helpful to use local variables to store information.

• To optimize recursion, eliminate local variables.

• Drawing a stack frame and creating a tree of calls are alternatives to contour

diagrams.

8.7 Exercises (Items Marked with an * Have Solutions
in Appendix E)

1. Draw series of contour diagrams to show the state of execution of the program

in Fig. 8.1 for x ¼ 2 and n ¼ 3.

2. Draw series of contour diagrams to show the state of execution of the program

in Fig. 8.10 for n ¼ 2.

3. Given the complete program in Sect. 8.4, what would happen if the numbers

36 and 8 were input in reverse order? How many contours for gcd would need

to be drawn?

4. Consider the program in Fig. 8.10 where Lines 22 and 23 are swapped. Draw a

series of contour diagrams to show the state of execution for n ¼ 3.

5. Trace the program in Fig. 8.1 for x ¼ 2 and n ¼ 5 and draw the tree similar to

the one in Fig. 8.21.

6. Trace the program in Fig. 8.10 for n ¼ 5 and draw the tree similar to the one in

Fig. 8.21.

*7. Write a recursive method to reverse a given string. The method accepts a string

as a parameter and returns the reverse of the string. For example, if the

argument is Java, then the method returns avaJ.
8. Write a recursive method to multiply two positive integers using repeated

addition.

*9. Write a recursive method to compute the factorial of a nonnegative integer

using the definition shown below:

factorial nð Þ ¼ if n � 1, then n � factorial n� 1ð Þ, otherwise, 1f g
10. Write a recursive method to compute the binomial coefficient using the defini-

tion shown below:

binomial n; kð Þ ¼ if k ¼ 0 or n ¼ k, then 1,f
otherwise, binomial n� 1, k � 1ð Þ þ binomial

�
n� 1, k

�g
11. Find a reference on how to convert a decimal number to a binary number [4]

and then write a recursive method to perform the conversion.

266 8 Recursion

http://dx.doi.org/10.1007/978-1-4471-6317-6_BM1

Objects: Inheritance and Polymorphism 9

Objects were introduced in Chap. 2, and topics such as passing objects, method

overloading, and class methods were discussed in Chap. 5. In this chapter the

concepts of inheritance, overriding methods, abstract classes, and polymorphism

will be illustrated. At first these concepts might sound a little bit intimidating, but

introducing them with simple programs and contour diagrams makes the concepts

easier to understand.

9.1 Inheritance

An important concept in object-oriented programming is software reuse.

Writing a program when the same code needs to be written and rewritten

with minor variations can be time-consuming and can also waste memory.

Further, if the code has already been written for one situation, rewriting it not

only wastes time and memory, but the chance of making a logic error in

subsequent versions also increases. Instead, it makes sense to reuse software

that has already been written and tested. A further advantage of software reuse

is with the maintaining of code. When a segment needs to be changed, it only

needs to be changed in one place, and again the chance of introducing logic

errors decreases. An important way of maximizing software reuse is through

inheritance.
When a new class is created using inheritance, the new class can inherit data

members and methods from an already existing class. The existing class is known

as the parent class and the new class is called the child class. Also, the parent class is

sometimes called the base class and the child class is called the derived class. An

even more common name for the base class is the superclass, and the derived class

is then called the subclass.

As an example, a regular polygon has equal length sides. Further, a three-sided

regular polygon is an equilateral triangle, a four-sided regular polygon is a square, a

J.T. Streib and T. Soma, Guide to Java: A Concise Introduction to Programming,
Undergraduate Topics in Computer Science, DOI 10.1007/978-1-4471-6317-6_9,
© Springer-Verlag London 2014

267

http://dx.doi.org/10.1007/978-1-4471-6317-6_2
http://dx.doi.org/10.1007/978-1-4471-6317-6_5

six-sided regular polygon is a hexagon, and an eight-sided regular polygon is an

octagon. Although there exists a generic formula for the area for an n-sided regular

polygon, this text will use the specific algebraic formulas for each of the regular

polygons to help illustrate the concepts of inheritance, overriding methods, abstract

classes, and polymorphism.

The specific equations for the area of each of these polygons share a common

part: the length of one of its sides squared or s2. One might recognize this is also the

equation for a square, and because a square is such a simple example, it is not

included in subsequent examples. Since this equation is shared by all the other

equations, it can be made local to the class for a regular polygon. As a result, a

regular polygon can be thought of as the superclass, and the triangle, hexagon, and

octagon can be thought of as subclasses.

Using a simple example, consider the RegPoygon class as shown in

Fig. 9.1. Given the previous chapters on classes, the RegPoygon class should

look fairly familiar. Notice the local private variable lenSide which is for the

length of a side. The constructor initializes the variable with the value sent via

the parameter. Further, there is one method that squares the length of the side

using the pow method from the Math class. Lastly, as before, there is a local

variable in the method that helps when using contour diagrams, but if memory

were an issue, it could be eliminated and the expression could be used in the

return statement.

A main program segment that tests this class is shown in Fig. 9.2. Again, the

statements in this program should be fairly familiar. A value is input from the user

and a new instance of the RegPolygon class is created using the value that was

input. Then the method is invoked and the value returned is output.

Fig. 9.1 RegPolygon
class

268 9 Objects: Inheritance and Polymorphism

However, what if one wanted to write a new class for a triangle with a method to

calculate the area of a triangle? One could just write the necessary expression and

be done with it.

s

However, as mentioned previously, isn’t a triangle a regular polygon? The

equation for the area of an equilateral triangle is
ffiffiffi
3
p

=4s2 which includes s2. If the
RegPolygon class already exists, then couldn’t methods of that class be used?

The answer as one might suspect is yes. The RegPolygon class would then be the

superclass and the Triangle class would be a subclass, and the Triangle class

could inherit methods from the RegPolygon class. Another way of saying this is

that the Triangle class is an extension of the RegPolygon class.

How is this accomplished in a program? The first line in the Triangle class

would indicate that it extends the RegPolygon class as follows:

class Triangle extends RegPolygon {

By doing so, the Triangle class now has access to the data member, method,

and constructor in the RegPolygon class. So instead of having to rewrite code

segments, it can now reuse these code segments. How is this accomplished?

First, it helps to look at the constructor for the Triangle class. Since the

RegPolygon class already contains the variable lenSide and a Triangle is

an extension of a RegPolygon, instead of declaring a local private variable, the

variable in the RegPolygon class could be reused. And instead of initializing it in

the Triangle class, the constructor in the RegPolygon class can also be reused.

Fig. 9.2 Main program segment using the RegPolygon class

9.1 Inheritance 269

The constructor in the superclass RegPolygon is invoked by using super
(lenSide) as shown in the following constructor:

public Triangle(int lenSide) {
super(lenSide);

}

Note that in order to invoke the constructor of the superclass, super
(lenSide) must be the first line in the constructor as shown above. To calculate

the area of a triangle, one would need to multiply
ffiffiffi
3
p

=4 by the results returned from
the method calcRegPolyArea in the RegPolygon class as shown below:

public double calcArea() {
double area;
area ¼ Math.sqrt(3.0) / 4.0 * calcRegPolyArea();
return area;

}

Unlike the constructor, the invoking of other methods can occur anywhere in a

method. As before, there is a local variable area declared in the method which will

help later when creating contour diagrams. Would the word super need to be used

as it was in the constructor? The answer in this case is no, but it is optional as in

super.calcRegPolyArea(). Are there cases where super is needed? Yes,

it is required in the constructor and in some other special cases as will be shown

shortly. However, as a general rule, if it is not needed, do not include it. Before

proceeding, it is helpful to see the complete Triangle class as shown in Fig. 9.3.

As always, it helps to see the main program segment that invokes the method in

the Triangle class as shown in Fig. 9.4. The main program inputs lenSide for

the triangle. It then creates a new instance of the Triangle class by invoking the

constructor, which as seen in Fig. 9.3 invokes the constructor of the RegPolygon
class. It then invokes the calcArea method of the Triangle class which subse-

quently invokes the calcRegPolyArea method of the RegPolygon class.

Lastly, the area is output. But how does this look using contour diagrams? To do

Fig. 9.3 Triangle class

270 9 Objects: Inheritance and Polymorphism

so requires putting Figs. 9.1, 9.3, and 9.4 together in a complete program with line

numbers as shown in Fig. 9.5.

As in previous chapters, not every step will be shown using contour diagrams,

but steps will be shown only at critical points to illustrate how the code executes.

Assuming that the user inputs 2 for the lenSide, a good first stopping point in the
execution of the program is just prior to Line 20 (abbreviated L 20 in Fig. 9.5) in

the Triangle class as shown in Fig. 9.6.

Although the contour for a constructor is often not shown, it is shown here to

help with understanding the flow of control of the program. First note that the

parameter lenSide contains the value 2 passed from the main program, but it has

not yet been assigned to the variable lenSide in the RegPolygon object.

Further notice that the contour for Triangle is nested inside the contour for the

RegPolygon class. As might be suspected, the reason for this is because

RegPolygon is the superclass and Triangle is the subclass. As in the past,

since Triangle is nested inside RegPolygon, it now has access to the

non-private variable in RegPolygon. In other words, it can inherit the

non-private variable in RegPolygon. As the execution of super(lenSide)
occurs, the flow of control is transferred to the constructor in RegPolygon, and
Fig. 9.7 shows the state of execution just prior to Line 32.

The value in the argument lenSide in the Triangle constructor is transferred

to the parameter lenSide in the RegPolygon constructor, and from there it is

assigned to the data member lenSide inRegPolygon. Notice in Fig. 9.7 that both
the parameter lenSide in RegPolygon constructor and the variable lenSide in

RegPolygon now contain the value 2 from lenSide in Triangle. After the
constructor inRegPolygon is done, it returns to the constructor for Triangle and

control is returned to the main program. Figure 9.8 shows the state of execution just

prior to Line 12.

Notice that the two contours for the constructors are gone and the variable

lenSide in RegPolygon now contains a 2. The method calcArea is then

invoked, and the state of execution just prior to Line 24 is shown in Fig. 9.9.

Since Triangle is a subclass of RegPolygon, the contour for the method

calcArea is created in Triangle as the constructor was previously. Then as

Fig. 9.4 Main program segment using the Triangle class

9.1 Inheritance 271

Line 24 is executed, the method calcRegPolyArea is invoked, and the value for

the variable a is calculated as shown just prior to Line 36 in Fig. 9.10.

Upon return from the method calcRegPolyArea, the state of execution just

prior to Line 25 is shown in Fig. 9.11. Lastly, control is returned to the main

program as shown just prior to output of the area on Line 14 in Fig. 9.12.

Fig. 9.5 Complete main program with the RegPolygon and Triangle classes

272 9 Objects: Inheritance and Polymorphism

main

2lenSide int

RegPolygon

lenSide ---

Triangletriangle

double ---area

Triangle

Constructor

int

lenSide int 2

Fig. 9.6 Contour just prior to the execution of Line 20

main

2lenSide int

RegPolygon

Triangle

triangle

double ---area

Triangle

Constructor

Constructor

lenSide int 2

lenSide int 2

lenSide int 2

Fig. 9.7 Contour just prior to the execution of the end of the constructor at Line 32

main

2lenSide int

RegPolygon

lenSide int

Triangletriangle

double ---area

Triangle

2

Fig. 9.8 Contour just prior to the execution of Line 12 in main

9.1 Inheritance 273

main

2lenSide int

RegPolygon

lenSide 2

Triangle
triangle

double ---area

Triangle

calcArea

area

int

double ---

Fig. 9.9 Contour prior to the execution of Line 24 in calcArea

main

2lenSide int

RegPolygon

lenSide int

Triangle

triangle

double ---area

Triangle

calcArea

calcRegPolyArea

area double

2

a double 4.0

Fig. 9.10 Contour just prior to the execution of Line 36 in calcRegPolyArea

main

2lenSide int

RegPolygon

Triangletriangle

double ---area

Triangle

calcArea

area double 1.73

lenSide int 2

Fig. 9.11 Contour prior to the execution of Line 25 in calcArea

274 9 Objects: Inheritance and Polymorphism

However, what if the name of the calcArea method in the Triangle class

was changed to calcRegPolyArea? Would this cause a problem with the

method calcRegPolyArea in the RegPolygon class? The answer is yes,

because calcRegPolyArea in the Triangle class would have the same

number and type of parameters as the calcRegPolyArea method in the

RegPolygon class. A method in a subclass that has the same name, the same

number of parameters, and the same type of parameters as another method in the

superclass is known as an overriding method. Does this mean that there cannot be

two methods of the same name, the same number of parameters, and same type of

parameters, one in the superclass and one in the subclass? The answer is no, but if

there is an overriding method, how does one access the method in the superclass? If

calcRegPolyArea is invoked in the subclass, the method in the subclass would

be used, and in this case it would recursively call itself which is not what is

intended. As mentioned earlier, there are instances where the word super must

be used and this is one of those instances. So, should one want to access the

calcRegPolyAreamethod in the superclass, then the word super is no longer

optional and must be used as shown in the segment in Fig. 9.13.

First, note that the name of the method has been changed from calcArea to

calcRegPolyArea. Further, by including the word super prior to the call to

calcRegPolyArea, themethod in the superclassRegPolygon is invoked instead

of recursively calling the calcRegPolyAreamethod in the subclass. Again, in this

case the word super is not optional. Using the word super only when it is needed

helps alert other programmers reading the code that there are twomethods of the same

name. For now, instead of changing the method name to calcRegPolyArea, the
program in Fig. 9.5 will retain the method name calcArea.

main

2lenSide int

RegPolygon

lenSide int

Triangle
triangle

double 1.73area

Triangle

2

Fig. 9.12 Contour prior to the execution of Line 14 in the main program

Fig. 9.13 Overriding the calcRegPolyArea() method

9.1 Inheritance 275

9.2 Protected Variables and Methods

In the program in Fig. 9.5, what would happen if a method in the Triangle class

tried to access the variable in the RegPolygon class? Specifically, what if the

constructor in the Triangle class tried to access the variable lenSide in the

RegPolygon class? The answer is the same as if trying to access the variable from

the main program. If a variable is private, then it can only be accessed by

methods in the RegPolygon class; thus the variable lenSide is initialized using

the constructor.

However, if a variable were made public, then the methods of the subclass

could access it. Unfortunately, the variable would also be accessible from the main

program as well. Is there a way that would allow only methods in the subclass to

access a variable in the superclass, but still not allow the variable to be accessed

from the main program? The answer is yes. Instead of private or public
access, protected access can be used as shown in the following:

protected int lenSide;

Now instead of initializing the variables via the RegPolygon constructor, the

variables can be accessed directly as in the following modified Triangle
constructor:

public Cylinder(int lenSide) {
super.lenSide ¼ lenSide;

}

To access the variable lenSide in the RegPolygon class, notice the use of

the word super. Also note that this could have been used instead of super, but
the use of the word super is preferred because it alerts programmers who might

subsequently read the code that the variable is not located in the current class but

rather in the superclass.

Since the RegPolygon constructor would no longer be invoked, it could be

deleted. However, if it was retained, but not invoked, a default constructor would

need to be added to the RegPolygon class as follows:

public RegPolygon() {
}

Although accessing a variable in this manner works and is better than declaring a

variable as public, it can still suffer from some of the same problems as being

declared public when there are a large number of subclasses. As a result, given a

choice between accessing a protected variable or accessing a private vari-

able via a method, this text will generally choose the latter as shown previously in

Fig. 9.5.

However, notice in Fig. 9.5 that although the variables in the RegPolygon
class are private, the methods are public. While this is acceptable when

access to the method is needed by both the main program and a subclass, what if

access is only needed via the subclass and not from the main program? Is there a

276 9 Objects: Inheritance and Polymorphism

way that this can be accomplished? Again, as might be suspected, just as variables

can be made accessible only by a subclass, this can also be true for methods. This is

accomplished again using protected instead of public as shown in the

following headings:

protected RegPolygon(int lenSide) {

protected double calcRegPolyArea() {

This corresponds to the previous suggestion that variables should remain pri-
vate and only accessed through methods. Further, these methods can only be

accessed from other methods within the class or any subclasses, and not from the

main program.

9.3 Abstract Classes

Given the program in Fig. 9.5, there is nothing preventing the main program from

creating an instance of the RegPolygon class. Although not very useful, even if

the variable lenSide is private and the methods are protected, an

instance could be created. Is there a way to make it so that an instance of the

class cannot be created? Yes, and it is known as an abstract class. The result is

that subclasses can still be defined, yet an instance of the superclass cannot be

created. The following first line of the RegPolygon class shows how this is

accomplished:

abstract class RegPolygon {

If it is possible to create an abstract class, is it also possible to create an abstract

method? The answer again is yes. When creating an abstract method, the heading is

declared in the superclass, but the body of the method is not defined as in the

following:

public abstract double calcArea();

Again, note that there is no body to the method and the first line of the method

ends in a semicolon. If the heading is in the superclass and there is no body to the

method, where is the body defined? The complete method is defined in the subclass

as it was before and as shown below:

public double calcArea() {
double area;
area ¼ Math.sqrt(3.0) * calcRegPolyArea() / 4.0;
return area;

}

If the above method is the same as before, what is the advantage of doing this?

The advantage is that it allows different subclasses to have different methods using

9.3 Abstract Classes 277

the same heading to meet the needs of each subclass. For example, instead of a

triangle, consider an octagon:

s

The name for this new class could be Octagon. Further, since the equation for an

octagon is 2 1þ ffiffiffi
2
p� �

s2, it could also be a subclass of the RegPolygon class. Since

the formula s2 is the same, the calcRegPolyArea method of the RegPolygon
class could be invoked, but unlike the calculation for the area of the triangle, it would

not need to be multiplied by
ffiffiffi
3
p

=4 but rather multiplied by 2 1þ ffiffiffi
2
p� �

. There is no

change to the Triangle class and the new Octogon class is as follows:

class Octagon extends RegPolygon {

public Octagon(int lenSide) {
super(lenSide);

}

public double calcArea()
double area;
area¼2.0*(1.0+Math.sqrt(2.0))*calcRegPolyArea();
return area;

}
}

Note in the first line that the Octagon class extends the RegPolygon class.

Next, notice in the calcArea method that calcRegPolyArea() is not

multiplied by
ffiffiffi
3
p

=4 but rather by 2 1þ ffiffiffi
2
p� �

as mentioned above.

Note that an abstract class does not have to have any abstract methods, but if a

class has abstract methods, the class needs to be declared as an abstract class. Using

an abstract method in the superclass forces both subclasses to define different

calcArea methods, and if the methods were not declared, a syntax error would

occur. This is a handy feature to have when there are some differences in various

subclasses, yet it is desired to retain some commonality among the subclasses.

9.4 Polymorphism

Another important feature of object-oriented programming is polymorphism, where
the type of an object that is referenced by a superclass variable is determined at

runtime instead of at compile time. This concept will be illustrated with the help of

examples below.

278 9 Objects: Inheritance and Polymorphism

In Java, a variable of a superclass type can reference an object of any of its

subclasses. In other words, both an object of the superclass and an object of a

subclass can be referenced by a variable of the superclass type. Consider the

definition of the class RegPolygon shown in Fig. 9.1 which is repeated below

for convenience:

class RegPolygon {
private int lenSide;

public RegPolygon(int lenSide) {
this.lenSide ¼ lenSide;

}

public double calcRegPolyArea() {
double a;
a ¼ Math.pow(lenSide, 2);
return a;

}
}

Further, the class Triangle from Fig. 9.3, with the modification described in

Fig. 9.13 with the method calcArea renamed to calcRegPolyArea, is shown
below:

class Triangle extends RegPolygon {
public Triangle(int lenSide) {

super(lenSide);
}

public double calcRegPolyArea() {
double area;
area¼Math.sqrt(3.0)/4.0*super.calcRegPolyArea();
return area;

}
}

The class Triangle is a subclass of the class RegPolygon, and the method

calcRegPolyArea in the Triangle class is overriding the method

calcRegPolyArea in the RegPolygon class. Suppose two variables of type

RegPolygon are declared in the main method as follows:

RegPolygon shape1, shape2;

Naturally, a reference to an object of the class RegPolygon can be assigned to

these variables. For example, the following statement assigns an object of the

RegPolygon class to the variable shape1.

shape1 ¼ new RegPolygon(5);

9.4 Polymorphism 279

In addition, a reference to an object of the class Triangle can also be assigned

to these variables. The following statement assigns an object of the Triangle
class to the variable shape2.

shape2 ¼ new Triangle(2);

Next, using the method calcRegPolyArea defined in both the class

RegPolygon and the class Triangle, the square of the side and the area of

the triangle will be calculated. For the object shape1, the code segment can be

found in Fig. 9.14. This code segment will output the area with a side of 5 as

area of shape1: 25.00

Now, what would happen when the code segment in Fig. 9.15 is executed for the

object shape2? Recall that the variable shape2 is of type Triangle. Will the

method calcArea defined in the class RegPolygon be invoked and return

25.00? The answer is no. Instead it will output the following:

area of shape2: 1.73

This is the area of a triangle with a side of length 2. The reason is that the type of
the object invoking the method calcRegPolyArea determines which

calcRegPolyArea method is called, either the one in the class RegPolygon
or the one in the class Triangle. Even though the variable shape2 is of type

RegPolyton, it references a Triangle object because that is the type assigned

to it during runtime by the shape2¼new Triangle(2); statement. This means

that the Triangle object is invoking the method calcRegPolyArea defined

in the class Triangle when it is executed.

This is an example of polymorphism. Variables shape1 and shape2 could

reference either a RegPolygon object or a Triangle object. At compile time, it

cannot be determined what type of the object they will reference. However, at

Fig. 9.14 Code segment finding the square of the side of shape1

Fig. 9.15 Code segment finding the area of shape2

280 9 Objects: Inheritance and Polymorphism

runtime when the object invokes the method calcRegPolyArea, the type of the
object is determined and the appropriate calcRegPolyArea method is called.

If a variable of a superclass type can reference an object of a subclass type, can a

variable of a subclass type reference an object of a superclass type? The answer is

no. Consider the following code segment:

Triangle shape3;
shape3 ¼ new RegPolygon(6);

The second statement causes a compile-time error, because a reference variable

of a subclass type is not allowed to reference an object of its superclass. As one

might suspect, the following statement is also incorrect,

shape3 ¼ shape1;

because the variable shape1 is referencing an object of type RegPolygon. What

about the following statement?

shape3 ¼ shape2;

At first it looks okay since the variable shape3 is of type Triangle and the

variable shape2 references an object of the Triangle class. But, the answer is

again no. It causes a compile-time error because even though shape2 references a

Triangle object, the variable shape2 is of type RegPolygon. However, the
following statement is legal:

shape3 ¼ (Triangle) shape2;

The above statement uses a typecast operator, discussed in Chap. 1, which

allows shape3 of type Triangle to reference the Triangle object that

shape2 of type RegPolygon references.

Suppose another subclass of the class RegPolygon named Hexagon is

defined. The equation for a hexagon is 3
ffiffiffi
3
p

=2s2 as shown below:

class Hexagon extends RegPolygon {
public Hexagon(int lenSide) {

super(lenSide);
}

public double calcRegPolyArea() {
double area;
area ¼ 3.0 * Math.sqrt(3.0) / 2.0 * super.
calcRegPolyArea();
return area;

}
}

As discussed above, a variable of the class RegPolygon can reference an

object of the class Hexagon, but a variable of the Hexagon class cannot reference

9.4 Polymorphism 281

http://dx.doi.org/10.1007/978-1-4471-6317-6_1

an object of the RegPolygon class. Also, a variable of the Hexagon class cannot

reference an object of the Triangle class, and vice versa, since the Hexagon
class and the Triangle classes are both subclasses of the RegPolygon class,

also known as sibling classes.

Returning to the output of the code segments in Figs. 9.14 and 9.15, instead of

displaying the words "shape1" and "shape2" as shown below, would it be

better if the type of the polygon is output?

area of shape1: 25.00
area of shape2: 1.73

Is there a way to determine the type of an object during the runtime and output it?

The answer is yes. To determine the type of an object, Java provides the operator

instanceof. This operator is especially useful because the variable of a super-

class can reference an object of either its own class or a subclass type. Consider the

following expression:

shape1 instanceof Triangle

This expression evaluates to true if the variable shape1 refers to an object of

the class Triangle; otherwise it evaluates to false. Using the operator

instanceof, the printf statements in Figs. 9.14 and 9.15 can be rewritten

as follows:

if(shape1 instanceof Triangle)
System.out.printf("area of triangle: %.2f", area1);

else
System.out.printf("square of side: %.2f", area1);

System.out.println();

if(shape2 instanceof Triangle)
System.out.printf("area of triangle: %.2f", area2);

else
System.out.printf("square of side: %.2f", area2);

System.out.println();

The output of the above code segment is

square of side: 25.00
area of triangle: 1.73

Since the variable shape1 references a RegPolygon object, the first if
condition returns false. Therefore the printf statement in the else block

was executed stating that the square of the side is calculated. For shape2, the then
portion of the second if statement was executed. However, what would happen if

there are a large number of shapes whose areas need to be calculated? Instead of

282 9 Objects: Inheritance and Polymorphism

having each object calling the calcRegPolyAreamethod separately and having

if statements for the output, an array of objects can be used to simplify the

program.

Consider the creation of an array with different types of regular polygons. If the

array is declared as a type RegPolygon, each element of the array could be an

object of its subclasses. The following code segment declares and creates an array

named shapes of type RegPolygon with five elements, which can be the

Triangle class or the Hexagon class:

RegPolygon[] shapes;
shapes ¼ new RegPolygon[5];

The following statements create either a Triangle object or a Hexagon
object and place them in the array:

shapes[0] ¼ new Hexagon(3);
shapes[1] ¼ new Triangle(2);
shapes[2] ¼ new Triangle(5);
shapes[3] ¼ new Hexagon(4);
shapes[4] ¼ new Triangle(4);

Once all the objects are stored in the array, a for loop can be used to calculate

the areas and output them along with the type of the shape.

for(int i¼0; i<shapes.length; i++) {
area ¼ shapes[i].calcRegPolyArea();
if(shapes[i] instanceof Triangle)

System.out.printf("areaoftriangle:%.2f",area);
else

System.out.printf("area of hexagon: %.2f", area);
System.out.println();

}

The output of the above code segment is of the same form as before:

area of hexagon: 23.38
area of triangle: 1.73
area of triangle: 10.83
area of hexagon: 41.57
area of triangle: 6.93

Again, the advantage of using an array is that the program does not need to have

a series of calculations for the area and if statements, but rather only one calcula-

tion and if statement placed inside a loop.

9.4 Polymorphism 283

9.5 Complete Program: Implementing Inheritance
and Polymorphism

Combining all the material from this chapter, one can now develop a program that

illustrates the concepts of inheritance and polymorphism. In this section, a program

which keeps track of an employee’s information for a company will be developed.

The program will

• Allow a user to enter the employee information

• Compute the compensation for each employee

• Display the results

Suppose each employee has a unique ID number and is either a full-time or a

part-time employee. Full-time employees are salaried and part-time employees are

paid hourly. Therefore, the company keeps track of the salary for each full-time

employee and the hourly rate and the number of hours worked for each part-time

employee. Since every employee has an ID number as a common field and other

field(s) depending on the type of employment, the concept of inheritance can be

used to organize the data. The Employee class could be the superclass and there

could be two subclasses, a FullTime class and a PartTime class. The

Employee class could have a data member named id of type integer and two

methods, one constructor and a method toString, as discussed in Sect. 6.5. The

toStringmethod returns a descriptive text and the contents of the variable id as

a String type for the purpose of displaying information about the object. The

definition of the Employee class is shown below:

class Employee {
private int id;

public Employee(int id) {
this.id ¼ id;

}

public String toString() {
return "An employee with ID " + id;

}
}

The FullTime class inherits the id field from the parent class Employee and

has one additional data member of its own, salary of type double. The id is

also inherited by the PartTime class. Two more data members, hourlyRate
and hoursWorked of type double, are declared in the PartTime class to

determine the compensation. Both subclasses have a method toString which is

an overriding method of the one in the Employee class. They also have a method

named compensation to calculate the pay for the particular month. Both the

FullTime class and the PartTime class are shown below:

284 9 Objects: Inheritance and Polymorphism

http://dx.doi.org/10.1007/978-1-4471-6317-6_6

Notice that the method toString defined in the Employee class is invoked

from the toString method of both subclasses using the method call super.
toString(). The next two lines append the type of employment and the result

from the compensation method as defined and calculated in its own class. The

compensationmethod in the FullTime class simply returns the content of the

variable salary, and the compensation method in the PartTime class

calculates the wage multiplying the hourly rate by the number of hours the

employee worked. The format method in the toString method, which is

9.5 Complete Program: Implementing Inheritance and Polymorphism 285

similar to printf, is a class method defined in the String class and is used to

format the double number.

As discussed in Sect. 2.10, Universal Modeling Language (UML) diagrams help

one to see the relationships among the various classes. Figure 9.16 shows how the

Employee, FullTime, and PartTime classes can be displayed using UML

class diagram notation.

As can be seen, each box represents a particular class. The name of the class is in

the top section of the box. A list of the data members is located in the middle

section, and the list of the methods is in the bottom section. Two arrows show the

relationship between the parent class and the two child classes. In the FullTime
class, the middle section contains the data member salary and its type double
following the colon. The list of methods includes the constructor FullTime along

with the two methods, toString and compensation. The parameter list (id:
int, salary: double) for the constructor indicates that id and salary are

of type int and double, respectively, and are used to assign the values to the data
members. By having an empty parameter list in the parentheses, both toString
and compensationmethods do not receive any information and return a value of

type String and double, respectively.
In the main method, an array of Employee type is created with the number of

employees that the user inputs, and the information about each employee is

collected from the user inside the for loop. After all the information is entered,

the compensation for each employee is calculated and displayed using polymor-

phism. The complete main program is shown below:

Fig. 9.16 UML class diagram of the Employee, FullTime, and PartTime classes

286 9 Objects: Inheritance and Polymorphism

http://dx.doi.org/10.1007/978-1-4471-6317-6_2

In the first for loop, notice that after an ID number is entered, the program asks

the user if the employee is full-time or part-time. Depending on the type of the

employment, only the necessary information is prompted for in the then or else

section of the if statement. A for loop is also used for output. Because of the use

of polymorphism, the type of the object at a particular position in the array is

determined dynamically and the appropriate toString method is executed.

When the above program is compiled and executed using the sample input of

three employees, the output appears as given below:

9.5 Complete Program: Implementing Inheritance and Polymorphism 287

As can be seen from the above output, the user entered information for one full-

time and two part-time employees.

9.6 Summary

• The word extends is used to create a subclass.

• When accessing a constructor in a superclass, super must be used. It must also

be the first line of the constructor of the subclass.

• An overriding method is one in a subclass that has the same name, the same

number of parameters, and the same type of parameters as the one in the

superclass.

• When there is not an overriding data member or method in a subclass, super is

optional and generally not used. However, if there is an overriding data member

or method in the subclass and the one in the superclass needs to be accessed,

super is required.

• Use protected when variables or methods in a superclass are to be accessed

only in the superclass and its subclasses.

• If the superclass is an abstract class, it can be extended by subclasses, but a new

instance of the superclass cannot be created.

• The heading of an abstract method is placed in the superclass followed by a

semicolon, and in the subclasses, the method must eventually be implemented.

288 9 Objects: Inheritance and Polymorphism

• An abstract class does not need to include abstract methods, but if a class has

abstract methods, the class must be declared as an abstract class.

• Polymorphism means the type of an object that is referenced by a superclass

variable is determined at runtime.

• A variable of a superclass type can reference an object of its subclass type.

• A variable of a subclass type cannot reference an object of its superclass type.

• A variable of a subclass type cannot reference an object of another subclass type

that shares the same parent. The two subclasses are known as sibling classes.

• The operator instanceof determines the type of an object.

9.7 Exercises (Items Marked with an * Have Solutions
in Appendix E)

1. Suppose that Staff, Faculty, and StudentWorker are the subclasses of

the Employee class. Indicate whether the following statements are syntacti-

cally correct or incorrect. If incorrect, indicate what is wrong with the statement:

A. Employee employee ¼ new Faculty();
*B. Staff staff ¼ new Employee();
*C. StudentWorker student ¼ new StudentWorker();
D. Faculty faculty ¼ new Staff();

2. The Triangle class is derived from the RegPolygon class. Using the UML

diagrams shown below, complete the following:

9.7 Exercises (Items Marked with an * Have Solutions in Appendix E) 289

http://dx.doi.org/10.1007/978-1-4471-6317-6_BM1

A. List any overloaded methods in the RegPolygon and Triangle
classes.

*B. List any overriding methods in the RegPolygon and Triangle
classes.

C. If the variable lenSide is a private data member of the

RegPolygon class, is lenSide accessible from the Triangle class?

*D. If the variable lenSide is a protected data member of the

RegPolygon class, is lenSide accessible from the Triangle class?

E. If the variable lenSide is a protected data member of the

RegPolygon class, is lenSide accessible from the main method?

*3. Implement a class Engineer which extends from the FullTime class

discussed in Sect. 9.5. Include a data member which describes the type of

engineering and a method toString.
4. Write a class Vehicle which keeps a vehicle identification number, license

plate number, and a number of axles. Derive two classes from the Vehicle
class named Car and Truck. Include a data member for the number of

passengers in the Car class and a data member for the towing capacity for

the Truck class. All three classes should have a toStringmethod to be able

to output information about a particular vehicle.

5. Suppose that two different types of sources are used in a term paper: books and

journal articles. The following UML diagram illustrates how the sources are

organized.

290 9 Objects: Inheritance and Polymorphism

First, implement the three classes, Source, Book, and Article, and then
write a mainmethod to use them. In the mainmethod, ask the user to enter the

number of references, create an array of type Source using the size the user

entered, use a loop to ask the user to enter the information for each reference

(book or journal article), and then output the contents of each object.

9.7 Exercises (Items Marked with an * Have Solutions in Appendix E) 291

Elementary File Input and Output 10

10.1 Introduction

Simple input using a standard input device such as a keyboard and simple output using a

standard output device such as a monitor were introduced in Chap. 1. With a small

number of data, entering them using the keyboard works fine; however, with a large set

of data, it can become troublesome. Recall the example discussed in Chap. 4, where the

list of exam scores was entered from a keyboard and the average was calculated using a

loop structure. Since the example used only three exam scores, it was not much trouble.

However, if there were 100 or more students in the class and the exam scores are used

several times for analysis, it would be inefficient to type scores at the keyboard each time

the program is executed. In addition to the inconvenience of typing a large amount of

data, typing can generate errors and cause erroneous results. Just like using a keyboard

for input, sending output to the monitor also works well if the amount of information

displayed is small; however, if a large number of statistics must be output or the results

need to be distributed, the use of a monitor is not particularly a good option.

What can be done about the limitations associated with getting input from the

keyboard and sending output to the monitor? A solution is to use files, where they

can be used to store all the input and output data. Another advantage of using files is

that they can be created before running a program. Further, if the results are output

to a file, a program does not have to be executed over and over to see the same

result, and the file can be distributed easily. A file can be created for input to a

program or the output examined using a utility program. This chapter will discuss

how to obtain data from and save output to the file.

10.2 File Input

When the Scanner class was introduced in Java 5.0, also known as JavaTM

2 Platform Standard Edition 5.0 Development Kit (JDK 5.0), it significantly

simplified the process of input both by reading data from the keyboard and a

J.T. Streib and T. Soma, Guide to Java: A Concise Introduction to Programming,
Undergraduate Topics in Computer Science, DOI 10.1007/978-1-4471-6317-6_10,
© Springer-Verlag London 2014

293

http://dx.doi.org/10.1007/978-1-4471-6317-6_1
http://dx.doi.org/10.1007/978-1-4471-6317-6_4

file. This is because the Scanner object processes a data line as a sequence of

tokens. A token is an individual item that is a string of characters separated by

delimiters. Any character can be designated as a delimiter, but a white space

such as a blank, a tab, a newline, or a return is the most commonly used. For the

file input, instead of associating an object of type Scanner to the standard

input device, System.in, it is associated to an object of type File.
The File class represents files and directory pathnames. Some of the purposes

of this class are to create files and directories, and to search files. The following

statement

Scanner inFile ¼ new Scanner(new File("grades1.txt"));

will associate an object inFile of type Scanner to a data file grades1.txt.
For now, assume that the file resides in the same directory as the Java program. The

way to specify the input file in a different directory will be discussed in Sect. 10.5.

The name of the file is grades1.txt, and it is passed as an argument to the

constructor of the File class. Since the Scanner class is in the java.util
package and the File class is in the java.io package, both packages have to be

imported at the beginning of the program as shown below:

import java.util.*;
import java.io.*;

Once import statements are included, the methods such as nextInt and next
discussed in Chap. 1 can be used to input data from the file, just the same way an

object of the Scanner class has been used to input the data from the standard input

device.

The program in Fig. 10.1 will read numbers from the grades1.txt file and

output the average. Notice that throws IOException is added in the main
method header. An exception represents an error condition or an unexpected event

that occurs during the normal course of program execution. Since exceptions are

discussed in Appendix B, this section briefly mentions just enough about them to

enable the program to use file input and output. When the program performs file

processing operations, there is a chance that a system error will occur. For example,

the system may not be able to locate the file or an error could occur during a file read

operation. For this reason, Java requires an application to deal with exceptions in

some form. A simple solution is to add a throws clause in the method header, and

then the system will handle the exception by simply halting execution. Finally,

notice that the last statement in the program is inFile.close(); which closes

the input file grades1.txt with which inFile was associated.

Assuming the file grades1.txt contains the following three values as shown

below, a for loop is used to read the scores.

71
60
75

294 10 Elementary File Input and Output

http://dx.doi.org/10.1007/978-1-4471-6317-6_1
http://dx.doi.org/10.1007/978-1-4471-6317-6_12

The output from the code in Fig. 10.1 is

score 1: 71
score 2: 60
score 3: 75

average: 68.67

Similar to the File class, an object of the FileReader class could be

associated to the file and used to create an object of the Scanner class. The

following three statements

Scanner inFile
¼ new Scanner(new FileReader("grades1.txt"));

and

Scanner inFile
¼ new Scanner(new FileReader(new File("grades1.txt")));

along with the following discussed earlier

Scanner inFile ¼ new Scanner(new File("grades1.txt"));

are all equivalent when creating a Scanner object for the purpose of the input.

Besides using File and FileReader for file input, the File class is used to

handle files in general, such as creation and deletion of files, and the FileReader

Fig. 10.1 A simple program that inputs data from a text file

10.2 File Input 295

class is used for reading character files. For more information, the definition of

File and FileReader classes can be found in the Java API specification

document on the Oracle website.

Next, how can the code in Fig. 10.1 be modified if the number of scores in the

input file is not known in advance? A sentinel value –1 could be added to an input

file as shown below:

71
60
75
-1

and the following code segment illustrates how a variation of the sentinel-

controlled loop introduced in Sect. 4.2 could be used.

numStudents ¼ 0;
totalExam1 ¼ 0;
score ¼ inFile.nextInt();
while(score >¼ 0) {

numStudents++;
System.out.println("score"+numStudents+":"+score);
totalExam1 ¼ totalExam1 + score;
score ¼ inFile.nextInt();

}
average1 ¼ totalExam1/numStudents;
System.out.println();
System.out.printf("average: %.2f", average1);

The variable numStudents is used to store the number of scores and calculate

the average after the loop. However, what if one did not want to include a sentinel

value in the data file? It would seem that the program should be able to keep reading

the integers using a loop until there are no more scores in the file. Fortunately, the

hasNextIntmethod can be used to check if another integer value exists in the file.

If it does not find an integer, the method returns false. Using a while loop, the

execution could continue to the statement that follows the loop. The revised loop is

shown below:

numStudents ¼ 0;
totalExam1 ¼ 0;
while(inFile.hasNextInt()) {

score ¼ inFile.nextInt();
numStudents++;
System.out.println("score " + numStudents + ": " + score);
totalExam1 ¼ totalExam1 + score;

}
average1 ¼ totalExam1/numStudents;
System.out.println();
System.out.printf("average: %.2f", average1);

296 10 Elementary File Input and Output

http://dx.doi.org/10.1007/978-1-4471-6317-6_4

The advantage to this technique is that the file does not need to contain a sentinel

value, nor does the loop need a priming read. In addition to the method

hasNextInt, there are a number of similar methods in the Scanner class that

can be used with different types of data as listed in Table 10.1.

Next, consider the case where the input file grades2.txt contains two sets of

exam scores per line and the column headings as shown below:

Exam1 Exam2
71 95
60 80
75 76

The task is to find the average score of both sets of exam scores. Since the first

two items in the file are not scores, they have to be extracted using the next
method instead of the nextInt and assigned to the String variables to be output

later. Notice in the following code that both sets of scores are read and added to the

appropriate variables during each iteration of the while loop before moving on to

the next line. Further, since the number of students is not known in advance, it is

necessary for the program to count the number of input lines using the variable

numStudents as shown in Fig. 10.2. The output from the program would look

like the following:

Exam1 Exam2
Student 1: 71 95
Student 2: 60 80
Student 3: 75 76

Exam1 average: 68.67
Exam2 average: 83.67

Each individual scorewas output as theywere read from the file inside the loop, and

the last two lines were output after the calculation of the average outside the loop.

Table 10.1 Selected methods of the Scanner class

Methods

Return

type Description

hasNext() boolean Returns true if there is another token available for input

hasNextDouble() boolean Returns true if the next token is a double value

hasNextInt() boolean Returns true if the next token is an int value

hasNextLine() boolean Returns true if there is another line available for input

next() string Returns the next token

nextDouble() double Returns the next token as a double value

nextInt() int Returns the next token as a int value

nextLine() string Return the next line of input as a string. It may contain several

token and spaces. The newline character \n could be there,

but it is not included in the string

10.2 File Input 297

10.3 File Output

To send output to a file, the classes PrintWriter and FileWriter are used. The

PrintWriter class prints formatted text using methods like print, println,
and printf. TheFileWriter class is a counterpart ofFileReader class and is

meant for writing streams of characters. As with the FileReader class, the

PrintWriter and FileWriter classes are contained in the package java.io
which needs to be imported at the beginning of the program. For file output, a variable

of type PrintWriter is declared and associated with the destination, the file

where the output will be stored. Suppose the output is to be stored in the file outs.
txt in the same directory as the source code. Again, the way to specify the output

file in a different directory will be discussed in Sect. 10.5. Consider the following

statement:

PrintWriter outFile
¼ new PrintWriter(new FileWriter("outs.txt"));

This statement creates an object of type PrintWriter named outFile and

associates it with the file outs.txt. An output file does not have to exist before it
is opened for output. If it does not exist, the system creates an empty file in the

current directory. If the designated output file already exists, a new empty file with

the same name will be created, replacing the previous file of the same name.

Sometimes, however, there is a time when new data should be appended to the

end of the data that already exists in the file. The FileWriter class has an

overloaded constructor that takes two arguments as in

PrintWriter outFile
¼ new PrintWriter(new FileWriter("outs.txt", true));

The first argument is a name of the file and the second argument is a Boolean

value. If it is true and the file already exists, the contents of the file will not be

erased and the new data will be appended to the end of the file. If the argument is

false and the file already exists, it will be replaced by the new one. If the

boolean value is not included in the argument list, the value false is assumed

and an existing file will be replaced. Finally, in any case, if the file does not exist, a

new file is created.

Similar to the Scanner class, an object of the File class could be associated

to the file. Using an overloaded constructor of the PrintWriter class and a

File object as an argument to create a PrintWriter object is shown below:

PrintWriter outFile
¼ new PrintWriter(new File("outs.txt"));

Another overloaded constructor of the PrintWriter class simply takes a

filename as an argument just like the Scanner class as shown below:

PrintWriter outFile ¼ new PrintWriter("outs.txt");

The advantage of using an object of the class FileWriter over the File
class or a simple filename is the ability of appending the text, if it is desired.

298 10 Elementary File Input and Output

Once the object of type PrintWriter is created, the methods such as print,
println, andprintf can be applied to the objectoutFile just the sameway they

have been used with the System.out. When the output is completed, the output file

should be closed by using the method close shown in the following statement:

outFile.close();

Data to be written to a file is stored in an output buffer in memory before it is

written to the file. Closing a file ensures that any data remaining in the buffer will

be emptied. If the file is not closed, it is not considered an error, but it could be

possible that not all the information generated by the program will be sent to the

output file. Therefore, it is good practice to always close the output file. The

program in Fig. 10.2 is modified to output the result to the file outs.txt as

shown in Fig. 10.3.

The program in Fig. 10.3 will have the same output as the program in Fig. 10.2,

but this time, it will be output to the file outs.txt. To see the output, simply open

the file using a utility program and examine the results.

Fig. 10.2 A program that inputs data from a text file

10.3 File Output 299

10.4 File Input and Output Using an Array

Assuming the scores from different exams are kept in separate files, how can

the scores in each file be processed using the same program? It would not be a

good idea to have the input filename hardcoded into the program. Instead, the

program should allow the user to enter the filename. Also, after the scores are

processed, the results can also be stored in a user-specified file. If variables are

used for the name of both input and output files, it is not necessary to change

and to compile the code every time the program is executed for a different set

of data.

Fig. 10.3 A program that outputs data to a text file

300 10 Elementary File Input and Output

If every course has a different number of students, the number of scores in the

input file is not known in advance. Suppose that an array of the same size as the

number of scores were to be created, then the scores would need to be counted and

the count stored in a variable would be used to allocate the array. In order to count

scores, every score is read without being stored or used for calculations. The code

segment in Fig. 10.4 will count scores in the file.

Note that the user is prompted for and inputs the name of the file. Further, notice

that inside the while loop, although the exam scores were read from the file using

the statement inFile.nextInt(); because the return values were not used for

any calculations at this point, they were not stored in memory. The instruction

inFile.nextInt(); was simply used to count the number of exam scores. At

the end of the while loop, the variable numStudents will have the number of

scores in the file. The next step is to create an array of the size numStudents,
read the scores from the file again, and this time store them in the array. Consider

the following code segment that could be added to the code in Fig. 10.4 to do these

tasks:

// create array of size numStudents
scores ¼ new int[numStudents];

// read scores from input file and save them in array
for(i¼0; i<numStudents; i++)

scores[i] ¼ inFile.nextInt();

The above code is syntactically correct. However, when it is executed, a runtime

error will be encountered and the program will halt unexpectedly. What is wrong

with it? The problem is that after all the scores are read once, the end of the data file

is reached and there is nothing left to read. In order to start back at the beginning of

the input file, a solution is to close and reopen the file. Once the numbers are stored

in the array, the average of the scores will be found. If the average is less than

70, then points are added to every student’s score in order to make the average equal

to 70. The following is the entire program:

Fig. 10.4 A code segment

that counts the data in an

input file

10.4 File Input and Output Using an Array 301

302 10 Elementary File Input and Output

If the grades1.txt file shown below is used again as an input file,

71
60
75

and the user entered grades1adj.txt for the output file as shown below,

Enter input filename: grades1.txt
Enter output filename: grades1adj.txt

after the execution, the grades1adj.txt file would contain the following:

73
62
77

which consists of the scores after being adjusted.

10.5 Specifying the File Location

Before reading the contents of the file or writing data to a file, a File object could

be created and associated to the file. Consider a file structure in Windows®
operating system as shown below:

10.5 Specifying the File Location 303

C:

Class1

Exam

GradesVersion1.java

GradesVersion2.java

GradesVersion3.java

grades1.txt

grades2.txt

Homework

grades3.txt

grades4.txt

Assuming the current directory is Exam and the program is in the

GradesVersion3.java file, the following statement will create an object of

type File named file by invoking a constructor:

File file ¼ new File("grades2.txt");

The argument to the constructor designates the name of the file to access. The

system assumes the file is located in the current directory of the program. It is also

possible to open a file that is stored in a different directory by providing an absolute

pathname and a filename. An absolute pathname is the full pathname beginning

with the disk drive name. Therefore, the absolute pathname for a file grades3.
txt in the Homework directory in the Class1 directory is

C:\Class1\Homework\grades3.txt

A statement in GradesVersion3.java program that associates the input

file grades3.txt to an object of type File would be

File file ¼ new File("C:\\Class1\\Homework\\grades3.
txt");

Notice that there are two backslashes to separate directories, Class1 and

Homework, and a directory and a file, Homework and grades3.txt. Recall
from Chap. 1 that in order to insert special characters such as a double quotation

mark and backslash into a string, Java requires a \ in front of the character like \"
and \\, respectively.

304 10 Elementary File Input and Output

http://dx.doi.org/10.1007/978-1-4471-6317-6_1

Since other operating systems use a forward slash character \ to separate

directories and a file in the pathname, the forward slash is also allowed in a program

run on the Windows® operating system to describe the pathname in order to

maintain the consistency across the different computer platforms as in

File file ¼ new File("C:/Class1/Homework/grades3.txt");

An absolute pathname can also be used with constructors of the FileReader
and FileWriter classes. A pathname a user enters through the keyboard can be

stored in the variable of type String and used as a parameter, just like the simple

filename discussed in the previous section.

10.6 Complete Programs: Implementing File Input and Output

Two complete programs will be discussed here. The first one deals with storing data

into a two-dimensional array while reading the data from the file and appending the

results into the existing file. The second program deals with strings. The list of

strings will be read from the file and placed in the array. After they are sorted, the

results will also be stored in the file.

10.6.1 Matrix Multiplication

This section designs a program that performs matrix multiplication. Given two

matrices A and B, where both A and B contain 2 rows and 2 columns, the matrix

product of A and B is matrix C that contains 2 rows and 2 columns. The entry in

matrix C for row i column j, Ci,j is the sum of the products of the elements for row

i in matrix A and column j in matrix B. That is,

a00 a01
a10 a11

� �
� b00 b01

b10 b11

� �
¼ a00 � b00 þ a01 � b10 a00 � b01 þ a01 � b11

a10 � b00 þ a11 � b10 a10 � b01 þ a11 � b11

� �

The program asks a user to enter the name of the file which contains the matrices

A and B. Consider the file matrix.txt which is used as an input file as shown

below.

1 2
3 4
5 6
7 8

In this example, the matrix A is
1 2
3 4

� �
and the matrix B is

5 6
7 8

� �
, and the

program will read these values and place them in the two-dimensional arrays named

matrix1 and matrix2. The result of the matrix multiplication is saved in the

10.6 Complete Programs: Implementing File Input and Output 305

two-dimensional array named matrix3 and will be appended to the input file

matrix.txt. The entire program is show below:

306 10 Elementary File Input and Output

Notice there are two nested for loops to obtain two matrices from the file and

place them in the two-dimensional arrays. Since the same file is used for both input

and output, the inFile is closed after the reading of the matrices. When the same

file is opened for output, the second argument of the FileWriter constructor is

set to be true for appending. After the output of a blank line, the result of the

matrix multiplication
19 22
43 50

� �
is added to the end of the file matrix.txt as

shown below:

1 2
3 4
5 6
7 8

19 22
43 50

10.6.2 Sorting Data in a File

Another program that deals with file input and output is one that sorts string values

stored in the file and outputs the results to another file. The input file terms.txt
consists of one integer and a list of strings as shown below:

15
variables
input
output
arithmetic
class
object
contour
selection
iteration
array
recursion
inheritance
polymorphism
exception
file

The number 15 indicates the number of words stored in the file. After this

number is input, an array of 15 elements is created, and the strings are read and

saved in the array. Then the words in the array are sorted using the sort method

which is a class method of the Arrays class. This predefined sort method uses a

merge sort that is usually discussed in subsequent courses and texts on data

10.6 Complete Programs: Implementing File Input and Output 307

structures or algorithm analysis. Here, since the focus is file input and output, a

preexisting method is used instead of writing a sort method, although the bubble

sort discussed in Chap. 7 could be used instead and is left as an exercise at the end of

the chapter. Finally, the sorted list is output to the file sortedTerms.txt. The
following is the entire program:

After the above code is executed, the output file sortedTerms.txt would

contain a list of sorted words as shown below:

arithmetic
array

308 10 Elementary File Input and Output

http://dx.doi.org/10.1007/978-1-4471-6317-6_7

class
contour
exception
file
inheritance
input
iteration
object
output
polymorphism
recursion
selection
variables

10.7 Summary

• The Scanner class is used to read a text file.

• The File class and the FileReader class can be used to create an object of

the Scanner class that opens a text file for input.

• After creating an object of the Scanner class to access a text file as input, the

methods such as nextInt and next from the Scanner class can be used to

read the file.

• The PrintWriter class is used for file output.

• When the class PrintWriter is used to open a text file for output, a new file is

created regardless of whether the file with the same name exists.

• The File class or the FileWriter class can also be used to create an object

of PrintWriter class that opens a text file for output.

• In order to append data to the end of a text file, set the second argument of the

constructor of the class FileWriter to true. If the second argument is not

present, the value false is assumed and an existing file will be replaced.

• After creating an object of the PrintWriter class for output, the methods

such as print, println, and printf from the PrintWriter class can be

used to write data to the text file.

• Once all of the operations intended to carry out on a given file have been

completed, both the input file and output file should be closed by using the

method close.

10.8 Exercises (Items Marked with an * Have Solutions
in Appendix E)

1. Indicate whether the following statements are syntactically correct or incorrect.

If incorrect, indicate what is wrong with the statement:

10.8 Exercises (Items Marked with an * Have Solutions in Appendix E) 309

http://dx.doi.org/10.1007/978-1-4471-6317-6_BM1

A. Scanner inputFile
¼ new Scanner(new File(Sample.dat));

*B. File in ¼ new File(new FileReader("in.txt"));
C. FileWriter out

¼ new FileWriter(new PrintWriter("o.txt"));
*D. PrintWriter out ¼ new PrintWriter("out.txt");
E. FileWriter out

¼ new File(new FileWriter("result.out"));

2. Consider a program that reads data from an input file named in.dat,
performs calculations, and outputs the results to a file named result.out.
A. What would happen if the file in.dat did not exist before the program is

executed?

B. What are the contents of the file in.dat after the execution of the

program?

C. What would happen if the file result.out did not exist before

the program is executed?

D. What could happen if the output file was not closed at the end of the

execution?

*3. Write a program that asks a user to enter a file name and three numbers, and

then store the three numbers in the user-specified file. After the execution of the

program, open the file with a utility program to make sure the three numbers are

there.

4. Write a program that reads the three numbers from the file created in the

previous exercise. After the data are read, display the smallest and the largest

of the three numbers.

5. Write a program that asks a user to enter the name of a file, and count and

display the number of words that appear in the user-specified file. Use a utility

program to create a simple text file that can be used to test the program.

6. Write a program that prompts a user to enter the name of a file and a word. The

program should then count all occurrences of the word in the file and display

the number of occurrences. Use a utility program to create a simple text file that

has many words in it and that can be used to test the program.

7. Rewrite the program that sorts string values stored in the file described in

Sect. 10.6.2 so that it uses the bubble sort discussed in Sect. 7.7.2.

310 10 Elementary File Input and Output

http://dx.doi.org/10.1007/978-1-4471-6317-6_7

Appendix A: Simple Graphical Input
and Output

Input and output using a text-based window were introduced in Chap. 1. They are

simple and easy to implement while learning the concepts of a programming

language and creating programs for oneself. However, when an application is

written for customers, a user-friendly graphical user interface (GUI) is an important

part of developing programs. In this appendix, a simple graphical window called a

dialog box which displays a message to the user or requests input will be discussed.

A.1 Message Dialog Boxes

Simple GUI-based output to display a message dialog box can be accomplished by

using the showMessageDialog method which is a class method defined in the

standard class JOptionPane. Here is a statement that calls the method:

JOptionPane.showMessageDialog(null, "Hello, World!");

The method passes two arguments. The first argument controls the location of

the dialog box and is an object of Java standard class JFrame that represents a

single window on the screen. For now, a reserved word, null, is passed which

causes the dialog box to appear in the center of the screen. The second argument is

the message to be displayed in the dialog box. When the statement above is

executed, the dialog box shown below appears on the screen.

J.T. Streib and T. Soma, Guide to Java: A Concise Introduction to Programming,
Undergraduate Topics in Computer Science, DOI 10.1007/978-1-4471-6317-6,
© Springer-Verlag London 2014

311

http://dx.doi.org/10.1007/978-1-4471-6317-6_1

When the user clicks the OK button, the dialog box will close. If multiple lines of
text need to be displayed, the control character \n can be used to separate the lines

as in

JOptionPane.showMessageDialog(null, "Hello,\nWorld!");

which will result in the dialog box shown below:

As can be seen, Hello, and World! are output on separate lines.

A.2 Input Dialog Boxes

An input dialog box is a simple GUI-based input that can be created by using the

showInputDialog method defined in the JOptionPane class. The following

code shows how the showInputDialog method can be called:

JOptionPane.showInputDialog(null, "What is your first name?");

Just as with the showMessageDialogmethod, it sends a JFrame object and

a String object as arguments. As before, the null value causes the dialog box to

appear in the center of the screen. The second argument is a message displayed

above a text field in the dialog box. The text field is an area in which the user can

type a single line of input from the keyboard. When the statement is executed, a

dialog box will appear as shown in Fig. A.1.

Fig. A.1 An input dialog box

asking the first name

312 Appendix A: Simple Graphical Input and Output

With this dialog box, a user can enter text in the text field as shown below:

When the OK button or the Cancel button is clicked, or the enter key is pressed,
the dialog box will disappear. However, it does not do anything more and the value
entered in the text field is gone. In order to save the value the user entered, it has to be
assigned to a variable as shown in the following code:

String firstName;
firstName ¼ JOptionPane.showInputDialog(null,

"What is your first name?");

If the user enters Maya in the text field and clicks the OK button or presses the
enter key which is an alternative to clicking the OK button, a reference to the
String object with the value "Maya" that is a return value from the method

showInputDialog will be assigned to the String variable firstName. If the
user clicks the OK button or presses the enter key without entering anything in the
text field, firstName will reference the object of the String type with an empty

string. If the user clicks the Cancel button regardless of what was entered in the text
field, firstName will contain the value null.

The following program demonstrates how to use both types of dialog boxes

discussed above. The program uses an input dialog box to ask a user to enter his or

her first name and displays a greeting in a message dialog box:

import javax.swing.*;

class MsgBoxName {
public static void main(String[] args) {

String firstName;
firstName ¼ JOptionPane.showInputDialog(null,

"What is your first name?");
JOptionPane.showMessageDialog(null, "Hello, "

+ firstName + "!\nHow are you?");
System.exit(0);

}
}

First, notice the inclusion of the import statement at the top. Since the

JOptionPane class is not automatically available to Java programs, any program

that uses the JOptionPane class must have the import statement prior to the

Appendix A: Simple Graphical Input and Output 313

class definition. The statement tells the compiler where to find the JOptionPane
class in the javax.swing package and makes it available to the program. Also,

notice the last statement in the main method, System.exit(0); which causes

the program to end. It is added because a program that uses JOptionPane does

not automatically stop executing when the end of the main method is reached. The

System.exit method requires an integer argument. This value is a status code

that is passed back to the operating system. Although the code is usually ignored, it

can be used outside the program to indicate whether the program terminated

successfully or abnormally. The value 0 traditionally indicates that the program

ended successfully. When the above program is executed, the input dialog box in

Fig. A.1 appears. If the user enters Maya and clicks the OK button, the following
message dialog box will be displayed.

A.3 Converting String Input from Input Dialog Boxes
to Numbers

Unlike the Scanner class that supports different input methods for specific data

types, such as nextInt and nextDouble, the JOptionPane supports only

string input. Even if the user enters numeric data, the showInputDialog
method always returns the user’s input as a String. For example, if the user

enters the number 18 into an input dialog box, the showInputDialog method

will return the String value "18". This can be a problem if the input is supposed

to be used later in mathematical calculations because mathematical computations

cannot be performed on strings. In such a case, a conversion from a string to a

number needs to be performed. Here is an example of how to accomplish this using

the Integer.parseInt method to convert the user’s input to an integer value:

String str;
int age;
str¼JOptionPane.showInputDialog(null,

"How old are you?");
age¼Integer.parseInt(str);

314 Appendix A: Simple Graphical Input and Output

When the above code executes, the input dialog box in Fig. A.2 appears. After

the user enters 18, the dialog box would look as shown below:

When the user clicks the OK button, the dialog box disappears and the String
variable str will hold the String value "18". Then it will be converted to an

integer and assigned to the int variable age. If the user enters a string that cannot
be converted to a type int, for example, 18.0 or the word eighteen, a
NumberFormatException error will result (the topic of exceptions will be

covered in Appendix B). Table A.1 lists common methods to convert the string

input to numerical data values.

Next, consider a program which asks a user’s age using an input dialog box

shown previously in Fig. A.2 and displays the following message in a message

dialog box as shown below:

Fig. A.2 An input dialog box

asking the age

Table A.1 Methods for

converting strings to

numbers

Methods Description

Byte.parseByte Convert a String to a byte

Double.parseDouble Convert a String to a double

Float.parseFloat Convert a String to a float

Integer.parseInt Convert a String to a int

Long.parseLong Convert a String to a long

Short.parseShort Convert a String to a short

Appendix A: Simple Graphical Input and Output 315

http://dx.doi.org/10.1007/978-1-4471-6317-6_12

It outputs the current age the user entered and the next year’s age which is 1 year

older. The code necessary to accomplish this task is shown below:

Note that the age+1 is in parentheses so the plus sign is treated as a numerical

addition instead of a string concatenation. Further, since the value of age+1 is not

assigned back into age, the value of the variable age is not altered.

A.4 Confirmation Dialog Boxes

Another useful method from the JOptionPane class is theshowConfirmDialog
method. A confirmation dialog box gives buttons to select, and when a user clicks one

of the buttons, it returns an integer value. Recall the code segment from Fig. 6.3 in

Chap. 6 that checks the string value the user enters after playing one Tic Tac Toe game

to determine if the user wants to play another game. Again, assuming the program to

play a Tic Tac Toe game has been written, the code segment in Fig. 6.3 can be

rewritten using a confirmation dialog box as shown below instead of having the user

enter "yes" or "no":

int selection;
do {

// play one Tic Tac Toe game
selection ¼ JOptionPane.showConfirmDialog(null, //#1
"Would you like to play another Tic Tac Toe game?", //#2
"Confirmation", //#3
JOptionPane.YES_NO_OPTION); //#4

} while(selection ¼¼ JOptionPane.YES_OPTION);

The showConfirmDialog method passes four arguments labeled in the

comment to the right as #1 through #4. The first argument, null, places the

dialog box in the center of the screen. The second argument is a descriptive message

316 Appendix A: Simple Graphical Input and Output

http://dx.doi.org/10.1007/978-1-4471-6317-6_6
http://dx.doi.org/10.1007/978-1-4471-6317-6_6
http://dx.doi.org/10.1007/978-1-4471-6317-6_6

to be output above the buttons in the dialog box to inform the user what should

be done. The third argument is the title of the dialog box appears in the window’s

title bar. The fourth argument defines the set of option buttons that appear at the

bottom of the dialog box. The JOptionPane.YES_NO_OPTION option

displays a Yes button and a No button. The integer returned from the method
indicates which option was selected by the user. When the user clicks the Yes button
in the dialog box shown below, an integer value 0, which is the value of the constant
JOptionPane.YES_OPTION, is returned. When the user clicks the No button,
an integer value 1, which is the value of the constant JOptionPane.
NO_OPTION, is returned. Therefore, the return value from the confirmation dialog

box could be 0 or 1, and the programmer does not have to memorize the actual

value returned for the specific case. Whatever the value is, if the user clicks the Yes
button, the return value should match with the value of the constant

JOptionPane.YES_OPTION. Thus, all the programmer has to write is

selection ¼¼ JOptionPane.YES_OPTION instead of comparing the

return value with the actual integer.

With the above code, if the user clicks the Yes button after playing one Tic Tac
Toe game, a new game will start. The user keeps playing as long as the Yes button is
selected. When the code segment above is actually executed, since it does not
contain the code which implements the Tic Tac Toe game, it simply keeps showing
the confirmation dialog box inside the loop until the user clicks the No button.

A.5 Option Dialog Boxes

In addition to the JOptionPane.YES_NO_OPTION option that was discussed

in the previous section, the JOptionPane class defines another set of option

buttons that appear in the dialog box including the JOptionPane.
YES_NO_CANCEL_OPTION option which displays Yes, No, and Cancel buttons
and the JOptionPane.OK_CANCEL_OPTION option which displays OK and
Cancel buttons. Is there any way the buttons other than Yes, No, Cancel, or OK could
be displayed in the dialog box? The answer is yes. An option dialog box allows a
programmer to create custom buttons using an array structure introduced in Chap. 7.

As an example, assume that every conference attendee will fill out a survey at the

conclusion of the conference. Each question will appear in the dialog box and an

attendee will select one of the buttons. An example question is shown below:

Appendix A: Simple Graphical Input and Output 317

http://dx.doi.org/10.1007/978-1-4471-6317-6_7

As can be seen, there are six option buttons with custom labels and a conference

attendee can click any of them. Besides displaying a question and buttons, the

program needs to know which button the user pressed and stores the information.

The code to display the above dialog box is shown below:

As before, the first argument of the showOptionDialog method indicates the

placement of the dialog box. The null value centers the dialog box on the screen.

The second argument is the question displayed above the option buttons. The third

argument is the title of the dialog box which appears in the window’s title bar. The

fourth argument indicates the set of option buttons. The DEFAULT_OPTION is used

since the programmer will define buttons in the seventh argument. If the predefined

option such as JOptionPane.YES_NO_OPTION is used, then the seventh argu-

ment would be set to null. The fifth argument defines the style of the message. Here

one of the default icons, QUESTION_MESSAGE, is used to display a question mark.

The sixth argument can place additional icons in the dialog box. In this example,

since the question mark icon is already added by the previous parameter, the null
value is used to not display any more icons. The seventh argument specifies the

buttons. The labels of the buttons are stored in the String array named options.
The last argument allows a programmer to specify an initial choice. Since the

argument is "average", the average button is outlined, and if the user simply
presses the enter key without choosing any of the buttons, the average button will be

318 Appendix A: Simple Graphical Input and Output

selected as a default. The showOptionDialog method returns an int value

indicating the button that was activated. It basically returns the index value of the

array options. For example, when the N/A button is selected, it returns the value
0 because the String value "N/A" is stored in the first location of the array, and

when the awful button is clicked, the value 1 is returned. The integer value from each

question can be used to create the result of the survey.

For more information about dialog boxes, please refer to the Java API specifica-

tion document at the Oracle website at http://docs.oracle.com/javase/7/docs/api/

index.html.

Appendix A: Simple Graphical Input and Output 319

http://docs.oracle.com/javase/7/docs/api/index.html
http://docs.oracle.com/javase/7/docs/api/index.html

Appendix B: Exceptions

Building robust programs is essential to the practice of programming. Robust

programs are able to handle error conditions gracefully. If a program crashes

when an invalid input is entered, the program is not very robust. This appendix

describes a process called exception handling which can be used to improve the

robustness of the program to prevent it from crashing and allow it to terminate in a

controlled manner.

B.1 Exception Class and Error Class

An exception represents an execution error, an error condition, or an unexpected

event that occurs during the normal course of program execution. It is an instance of a

class in the Java Application Programming Interface (API) which is a predefined set

of classes that can be used in any Java program. The Java API contains an extensive

hierarchy of exception classes. A portion of the hierarchy is shown in Fig. B.1.

As one can see, all of the classes in the hierarchy are subclasses of the

Throwable class. Just below the Throwable class are the classes Error and

Exception. Subclasses of the Error class are for exceptions when a critical error

occurs, such as an internal error in the Java interpreter which indicates it has run out

of resources and cannot continue operating. Subclasses of the Exception class

include IOException and RuntimeException which also serve as

superclasses to other classes. IOException is the superclass for exceptions related

to input and output operations. RuntimeException serves as the superclass for

exceptions that result from programming errors, such as an out of bounds array index.

When an exception occurs, it is said to have been thrown. Unless an exception is

detected by the program and dealt with, it causes the program to halt. To detect

whether an exception has been thrown and prevent it from halting the program, Java

allows programmers to create an exception handler which is a section of code that is

executed when an exception is thrown. Exception handling is the process of catching
an exception and then handling it. If the program does not provide an exception

handler, the system uses the default exception handler, which outputs an error

message and stops the program. The next section will show how exceptions can be

caught and processed.

J.T. Streib and T. Soma, Guide to Java: A Concise Introduction to Programming,
Undergraduate Topics in Computer Science, DOI 10.1007/978-1-4471-6317-6,
© Springer-Verlag London 2014

321

B.2 Handling an Exception

Consider the following program which asks a user for a test score and then outputs

it. When the program in Fig. B.2 is executed using a sample input of 80, the output
is as follows:

Enter the score: 80
Your score is 80.

When a valid input is entered, the program terminates successfully. What

happens if the real number 80.0 is entered instead of an integer? The program

will halt in the middle of the execution and gives the error message shown below:

Enter the score: 80.0
java.util.InputMismatchException

at java.util.Scanner.throwFor(Scanner.java:840)
at java.util.Scanner.next(Scanner.java:1461)
at java.util.Scanner.nextInt(Scanner.java:2091)
at java.util.Scanner.nextInt(Scanner.java:2050)
at ScoreVersion1.main(ScoreVersion1.java:9)

This error message indicates the system has caught an exception called the

InputMismatchException, because the value entered was of type double
which cannot be read using the nextInt method. If the input was 8o, the digit 8

Fig. B.1 Hierarchy of

exception classes

322 Appendix B: Exceptions

and a lower case letter o, the system will catch the same exception because the

combination of a number 8 and a lower case letter o is not an integer. In the

absence of an exception handler by a programmer, a single thrown exception will

most likely result in program termination. Instead of depending on the system for

exception handling, one can write code that catches and handles exceptions to

increase the program’s robustness.

To handle an exception, a try-catch control statement is coded. In order to

catch an InputMismatchException exception, the following code can be used:

try {
// try block

}
catch(InputMismatchException exception) {

// catch block
}

After the keyword try, a block of code follows inside braces. This block of

code is known as a try block. A try block has one or more statements that can

potentially throw an exception, such as input statements. After the try clause

comes a catch clause. A catch clause begins with the keyword catch,
followed by a parameter declaration which includes the name of an exception

class and a parameter. If the code in the try block throws an exception of the

InputMismatchException class, an object of the InputMismatch-
Exception class is created. It will be caught by the catch clause and referenced

by the variable exception. Then, the code in the catch block is executed. Note

that both the try block and the catch block require braces.

From the code shown in Fig. B.2, the statement score ¼ scanner.
nextInt(); should be placed inside the try block because it can potentially

throw an exception when a user enters a non-integer value. The statements that are

executed in response to the thrown exception are placed in the matching catch
block. To simply display an error message and continue when the exception is

thrown, a try-catch statement can be added to the code in Fig. B.2 as shown

below:

Fig. B.2 A program without exception handling

Appendix B: Exceptions 323

If there are several statements in the try block, they are executed in sequence.

When one of the statements throws an exception, control is passed to the matching

catch block and the statements inside the catch block are executed. The

execution then continues to the statement that follows the try-catch statement,

ignoring any remaining statements in the try block. For example, if the user enters

8o, a number 8 and a lower case letter o, an exception is thrown, the program will

skip the second statement, System.out.println("Your score is " +
score + "."); in the try block, and the error message in the catch block

will be output. Since there are no more statements in the program, it will terminate.

The output would then look like the following:

Enter the score: 8o
Error: Score must be integer.

If no statements in the try block throw an exception, then the catch block is

ignored and execution continues with the statement following the try-catch
statement. For example, the input 80 will result in the following:

Enter the score: 80
Your score is 80.

By adding the try-catch statement, the program will not crash when a

non-integer value is entered. However, it would be nice if the user is asked to

reenter the input in order to continue. To accomplish this, the entire try-catch
statement can be placed inside a loop as shown in Fig. B.3.

Notice that the variable flag is initialized to true at the beginning so the

program will ask the user to enter the score at least once inside the while loop.

In order to break out of the while loop, the contents of flag must be changed to

false. The use of the boolean variable flag was discussed in Chaps. 3 and 4,

where it was used with selection and iteration structures, respectively. In this

example, the only time that control should break out of the while loop is when

the user enters an integer value. Therefore, the value of the flag is changed right

324 Appendix B: Exceptions

http://dx.doi.org/10.1007/978-1-4471-6317-6_3
http://dx.doi.org/10.1007/978-1-4471-6317-6_4

after the nextInt method. If an integer is entered, the execution continues to the

statement that follows the while loop, instead of jumping to the catch clause.

Also, notice the first statement scanner.next(); inside the catch block. This

removes the non-integer input value that caused an exception from the input buffer.

Otherwise, the nextInt method processes the same invalid input from the first

attempt over and over resulting in an infinite loop because the value would never be

removed from the buffer and be assigned to the variable. The following output shows

that the program will keep asking the user for input until valid value is entered:

Enter the score: 80.0
Error: Score must be integer.
Enter the score: 8o
Error: Score must be integer.
Enter the score: eighty
Error: Score must be integer.
Enter the score: 80
Your score is 80.

As can been seen in the fourth attempt, the user finally entered an integer value

which caused the program to break out of the while loop and output the score.

B.3 Throwing Exceptions and Multiple catch Blocks

Compared to the original code in Fig. B.2, the code with a try-catch statement in

Fig. B.3 ismore robust because the programdoes not crashwhen a non-integer value is

entered. However, what happens if a negative integer is entered? Because a negative

Fig. B.3 Program with exception handling

Appendix B: Exceptions 325

integer is still an integer, the program proceeds producing an erroneous result and does

not throw an exception. Since the score should not be a negative number or greater

than 100, the program should only accept a value in the range of 0 and 100. Before

writing the program using the exception handling feature, one without try-catch
blocks will be first developed to show the difference between the two techniques.

Because the user could enter non-integer values, it is not wise to use the

nextInt method to read the input because it may cause abnormal termination

when the input cannot be read as integer. Therefore, the input will be read as a

String and checked to ensure that it consists of only digits. If it contains

characters and decimal points, it cannot be an integer. If it is actually a number

without a decimal point, it will be converted to the int type. Then, if it is between

0 and 100, the input is valid. The program below does these tasks:

326 Appendix B: Exceptions

As before, the while loop will repeat until the user enters an integer value

between 0 and 100 inclusive. Notice that the input is read using the method next
instead of nextInt. This will allow both digits and characters to be read as

String. After checking for a leading minus sign, the inner loop goes through

each character in the input string to see if it lies between '0' and '9' in the Unicode

character set. The if statement following checks the boolean variable isInt,
and if the input consists only of digits and an optional minus sign, it will contain the

value true. If this is the case, then the input is converted into an integer using the

parseIntmethod defined in Integer class, which takes a String and returns

a value of int type. If the number is in the correct range, another boolean
variable flag is set to false to break out of the while loop.

The following output shows that the program recovers not only from non-integer

input but also an out of range integer value:

Enter the score: 8o
Error: Score must be integer.
Enter the score: 180
Error: Score must be in 0–100.
Enter the score: 80
Your score is 80.

A program which does the same task as above can be written using a try-catch

block as shown in Fig. B.4. In this program, notice that the input is checked in the

try block to see if it is in the correct range. If it is not, an exception is thrown by

using the throw new RuntimeException(); statement. It creates an object

of the RuntimeException class using a new statement. In the corresponding

catch block, the thrown exception is caught, the reference to the object is assigned

to the parameter exception, and the error message is displayed. Theoretically in

the throw statement, any instance of the Throwable class or its subclasses

including the Error class can be created. However, programs should not try to

handle objects of the Error class or its subclasses. In general, only an instance of

Exception class or its subclasses should be handled by programs, and this is why

an object of the RuntimeException class that is a subclass of the Exception
class was thrown in Fig. B.4.

Also notice that there are multiple catch blocks in the code shown in Fig. B.4.

When there are multiple catch blocks in a try-catch statement, they are

checked in the order they are listed. Once a matching catch block is found,

none of the subsequent ones are checked. Using the same input as before, when

the input 8o is entered during the first iteration of the while loop, an InputMis-
matchException will be thrown and control looks for a matching catch
block. In this case, the first catch block is executed, and then control will go

back to the beginning of the while loop ignoring the second catch block. When

the input 180 is entered, which is a valid integer value, the if condition is checked.

Because the condition is false, a RuntimeException is thrown and control

searches a matching catch block. Since this exception is not an object of the

Appendix B: Exceptions 327

InputMismatchException class, the first catch block is skipped and the

second catch block is executed. If the exception is thrown and there is not a

matching catch block, then the system will handle the thrown exception by

halting execution.

Because the execution classes form an inheritance hierarchy, it is important to

place the catch block for specialized exception classes before those for the more

general exception classes. For example, consider the reversed order of the catch
blocks from Fig. B.4 as shown below:

try {
score ¼ scanner.nextInt();
if(score < 0 || score > 100)

throw new RuntimeException();
flag ¼ false;

}
catch(RuntimeException exception) {

System.out.println("Error: Score must be in 0-100.");
}
catch(InputMismatchException exception) {

scanner.next();
System.out.println("Error:Scoremustbeaninteger.");

}

Fig. B.4 A program with multiple catch blocks

328 Appendix B: Exceptions

This results in a compiler error with the message:

exception java.util.InputMismatchException has already
been caught

Why? Recall that the InputMismatchException class is a subclass of the

RuntimeException class as shown in Fig. B.1 and partially repeated below:

– Exception
– IOException

– . . .
– RuntimeException

– . . .
– NoSuchElementException

– InputMismatchException

When the object of the InputMismatchException class is thrown, the first

catch block is executed and all other catch blocks are ignored. This means that

the second catch block will never be executed because any exception object that

is an instance of the RuntimeException class or its subclasses will match the

first catch block.

When there are multiple catch blocks, each catch clause has to correspond to

a specific type of exception. With the example above, since the InputMis-
matchException class is a subclass of the RuntimeException class, both

exceptions could be caught by the catch clause with RuntimeExeption.
Further, having two catch clauses for the same type of exception in the try-
catch statement, as shown below, will cause the compiler to issue an error

message "exception java.lang.RuntimeException has already
been caught" in the second catch clause.

try {
score ¼ scanner.nextInt();
if(score < 0 || score > 100)

throw new RuntimeException();
flag ¼ false;

}
catch(RuntimeException exception) {

scanner.next();
System.out.println("Error:Scoremustbeaninteger.");

}
catch(RuntimeException exception) {

System.out.println("Error: Score must be in 0-100.");
}

If there is a block of code that needs to be executed regardless of whether an

exception is thrown, then the try-catch statement can include a finally block

whichmust appear after all of the catch blocks. Consider the following while loop

modified from Fig. B.4 with a finally block added at the end of the try-catch
statement:

Appendix B: Exceptions 329

The output using the same input values, 8o, 180, and 80, is shown below:

Enter the score: 8o
Error: Score must be integer.
End of try-catch statement.
Enter the score: 180
Error: Score must be in 0-100.
End of try-catch statement.
Enter the score: 80
End of try-catch statement.
Your score is 80.

Since the first two inputs were invalid, both an error message from the catch
block and a message from the finally block were output. The last input did not

throw an exception, so all the catch blocks were skipped, but the message from

the finally block was still displayed.

B.4 Checked and Unchecked Exceptions

Among the exceptions, including the ones listed in Fig. B.1, there are two categories:

checked and unchecked. Unchecked exceptions are those that inherit from the Error
class or the RuntimeException class. They are also called runtime exceptions
because they are detected during runtime. As mentioned before, the exceptions that

inherit from the Error class are thrownwhen a critical error occurs, and therefore they

should not be handled by the program. Exceptions that were handled in the previous

sections are all instances of the RuntimeException class or its subclasses. How-

ever, in general not all the possible exceptions from the RuntimeException class

are handled in the program because handling each one of them in the program is not

330 Appendix B: Exceptions

practical. As a result, exception handling should only be used when the problem can be

corrected, and simply catching and ignoring any exception is a bad practice.

A RuntimeException indicates programming errors, so it could possibly be

avoided altogether by writing better code. However, large applications might never

be entirely bug-free, and exception handling can be used to display an appropriate

message instead of surprising the user by an abnormal termination of the program.

If the application is running critical tasks and must not crash, exception handling

can be used to log the problem and the execution can continue.

All exceptions that are not inherited from the Error class or the

RuntimeException class are called checked exceptions because they are checked
during compile time. Consider a program which opens a file, reads numbers from

the file, and outputs the total. Suppose the scores.txt file contains the following

data and exists in the same directory as the .java file:

70
80
90

The code in Fig. B.5 opens the scores.txt file, reads three numbers from the

file, and outputs the total. What happens during the compilation of the program?

The compiler will issue an error message "Unreported exception java.
io.FileNotFoundException; must be caught or declared to be
thrown" for the line inFile ¼ new Scanner(new File("scores.
txt")); because this statement can potentially throw a checked exception.

If the file scores.txt does not exist as discussed in Chap. 10, the checked

exception of a FileNotFoundException has to be thrown. A simple solution

to eliminate this error is to add a throws clause, throws IOException, in the
method header. The throws clause informs the compiler of the exceptions that

Fig. B.5 A program with a checked exception

Appendix B: Exceptions 331

http://dx.doi.org/10.1007/978-1-4471-6317-6_10

could be thrown from a program. If the exception actually occurs during runtime,

because the system could not find the file scores.txt, the system will deal with

the exception by halting execution. Consider the following modified version of the

code from Fig. B.5:

Notice that throws IOException is added in the main method header. The

FileNotFoundException could be used in the header instead of

IOException since it is the class that the exception object is actually created

from. However, because the IOException class is a superclass of the

FileNotFoundException class as shown below from Fig. B.1, the throws
clause with IOException can catch the instance of the FileNotFoun-
dException class. Including the more general exception class in the header is

useful since it can catch exceptions of all the subclasses.

– Exception
– IOException

– CharConversionException
– EOFException
– FileNotFoundException

– RuntimeException
– . . .

The other way to handle a checked exception is to include the try-catch
statement in the body of the program. Because the statement inFile ¼ new
Scanner(new File("scores.txt")); could possibly throw a checked

exception, it should be included inside the try block. The statements that should

be executed in response to the thrown exception are placed in the matching catch
block. To simply display an error message and continue when the exception is

thrown, a try-catch statement is added to the code in Fig. B.5 as shown below:

332 Appendix B: Exceptions

If the designated file does not exist in the system, the program will stop whether

a try-catch block exists or not. However, without a try-catch block, the

execution stops abnormally, and with a try-catch block, the program terminates

normally. If it was a part of a larger application program, it would be convenient if

the program did not crash just because it did not find one file, but continued the

execution of the next part of the program.

Appendix B: Exceptions 333

Appendix C: Javadoc Comments

In Chap. 1, different ways of documenting a Java program were discussed. As was

mentioned, comments are intended for programmers and are ignored during execution.

However, documentation is an important aspect of developing applications. In the real

world, once an application is released, programming bugs that were not detected

during development need to be fixed and new features may be added. Often those

who modify a program are not the ones who developed it. The documentation then

becomes very helpful for a programmer attempting to understand somebody else’s

program. This appendix explains more about specialized comments called Javadoc.

C.1 Javadoc

Java provides a standard form for writing comments and documenting classes.

Javadoc comments in a program interact with the documentation tool also named

Javadoc, which comes with the Java Development Kit (JDK). The Javadoc tool

reads the Javadoc comments from the source file and produces a collection of

HyperText Markup Language (HTML) pages, which can be read and displayed by

web browsers. These pages look just like the Java API specification document at the

Oracle website at http://docs.oracle.com/javase/7/docs/api/index.html. The HTML

pages created by the Javadoc tool contain only documentation and no actual Java

code. The documentation allows programmers to understand and use the classes

someone else has written without seeing how they are actually implemented.

Javadoc comments begin with a slash followed by two asterisks /** and end

with an asterisk followed by a slash */. Many programmers also place a single

asterisk * at the start of each line in the comment as shown in the program in

Fig. C.1. Although they have no significance and the Javadoc tool ignores them,

they make it easy to see the entire extent of the comments in the program.

The Javadoc comments for the class are placed between the import statements

and the class header. After the description of the class, the rest of the comment consists

of a series of Javadoc tags, which are special markers that begin with the @ symbol.

Each tag tells the Javadoc tool certain information. The documentation for a class will

usually contain an author tag. The Javadoc tag @author indicates the name of the

programmer(s) who created the class. The Javadoc comments for the description of a

J.T. Streib and T. Soma, Guide to Java: A Concise Introduction to Programming,
Undergraduate Topics in Computer Science, DOI 10.1007/978-1-4471-6317-6,
© Springer-Verlag London 2014

335

http://dx.doi.org/10.1007/978-1-4471-6317-6_1
http://docs.oracle.com/javase/7/docs/api/index.html

method are placed above the method header. As an example, two Javadoc comments

are added to theQuadEq class discussed in Sect. 1.10 ofChap. 1 and shown in Fig.C.1.

The use of Javadoc comments does not preclude the use of other types of comments

in the program. In addition to the Javadoc comments in Fig. C.1, the regular comments

with two slashes // are used to describe the sections of the code. Since Javadoc

comments included in the HTML page are the only ones describing the class, its data

members, and its methods, the comments describing the sections will not appear in the

HTML page even if they are written as Javadoc comments. However, the comments in

the middle of the code are still important when a programmer is reading to understand

Fig. C.1 A program with Javadoc comments

336 Appendix C: Javadoc Comments

http://dx.doi.org/10.1007/978-1-4471-6317-6_1
http://dx.doi.org/10.1007/978-1-4471-6317-6_1

the code. Therefore, Javadoc comments are useful for a programmer who simply uses

the classes without looking at the implementation, and other comments in the code are

helpful for a programmer who is actually modifying the code.

Once all the Javadoc comments are added to the class, the next step is to generate

the corresponding HTML documentation file. Many Java editors and Integrated

Development Environments (IDEs) include a menu option that can be used to

generate a Javadoc documentation file quickly and easily. Part of the resulting

HTML page for the QuadEq class is shown below:

In the nicely formatted HTML page, the description of the class which has been

added to the program as a Javadoc comment is shown. The author tag appears in

boldface and the names of the authors are shown as well. Since there is no

constructor defined in the class, a system-generated default constructor is listed in

the Constructor Summary section. The Method Summary section contains only the

Appendix C: Javadoc Comments 337

mainmethod along with the Javadoc comments added in the program because only

one method exists in the class.

C.2 More Javadoc Tags

The format of the Javadoc comments for a method is similar to the one for a class.

In addition to a general description, a number of Javadoc tags can be included. The

main purpose of the comments for a method is to record its purpose, a list of any

parameters passed to the method, and any value returned from the method. If the

method receives a parameter, the @param tag is used, and if the method returns a

value, the @return tag is added. The Javadoc comments for the method

convertEurosToDollars as defined in the Card class from Sect. 5.6.2 are

shown below:

/**
* Convert the passed value to Dollars.
*
* @param euros the amount in Euros
* @return the amount in Dollars
*/

public static double convertEurosToDollars(double euros) {
return euros*rate;

}

Notice that the Javadoc comments for the method need to be placed just above

the method header. Each parameter of the method is documented by using a tag

@param, followed by the name and the description of the parameter. A description

of a return value is listed after the Javadoc tag @return. Notice the effect of the
@param and @return tags in the following HTML document for the above

method:

The Javadoc comments for a constructor can be defined in a manner similar to

the one for a method, except it does not have a @return tag. In addition to the

above tags, if the method could throw exceptions, they can be listed using the

338 Appendix C: Javadoc Comments

http://dx.doi.org/10.1007/978-1-4471-6317-6_5

@throws tag, just like the @param and the @return tags in the Javadoc

comments. The topic of exceptions is discussed in Appendix B.

More complex methods may need complete precondition and postcondition lists.

Also an example of how the method is used may be useful information for other

programmers. The tags such as @precondition, @postcondition, and

@example that are not predefined in the Javadoc tool can be created by

programmers. Since the convertEurosToDollars is a simple method, only

the @example tag will be added to the Javadoc comments as shown below:

/**
* Convert the passed value to Dollars.
*
* @param euros the amount in Euros
* @return the amount in Dollars
* @example conversion of 1.00 Euros to US dollars -
* Card.convertEurosToDollars(1.00);
*/

public static double convertEurosToDollars(double euros) {
return euros*rate;

}

Note that in order to include the user-defined tags in the documentation, the

HTML page may need to be generated from a command line if the Java editor does

not have a capability of including the options, as will be discussed in the next

section. The HTML document for the above method also appears in the next

section.

Similar to the standard classes, programmer-defined classes and HTML docu-

mentation can be shared with other programmers. First, .java files are written in

the usual way but include the Javadoc comments described in this appendix. After

they are compiled, the .class files can be moved to a location where other

programmers can have access to them. Then the Javadoc tool can be run on each

.java file to create an HTML page, and all Javadoc HTML files can be moved to a

public place where a web browser could be used to read them. This way, by

importing the classes at the beginning of the Java program, the programmer-

defined classes are available to other programmers without compiling them just

like the standard classes.

C.3 Generating Javadoc Documentation from a Command Line

An HTML page can also be generated from a command line. In the command

prompt window, the commands javac and java are used to compile and run Java

programs, respectively. Similarly, the javadoc command is used for generating

Javadoc documentation files. For example, to generate a Javadoc documentation

file for the QuadEq class, the following command is used:

Appendix C: Javadoc Comments 339

http://dx.doi.org/10.1007/978-1-4471-6317-6_12

javadoc QuadEq.java

After the command is executed, a collection of HTML files will be created. The

documentation can be viewed by opening the file index.html and clicking the

QuadEq link.

When a programmer-defined tag such as @example is included in the source

code, options need to be included in the command line to generate the HTML. The

following command can be used to create Javadoc documentation for the Card
class which implements the method convertEurosToDollars:

javadoc –private –author –tag param -tag return
-tag example:a:"Example:" Card.java

The –private option generates the documentation for the class, variables, and

methods including the public, protected, and private members of the

class. The –author option puts the author tag in boldface followed by the author’s

name in the documentation. The other options starting with –tag indicate the order

in which the tags appear in the HTML file: the parameter(s) first, then the return

specification, and finally the example. Two of these options, param and return,
are predefined in the Javadoc system, so only –tag param and –tag return are

listed. However, because an example tag is not predefined in Javadoc, the extra

information at the end such as :a:"Example:" is needed and indicates how the

tag is to appear in the documentation. The a: means that all occurrences of the

@example tag should be put in the documentation along with a heading, which in

this case is Example: as it appears in the quotation marks. Headings will always

appear in boldface in the documentation created by the javadoc command. The

following is the HTML document for the method convertEurosToDollars
that is generated after the @example tag is added to the source code.

For more information about Javadoc, refer to the Java API specification docu-

ment at the Oracle website at http://docs.oracle.com/javase/7/docs/technotes/tools/

windows/javadoc.html.

340 Appendix C: Javadoc Comments

http://docs.oracle.com/javase/7/docs/technotes/tools/windows/javadoc.html
http://docs.oracle.com/javase/7/docs/technotes/tools/windows/javadoc.html

Appendix D: Glossary

All of the terms in italics in the text can be found in the index, and some of these

terms (including abbreviations) can be found here in the glossary. The descriptions

of terms in this glossary should not be used in lieu of the complete descriptions in

the text, but rather they serve as a quick review. Should a more complete descrip-

tion be needed, the index can guide the reader to the appropriate pages where the

terms are discussed in more detail.

Algorithm A step-by-step sequence of instructions, but not necessarily a program

for a computer.

API Application Programming Interface.

Array A collection of contiguous memory locations that have the same name and

are distinguished from one another by an index.

Assembly language A low-level language that uses mnemonics and is converted to

machine language by an assembler.

Bytecode An intermediate language between Java and machine language.

Class A definition or blueprint of a set of objects.

Compiler A translator that converts a high-level language program to a low-level

language for subsequent execution.

Contour diagram A visual representation of the state of execution of a program.

CPU Central Processing Unit.

Data members The variables and constants that are part of an object.

EOD End of Data.

Exception An execution error, an error condition, or an unexpected event during

execution of a program.

GUI Graphical User Interface.

High-level language A more English-like and math-like programming language,

such as Java.

J.T. Streib and T. Soma, Guide to Java: A Concise Introduction to Programming,
Undergraduate Topics in Computer Science, DOI 10.1007/978-1-4471-6317-6,
© Springer-Verlag London 2014

341

HTML HyperText Markup Language.

IDE Integrated Development Environment.

Inheritance The ability of a subclass to reuse methods and data members of a

superclass.

Interpreter A translator that converts and executes a high-level language program

one instruction at a time.

IPO Input Process Output.

Iteration structures Allows a program to repeat a section of code, often called

a loop.

Javadoc Specialized comments for documenting classes and methods.

LCV Loop Control Variable.

LIFO Last In First Out as with a stack.

Low-level language A language closer to a particular CPU, such as assembly

language and machine language.

Machine language The native language of the processor coded on ones and zeros.

Method A series of instructions that can be invoked to access and manipulate the

data members of an object.

Object An instance of a class.

OOP Object-Oriented Programming.

Overloading A method in the same class that has the same name but a different

number of parameters, different types of parameters, or parameters of different

types in a different order.

Overriding A method in a subclass that has the same name and also the same

number and type of parameters as the one in the superclass.

Polymorphism The type of an object referenced by a superclass variable

determined at runtime.

Pseudocode A design tool consisting of a combination of English and a pro-

gramming language that helps one concentrate on logic instead of syntax when

developing a program.

RAM Random Access Memory.

Recursion A definition that is defined in terms of itself and includes a base or

terminal case.

Selection structures Allows a program to follow one of more paths, sometimes

called decision structures.

342 Appendix D: Glossary

Semantics The meaning of what each instruction does in a programming language.

Syntax The grammar of a programming language.

UML Universal Modeling Language.

Variables Named memory locations used to store data in a program.

Appendix D: Glossary 343

Appendix E: Answers to Selected Exercises

Chapter 1

1.B. Correct.

1.D. Incorrect, a double number cannot be assigned to a variable of integer type.

2.A. 0
3.B. 5.34
4.B. final double EULER_NUMBER ¼ 2.7182;
6. System.out.println("** **");

System.out.println("** **");
System.out.println(" ****");
System.out.println(" ****");
System.out.println(" ****");
System.out.println(" ****");
System.out.println("** **");
System.out.println("** **");

7. After execution, value1 is 9, value2 is 4, and value3 is 9.
8.B. s ¼ r * Math.PI * Math.sqrt(Math.pow(r,2) + Math.pow

(h,2));

Chapter 2

1.A. Incorrect, it should be Circle circle ¼ new Circle();
1.C. Correct.

4.A. Circle innerCircle;
innerCircle ¼ new Circle();

4.C. System.out.println("The value of radius is "
+ innerCircle.getRadius());

J.T. Streib and T. Soma, Guide to Java: A Concise Introduction to Programming,
Undergraduate Topics in Computer Science, DOI 10.1007/978-1-4471-6317-6,
© Springer-Verlag London 2014

345

6. Answers to A. and D. of the Cone class

Chapter 3

1.A. 40
2.B. 50
3.C. 3
5.A. true || false! true
5.C. true || flag1 && flag2! true || false! true
5.E. (true || false) && false! true && false! false
8.

346 Appendix E: Answers to Selected Exercises

9.

Chapter 4

2. , in the for statement

3. sum ¼ 1
count ¼ 2
sum ¼ 3
count ¼ 3
sum ¼ 6
count ¼ 4
sum ¼ 10
count ¼ 5
sum ¼ 10
count ¼ 5

6. **

7.B. int total, count
total ¼ 0;
count ¼ 1;
do {

total +¼ count;
count +¼ 3;

} while (count <¼ 40);

Appendix E: Answers to Selected Exercises 347

8.A. int total, count, n;
total ¼ 0;
n ¼ 5;
for(count ¼ 0; count < n; count++) {

total +¼ count;
}

Chapter 5

1. constructor 1: valid
constructor 3: invalid

2. method 2: invalid
method 6: valid

method 10: valid
6. answers to A., B., C., and F. of the Cone class

348 Appendix E: Answers to Selected Exercises

Chapter 6

1.B. The second line should be text2 ¼ new String("Shedding
blade");

2.B. 34
2.D. Hose_
7.

Chapter 7

1.B. Incorrect, the size has to be specified.

1.C. Incorrect, the braces have to be used instead of the square brackets.

1.E. Incorrect, the size should not be specified.

2. int total ¼ 0;
for(int i¼0; i<intArray.length; i++)

if(i%2 ¼¼ 0)
total ¼ total + intArray[i];

5. 3
4
3

Appendix E: Answers to Selected Exercises 349

7.

Chapter 8

7. public static String reverseStr(String str) {
if(str.length() <¼ 1)

return str;
return reverseStr(str.substring(1)) + str.charAt(0);

}

9. public static int factorial(int n) {
if(n ¼¼ 0)

return 1;
else

return n * factorial(n-1);
}

Chapter 9

1.B. Incorrect, a variable of a subclass type cannot reference an object of a

superclass type.

1.C. Correct.

2.B. calcRegPolyArea and toString.

350 Appendix E: Answers to Selected Exercises

2.D. Yes.

3.

Chapter 10

1.B. Incorrect, there is no constructor in the File Class which takes the

FileReader object as a parameter.

1.D. Correct.

3.

Appendix E: Answers to Selected Exercises 351

References and Useful Websites

References

1. Johnson JB (1971) The contour model of block structured processes. SIGPLAN Notices

6(2):55–72

2. Organick EI, Forsythe AI, Plummer RP (1978) Programming language structures. Academic

Press, New York

3. Streib JT, Soma T (2010) Using contour diagrams and JIVE to illustrate object-oriented

semantics in the Java programming language. In: SIGCSE ’10: Proceedings of the 41st ACM

technical symposium on computer science education. Milwaukee, WI, USA, pp 510–514

4. Streib JT (2011) Guide to assembly language: a concise introduction. Springer, London

Useful Websites

“Class File,” information on File class discussed in Chapter 10: http://docs.oracle.com/javase/7/

docs/api/java/io/File.html

“Class FileReader,” information on FileReader class discussed in Chapter 10: http://docs.

oracle.com/javase/7/docs/api/java/io/FileReader.html

“Class JOptionPane,” information on dialog boxes discussed in Appendix A: http://docs.oracle.

com/javase/7/docs/api/javax/swing/JOptionPane.html

“Class String,” information on String class discussed in Chapter 6: http://docs.oracle.com/

javase/7/docs/api/java/lang/String.html

“javadoc – The Java API Documentation Generator,” information on Javadoc discussed in

Appendix C: http://docs.oracle.com/javase/7/docs/technotes/tools/windows/javadoc.html

“Java™ Platform, Standard Edition 7 API Specification,” format of documents created by the

Javadoc discussed in Appendix C: http://docs.oracle.com/javase/7/docs/api/index.html

“Java™ Platform, Standard Edition 7 API Specification,” list of classes and packages in Java 7:

http://docs.oracle.com/javase/7/docs/api/index.html

J.T. Streib and T. Soma, Guide to Java: A Concise Introduction to Programming,
Undergraduate Topics in Computer Science, DOI 10.1007/978-1-4471-6317-6,
© Springer-Verlag London 2014

353

http://docs.oracle.com/javase/7/docs/api/java/io/File.html
http://docs.oracle.com/javase/7/docs/api/java/io/File.html
http://docs.oracle.com/javase/7/docs/api/java/io/FileReader.html
http://docs.oracle.com/javase/7/docs/api/java/io/FileReader.html
http://docs.oracle.com/javase/7/docs/api/javax/swing/JOptionPane.html
http://docs.oracle.com/javase/7/docs/api/javax/swing/JOptionPane.html
http://docs.oracle.com/javase/7/docs/api/java/lang/String.html
http://docs.oracle.com/javase/7/docs/api/java/lang/String.html
http://docs.oracle.com/javase/7/docs/technotes/tools/windows/javadoc.html
http://docs.oracle.com/javase/7/docs/api/index.html
http://docs.oracle.com/javase/7/docs/api/index.html

Index

A
Accessors, 41–42

Actual parameters, 43

Algorithm, 32

analysis, 221

API (Application Programing Interface),14

Arguments, 42

Arithmetic statements

(+,� *, /, %, ++,�,+¼), 22–29

precedence, 24–25

Arrays, 203–206

files, 300–303

objects, 236–238

one-dimensional, 203–225

access, 205–206

declaration, 203–204

input, 207–210

output, 210–211

passing to/from a method, 212–213

processing, 212

reversing, 213–218

searching, 218–221

sorting, 221–225

two-dimensional, 225–235

asymmetrical, 234–235

declaration, 226–228

input, 228

output, 228–229

passing to/from method, 232–234

processing, 229–232

Assembler, 1–2

Assembly language, 1–2

Assignment statements (¼), 10–13

B
Binary search, 219–220

Bit, 8

boolean, 87
break, 94–95

Bubble sort, 222–224

byte, 8

Byte, 8
Bytecode, 4

C
case, 94–95
Case structure, 93–98

catch, 323–325
char, 8
Classes, 48–49

abstract, 277–278

multiple, 56–60

siblings, 282

class, 5, 6, 39–41
Comments, 6, 29–30

javadoc, See Javadoc
Compiler, 2–5

Compound statements, 63

Constants, 10, 157–162

class, 158–162

instance, 158–160

local, 157–158

Constructors, 50–53

default, 152–153

overloading, 148–153

Contour diagrams, 45–50

deallocation, 48

inheritance, 281–287

recursion, 247, 252, 254

strings, 185–194

Count controlled indefinite iteration

structures, 109–115

CPU (Central Processing Unit), 1

D
Dangling else problem, 82–86

Data encapsulation, 41

J.T. Streib and T. Soma, Guide to Java: A Concise Introduction to Programming,
Undergraduate Topics in Computer Science, DOI 10.1007/978-1-4471-6317-6,
© Springer-Verlag London 2014

355

Data member, 41

Data types, 8

Debugging, 4

default, 94
Definite iteration loop structure, 124–127

DeMorgan’s Laws, 91

Dialog boxes, 311–319

confirmation, 316–317

input, 314

message, 311–312

option, 317–319

do while, 120–124
double, 8

E
else, 75–78
EOD (End of Data), 116

Exceptions, 321–333

checked, 331–333

handling, 322–325

hierarchy, 321

runtime, 321

throwing, 325–330

thrown, 321

try-catch block, 323–324
unchecked, 330–331

Execution errors, 4

extends, 269

F
Fibonacci numbers, 254–264

Files, 293–309

arrays, 300–303

input, 394–298

location, 303–305

output, 298–300

final, 10
finally, 329
Fixed iteration loop structure, 124

Flags, 87

float, 8
Flowchart, 70

for, 124–127
Formal parameters, 42

G
GUI (Graphical User Interface), 311

H
Hardware, 1

Hello world program, 14

High-level language, 2

HTML (HyperText Markup

Language), 335

I
IDE (Integrated Development

Environment), 14

if, 69–86
If-then structures, 69–74

If-then-else structures, 75–78

Immutable, 186

import, 20
Infinite loop, 129–130

Inheritance, See Objects
Input, 20–22

Instance, 40

instanceof, 292–283
int, 8
Interpreter, 2–5

Invoking methods, 44

IPO (Input Process Output), 1

Iteration structures, 107–133

J
Java program skeleton, 5–6

Javadoc, 335–340

comments (/**, */), 335

tags, 335

L
LCV (Loop Control Variable), 109

LIFO structure, 253

Logic errors, 4

Logical operators (!, &&, ||), 86–92

precedence, 90

long, 8
Low-level language, 1–2

M
Machine language, 1

main, 6
Math class, 28
Memory, 1

356 Index

Methods, 13, 42, 152–153

class, 165–167

overloading, 152–153

overriding, 275

value-returning, 42

void, 43
Mnemonics, 1

Mutators, 41–43

N
Nested if structures, 78–86

if-the-else-if structures, 78–80

if-then-if structures, 80–82

Nested iteration structures, 127–129

new, 40–44

O
Objects, 40, 42–67, 150–192, 267–291

arrays, 234–238

inheritance, 267–276

multiple, 53–60

overriding methods, 275

polymorphism, 278–283

returning an object, 146–148

sending objects, 143–146

subclasses, 267–276

superclasses, 267–276

One-dimensional arrays, see Arrays
OOP (Object-Oriented Programming),

3, 39–40

Output, 13–20

Overloading, 148–153

constructors, 148–153

methods, 159–160

operator (+), 194–195

Overriding methods, 275

P
Parameters, 42–43

Polymorphism, See Objects
Post-test indefinite loop structure, 120–124

Pre-test indefinite loop structures, 108–120

Priming read, 116

private, 41
Private

data member, 49–50

Program design, 49–50

Prompts, 22

protected, 276–278
Pseudocode, 32

public, 6

Public

data member, 41

R
RAM, 1

Recursion, 245–266

base or terminal case, 247

Fibonacci numbers, 252–264

infinite, 243

power function, 245–253

stack frames, 253–254

tree of calls, 263–264

Relational symbols, 72–73

Reserved word, 5

return, 42
Run-time errors, 1

S
Scanner, 21–22
Scope, 45

Selection structures, 69–106

Semantics, 4

Sentinel controlled loop, 116–120

Sequential search, 218–219

Short circuit, 92

short, 8
Software, 1

sort, 307
Stack, 253–254

static, 6, 160–162, 164–166
Storage, 1

String, 8, 185–202

Strings, 8, 185–202

comparison, 191–194

concatenation, 186–188

format, 285
methods, 188–196

super, 270, 275, 276
switch, 93–98
Symbolic addressing, 7

Syntax, 4

Syntax errors, 4

System.out.print, 14–17
System.out.printf, 19
System.out.println, 14–19

T
this, 153–157, 276
token, 294

Truth tables, 88

try, 323–325

Index 357

Two-dimensional arrays, See Arrays
Typecast operator, 13, 115, 281

U
UML (Universal Modeling Language), 60–62

User friendly, 22

V
Value parameters, 43

Variables, 6–10, 42, 162–165

class, 163–164

global, 43

instance, 163

local, 43, 162–163

void, 6, 42–43

W
while, 110
While loops, 110–120

358 Index

	Preface
	Purpose
	Comparison to Other Texts
	Need
	Features of This Text
	Overview of the Chapters
	Scope
	Audience
	Acknowledgments
	Feedback

	Contents
	1: Variables, Input/Output, and Arithmetic
	1.1 Introduction
	1.2 Java Skeleton
	1.3 Variables and Constants
	1.4 Assignment Statements
	1.5 Output
	1.6 Input
	1.7 Arithmetic Statements
	1.8 Comments
	1.9 Program Design
	1.10 Complete Program: Implementing a Simple Program
	1.11 Summary
	1.12 Exercises (Items Marked with an * Have Solutions in Appendix E)

	2: Objects: An Introduction
	2.1 Introduction
	2.2 Classes and Objects
	2.3 Public and Private Data Members
	2.4 Value-Returning Methods
	2.5 Void Methods and Parameters
	2.6 Creating Objects and Invoking Methods
	2.7 Contour Diagrams
	2.8 Constructors
	2.9 Multiple Objects and Classes
	2.10 Universal Modeling Language (UML) Class Diagrams
	2.11 Complete Program: Implementing a Simple Class and Client Program
	2.12 Summary
	2.13 Exercises (Items Marked with an * Have Solutions in Appendix E)

	3: Selection Structures
	3.1 Introduction
	3.2 If-Then Structure
	3.3 If-Then-Else Structure
	3.4 Nested If Structures
	3.4.1 If-Then-Else-If Structure
	3.4.2 If-Then-If Structure
	3.4.3 Dangling Else Problem

	3.5 Logical Operators
	3.6 Case Structure
	3.7 Complete Programs: Implementing Selection Structures
	3.7.1 Simple Program
	3.7.2 Program with Objects

	3.8 Summary
	3.9 Exercises (Items Marked with an * Have Solutions in Appendix E)

	4: Iteration Structures
	4.1 Introduction
	4.2 Pretest Indefinite Loop Structure
	4.2.1 Count-Controlled Indefinite Iteration Structure
	4.2.2 Sentinel Controlled Loop

	4.3 Posttest Indefinite Loop Structure
	4.4 Definite Iteration Loop Structure
	4.5 Nested Iteration Structures
	4.6 Potential Problems
	4.7 Complete Programs: Implementing Iteration Structures
	4.7.1 Simple Program
	4.7.2 Program with Objects

	4.8 Summary
	4.9 Exercises (Items Marked with an * Have Solutions in Appendix E)

	5: Objects: Revisited
	5.1 Sending an Object to a Method
	5.2 Returning an Object from a Method
	5.3 Overloaded Constructors and Methods
	5.4 Use of the Reserved Word this
	5.5 Class Constants, Variables, and Methods
	5.5.1 Local, Instance, and Class Constants
	5.5.2 Local, Instance, and Class Variables
	5.5.3 Class Methods

	5.6 Complete Programs: Implementing Objects
	5.6.1 Program Focusing on Overloaded Methods
	5.6.2 Program Focusing on Class Data Members and Class Methods

	5.7 Summary
	5.8 Exercises (Items Marked with an * Have Solutions in Appendix E)

	6: Strings
	6.1 Introduction
	6.2 String Class
	6.3 String Concatenation
	6.4 Methods in String Class
	6.4.1 The length Method
	6.4.2 The indexOf Method
	6.4.3 The substring Method
	6.4.4 Comparison of Two String Objects
	6.4.5 The equalsIgnoreCase Method
	6.4.6 The charAt Method

	6.5 The toString Method
	6.6 Complete Program: Implementing String Objects
	6.7 Summary
	6.8 Exercises (Items Marked with an * Have Solutions in Appendix E)

	7: Arrays
	7.1 Introduction
	7.2 Array Declaration
	7.3 Array Access
	7.4 Input, Output, Simple Processing, and Methods
	7.4.1 Input
	7.4.2 Output
	7.4.3 Simple Processing
	7.4.4 Passing an Array to and from a Method

	7.5 Reversing an Array
	7.6 Searching an Array
	7.6.1 Sequential Search
	7.6.2 Binary Search
	7.6.3 Elementary Analysis

	7.7 Sorting an Array
	7.7.1 Simplified Bubble Sort
	7.7.2 Modified Bubble Sort

	7.8 Two-Dimensional Arrays
	7.8.1 Declaration, Creation, and Initialization
	7.8.2 Input and Output
	7.8.3 Processing Data
	7.8.4 Passing a Two-Dimensional Array to and from a Method
	7.8.5 Asymmetrical Two-Dimensional Arrays

	7.9 Arrays of Objects
	7.10 Complete Program: Implementing an Array
	7.11 Summary
	7.12 Exercises (Items Marked with an * Have Solutions in Appendix E)

	8: Recursion
	8.1 Introduction
	8.2 The Power Function
	8.3 Stack Frames
	8.4 Fibonacci Numbers
	8.5 Complete Program: Implementing Recursion
	8.6 Summary
	8.7 Exercises (Items Marked with an * Have Solutions in Appendix E)

	9: Objects: Inheritance and Polymorphism
	9.1 Inheritance
	9.2 Protected Variables and Methods
	9.3 Abstract Classes
	9.4 Polymorphism
	9.5 Complete Program: Implementing Inheritance and Polymorphism
	9.6 Summary
	9.7 Exercises (Items Marked with an * Have Solutions in Appendix E)

	10: Elementary File Input and Output
	10.1 Introduction
	10.2 File Input
	10.3 File Output
	10.4 File Input and Output Using an Array
	10.5 Specifying the File Location
	10.6 Complete Programs: Implementing File Input and Output
	10.6.1 Matrix Multiplication
	10.6.2 Sorting Data in a File

	10.7 Summary
	10.8 Exercises (Items Marked with an * Have Solutions in Appendix E)

	Appendix A: Simple Graphical Input and Output
	A.1 Message Dialog Boxes
	A.2 Input Dialog Boxes
	A.3 Converting String Input from Input Dialog Boxes to Numbers
	A.4 Confirmation Dialog Boxes
	A.5 Option Dialog Boxes

	Appendix B: Exceptions
	B.1 Exception Class and Error Class
	B.2 Handling an Exception
	B.3 Throwing Exceptions and Multiple catch Blocks
	B.4 Checked and Unchecked Exceptions

	Appendix C: Javadoc Comments
	C.1 Javadoc
	C.2 More Javadoc Tags
	C.3 Generating Javadoc Documentation from a Command Line

	Appendix D: Glossary
	Appendix E: Answers to Selected Exercises
	Chapter 1
	Chapter 2
	Chapter 3
	Chapter 4
	Chapter 5
	Chapter 6
	Chapter 7
	Chapter 8
	Chapter 9
	Chapter 10

	References and Useful Websites
	References
	Useful Websites

	Index

