

Functional Programming in Java
Harnessing the Power of Java 8 Lambda Expressions

Venkat Subramaniam

The Pragmatic Bookshelf
Dallas, Texas • Raleigh, North Carolina

Many of the designations used by manufacturers and sellers to distinguish their products
are claimed as trademarks. Where those designations appear in this book, and The Pragmatic
Programmers, LLC was aware of a trademark claim, the designations have been printed in
initial capital letters or in all capitals. The Pragmatic Starter Kit, The Pragmatic Programmer,
Pragmatic Programming, Pragmatic Bookshelf, PragProg and the linking g device are trade-
marks of The Pragmatic Programmers, LLC.

Every precaution was taken in the preparation of this book. However, the publisher assumes
no responsibility for errors or omissions, or for damages that may result from the use of
information (including program listings) contained herein.

Our Pragmatic courses, workshops, and other products can help you and your team create
better software and have more fun. For more information, as well as the latest Pragmatic
titles, please visit us at http://pragprog.com.

Copyright © 2013 The Pragmatic Programmers, LLC.
All rights reserved.

No part of this publication may be reproduced, stored in a retrieval system, or
transmitted, in any form, or by any means, electronic, mechanical, photocopying,
recording, or otherwise, without the prior consent of the publisher.

Printed in the United States of America.
ISBN-13: 978-1-937785-46-8
Encoded using the finest acid-free high-entropy binary digits.
Book version: B1.0—March 6, 2013

Preface
You’re in for a treat. One of the most prominent and widely used languages
in the world has evolved, for the better. Until now Java gave us one set of
tools—OO—and we did the best we could with it. Now, in addition, there’s
another way to solve more elegantly the common problems we encounter
when developing applications. We can now do quite effectively in Java what
was possible on the JVM only using other languages—this means truly more
power for everyone using Java.

In the past few decades, I’m thankful for the privilege to program with a few
languages: C, C++, Java, C#, F#, Ruby, Groovy, Scala, Clojure, Erlang,
JavaScript… When asked which one’s my favorite, my resounding answer
has been: it’s not the language that excites me, but the way we program.

The science and engineering in programming is what drew me in, but it’s the
art in programming that keeps me. Coding has a lot in common with writing
—there’s more than one way to express our ideas. Java helped us so far to
write code using objects. Now we have an additional way to implement our
designs and ideas.

This is a new way in Java, one that will make our code more expressive,
easier to write, less error-prone, and easier to parallelize than we were able
to do with Java until now. This way has been around for decades and widely
used in languages like Lisp, Clojure, Erlang, Scala, Groovy, Ruby… This is
not only a new way in Java, but you’ll find it to be a better way as well.

Since coding is like writing, we can learn a few things from that field. William
Zinsser recommends simplicity, clarity, and brevity in On Writing Well [Zin01].
To create better applications, we can start by making the code simpler,
clearer, and concise. The new style of programming in Java provides exactly
that, as we will explore throughout this book.

• Click HERE to purchase this book now. discuss

Who’s this book for

This book is for programmers well versed with object-oriented programming
in Java who are keen to learn and apply the new facilities of lambda expres-
sions. You’ll need good experience programming in previous versions of Java,
especially Java 5, to make the best use of this book.

Programmers mostly interested in other JVM languages like Scala, Groovy,
JRuby, and Closure can benefit from the examples in this book and can relate
back to the facilities offered in the respective languages. They can also use
the examples to help fellow Java programmers in their teams.

Programmers experienced with the functional style of programming in other
languages who are now involved in Java projects can use this book as well.
They can learn how what they know translates to the specifics of the lambda
expressions usage in Java. Programmers who’re familiar with lambda
expressions in Java can use this book to help coach and train their team
members who are getting up to speed in this area.

What’s in this book

This book will help you get up to speed with Java 8 lambda expressions, to
think in the elegant style, and benefit from the additions to the Java JDK
library. We’ll take an example driven approach to explore the concepts. Rather
than discuss the theory of functional programming, we’ll dive into specific
day-to-day tasks to apply the elegant style. This approach will quickly help
to get these concepts under our belts, so we can put them to real use on
projects right away.

On the first read, take the time to go over the chapters sequentially, as we
build upon previously discussed concepts and examples. Later, when working
on applications, take a quick glance at any relevant example or section in the
book. There’s also an appendix of syntax for quick reference.

Here’s how the rest of the book is organized:

We discuss the functional style of programming, its benefits, and how it differs
from the prevalent imperative style in Chapter 1, Hello Lambda Expressions,
on page ?. We also look into how Java supports lambda expressions in this
chapter.

The JDK collections have received some special treatment in Java 8, with
new interfaces, classes, and methods that support functional style operations.
We will explore these in Chapter 2, Using Collections, on page ?.

Preface • vi

• Click HERE to purchase this book now. discuss

In Chapter 3, Strings, Comparators, and Filters, on page ? we exploit func-
tional style and lambda expressions to work with strings, implement the
Comparator interface, and filters for file selection.

In addition to using the functional style facilities in the JDK, we can benefit
from applying the elegant style in the design of methods and classes we create.
We’ll pick up functional style design techniques in Chapter 4, Designing with
Lambda Expressions, on page ?.

The lambda expressions facilitate a code structure that helps delineate oper-
ations to manage object lifetimes and resource clean up as we’ll see in
Chapter 5, Working with Resources, on page ?.

We’ll see lambda expressions shine in Chapter 6, Being Lazy, on page ?, to
provide us the ability to postpone instance creation and method evaluations,
create infinite lazy collections, and thereby improve the performance of the
code.

In Chapter 7, Optimizing Recursions, on page ? we will use lambda expres-
sions to optimize recursions and achieve stellar performance using memoiza-
tion techniques.

We’ll put the techniques we cover in the book to some real use in Chapter 8,
Composing with Lambda Expressions, on page ? where we will transform
objects, implement map-reduce, and safely parallelize a program with little
effort.

Finally, in Chapter 9, Bringing it all Together, on page ? we will go over the
key concepts and the practices needed to adopt them.

In Appendix 1, Starter Set of Functional Interfaces, on page ? we’ll take a
glance at some of the most popular functional interfaces.

A quick overview of the Java 8 syntax for functional interfaces, lambda
expressions, and method/constructor references is in Appendix 2, Syntax
Overview, on page ?.

The URLs mentioned throughout the book are gathered together for conve-
nience in Appendix 3, Web Resources, on page ?.

Java Version used in this book

To run the examples in this book you need Java 8 with support for lambda
expressions. Using automated scripts, the examples in this book have been
tried out with the following version of Java:

• Click HERE to purchase this book now. discuss

Java Version used in this book • vii

openjdk version "1.8.0-ea"
OpenJDK Runtime Environment (build 1.8.0-ea-lambda-nightly-h3419-20130219-b78-b00)
OpenJDK 64-Bit Server VM (build 25.0-b15, mixed mode)

Take a few minutes to download the appropriate version of Java depending
on the system. This will help you practice the examples in the book as you
follow along.

How to read the code examples

When writing code in Java, we place classes in packages and executable
statements and expressions in methods. In order to reduce clutter and save
pages in the book, we’ll skip the package names and imports in the code
listing. All code in this book belong to a package:

package fpij;

Any executable code not listed within a method is part of an undisplayed
main() method. When going through the code listings, if there’s an urge to look
at the full source code, remember it’s only a click away at the website for the
book.

Online Resources

A number of web resources referenced through out the book are collected in
Appendix 3, Web Resources, on page ?. Here are a few that will help you get
started with this book:

The Oracle website for downloading the version of Java used in this book:
http://jdk8.java.net/lambda

The official homepage for this book at the Pragmatic Bookshelf website is
http://www.pragprog.com/titles/vsjava8. From there you can download all the example
source code for this book. You can also offer feedback by submitting errata
entries or posting your comments and questions in the forum for the book.

If you’re reading the book in the PDF form, you can click on the link above a
code listing to view or download the specific examples.

Now for some fun with lambda expressions…

Preface • viii

• Click HERE to purchase this book now. discuss

Our Java coding style is ready for a remarkable makeover. The common
everyday tasks we perform just got simpler, easier, and more expressive. The
new way of programming that’s now part of Java has been around for decades
in other languages. With these facilities in Java we can write concise, elegant,
and expressive code, with fewer errors. We can make use of this to easily
enforce policies and implement common design patterns with fewer lines of
code.

In this book we’ll explore the functional style of programming using direct
examples of everyday tasks we do as programmers. Before we take the leap
to this elegant style, and this new way to design and program, let’s discuss
why this change is better.

1.1 Why embrace another paradigm?

Imperative style—that’s what Java has provided us since its inception. In this
style, we tell Java every step of what we want it to do and then watch it
faithfully exercise those steps. That’s worked fine, but it’s a bit low level. The
code tends to get verbose, and we often wish the language were a tad more
intelligent; we could then tell it, declaratively, what we want rather than delve
into how to do it. Thankfully, Java can now help us do that. Let’s take a look
at a few examples, to see the benefits and the differences in style.

Let’s start from familiar grounds to see the two paradigms in action. Here’s
an imperative way to find if Chicago is in a collection of given cities—remember,
the listings in this book only have snippets of code (see Section 4, How to
read the code examples, on page ?).

introduction/fpij/Cities.java
boolean found = false;
for(String city : cities) {
if(city.equals("Chicago")) {
found = true;
break;

}
}

System.out.println("Found chicago?:" + found);

This imperative version is noisy and low level, it has several moving parts.
We first initialize a smelly boolean flag named found and then walk through each
element in the collection. If we found the city we’re looking for, then we set
the flag and break out of the loop. Finally we print out the result of our finding.

As observant Java programmers, the minute we set our eyes on this code
we’d quickly turn it into something more concise and easier to read, like so:

• Click HERE to purchase this book now. discuss

introduction/fpij/Cities.java
System.out.println("Found chicago?:" + cities.contains("Chicago"));

That’s one example of declarative style. Instead of beating around a mutable
variable with low level commands, the contains() method helped us get directly
to our business. It wrapped under the covers the steps necessary to loop
through the elements; the declarative style removed the clutter and let us
focus on the core behavior we like to implement. The benefit—the code reads
pretty close to our business intent. Fewer lines of infrastructure code means
the code is less error-prone and easier to maintain.

That declarative function to check if an element is present in a collection has
been around in Java for a very long time. Now imagine not having to write
imperative code for more advanced operations, like parsing files, working with
databases, making calls to web services, concurrent programming, etc. Java
now makes it possible to write concise, elegant, less error-prone code, not
just for simple cases, but throughout our applications.

Let’s look at another example. We’ll define a collection of prices and try out
a few ways to total discounted price values.

final List<Integer> prices = Arrays.asList(10, 15, 20, 25, 30, 45, 50);

Suppose we’re asked to total the prices discounted by 10%. Let’s do that in
the habitual Java way first.

introduction/fpij/DiscountImperative.java
double totalOfDiscountedPrices = 0.0;

for(int price : prices) {
totalOfDiscountedPrices += price * 0.9;

}
System.out.println("Total of discounted prices: " + totalOfDiscountedPrices);

That’s familiar code; we start with a mutable variable to hold the total of the
discounted prices. We then loop through the prices, compute the discounted
value for each price, one at a time, and add that to the total. Finally we print
the total value of the discounted prices.

And here’s the output from the code.

Total of discounted prices: 175.5

It worked, but writing it feels dirty. It’s no fault of ours, we had to make use
of what was available. But, the code is fairly low level, it suffers from “primitive
obsession.” Those of us working from home have to keep this code away from

• 2

• Click HERE to purchase this book now. discuss

the eyes of kids aspiring to be programmers, for they may be dismayed and
sigh “that’s what you do for a living?”

Now we can do better, a lot better, in such a way that the code resembles the
requirement specification. This will help reduce the gap between the business
needs and the code that implements it, further reducing the chances of the
requirements being misinterpreted.

Rather than tell Java to create a mutable variable and then to repeatedly
assign to it, let’s talk with it at a higher level of abstraction, as in the next
code that works in Java 8.

introduction/fpij/DiscountFunctional.java
final double totalOfDiscountedPrices =
prices.stream().map((Integer price) -> price * 0.9).sum();

System.out.println("Total of discounted prices: " + totalOfDiscountedPrices);

Let’s read that aloud—map the prices to discounted values and then sum
them up. The code flows along with logic in the same way we’d describe the
requirements.

The code is concise, but we’re making use of quite a number of new things
from Java 8. First, we invoked a stream() method on the prices list. This opens
the door to a special iterator with a wealth of convenience functions which
we will discuss later.

Instead of explicitly iterating through the prices list, we’re using a special map
method. Unlike the methods we’re used to in Java and the JDK, this method
takes an anonymous function—a lambda expression—as a parameter, within
the parenthesis (). We’ll soon explore this further. On the result of the map()
method we invoke the sum() method to compute the total.

Much like the way the looping was concealed under the contains() method, the
looping is concealed in this version also. The map() method, however, is more
sophisticated, for each price in the prices list, it invokes the provided lambda
expression and collects back the responses from these calls into a new collec-
tion. The sum() method is finally invoked on this collection to get the final
result.

Here’s the output from this version of code:

Total of discounted prices: 175.5

Now that we’ve gotten a taste of the declarative and functional style, let’s
visit their benefits.

• Click HERE to purchase this book now. discuss

Why embrace another paradigm? • 3

The JDK has evolved to include convenience methods that promote functional
style. When using familiar classes and interfaces from the library, like String
for example, we need to look for opportunities to use these newer functions
in place of the old style. Also, anywhere we used an anonymous inner class
with just one method, we can now use lambda expressions to reduce clutter
and ceremony.

In this chapter we’ll use lambda expressions and method references to iterate
over a String, to implement Comparators, to list files in a directory, and to observe
file and directory changes. Quite a few methods introduced in the previous
chapter will appear here again to help with the current tasks on hand. Tech-
niques we pick up along the way will help turn long mundane tasks into
concise code snippets we can quickly write and easily maintain.

3.1 Iterating a String

chars() is a new method in the String class from the CharSequence interface. It’s
useful to fluently iterate over the String’s characters. We can use this convenient
internal iterator to apply an operation on the individual characters that make
up the string. Let’s make use of it in an example to process a string. Along
the way we will pick up a few more useful ways to use method references.

compare/fpij/IterateString.java
final String str = "w00t";

str.chars().forEach(ch -> System.out.println(ch));

The chars() method returns a Stream over which we can iterate, using the forEach()
internal iterator. We get direct read access to the characters in the String
within the iterator. Here’s the result when we iterate and print each character.

• Click HERE to purchase this book now. discuss

119
48
48
116

The result is not quite what we’d expect. Instead of seeing characters we’re
seeing some numbers. That’s because the chars() method returns a stream of
Integers, representing the characters instead of a stream of Characters. Let’s
explore the API a bit further before we fix the output.

In the previous code we created a lambda expression in the argument list for
the forEach() method. The implementation was a simple call where we routed
the parameter directly as an argument to the println() method. Since this is a
trivial operation, we can eliminate this mundane code with the help of the
Java compiler. We can rely on it to do this parameter routing for us, using a
method reference like we did back in Using Method References, on page ?.

We already saw how to create a method reference for an instance method.
For example, for the call name.toUpperCase(), the method reference is String::toUp-
perCase. In this example, however, we have a call on a static reference System.out.
We can use either a class name or an expression to the left of the double
colon in method references. Using this flexibility, it’s quite easy to provide a
method reference to the println() method, as we see next.

compare/fpij/IterateString.java
str.chars().forEach(System.out::println);

In this example we see the smarts of the Java compiler for parameter routing.
Recall lambda expressions and method references may stand in where
implementations of functional interfaces are expected and the Java compiler
synthesizes the appropriate method in-place (see Section 1.5, Syntax Sugar
with Functional Interfaces, on page ?). In the earlier method reference we
used, String::toUppercase; the parameter to the synthesized method turned into
the target of the method call, like so: parameter.toUppercase();. That’s because the
method reference is based off a class name (String). In this example, the method
reference, again to an instance method, is based off an expression, an instance
of PrintStream accessed through the static reference System.out. Since we already
provided a target for the method, the Java compiler decided to use the
parameter of the synthesized method as an argument to the referenced
method, like so: System.out.println(parameter);. Sweet.

The code with method reference is quite concise, but we have to dig into it a
bit more to understand what’s going on here. Once we get used to method
references, our brains will know to auto-parse these.

• 6

• Click HERE to purchase this book now. discuss

In this example, while the code is concise, the output is not satisfactory. We
want to see characters and not numbers in their place. To fix that, let’s write
a convenience method that takes an int and prints it as a character.

compare/fpij/IterateString.java
private static void printChar(int aChar) {
System.out.println((char)(aChar));

}

We can use a method reference to this convenience method to fix the output.

compare/fpij/IterateString.java
str.chars().forEach(IterateString::printChar);

We can continue to use the result of chars() as an int and when it’s time to print
we can convert it to a character. The output of this version will display char-
acters.

w
0
0
t

If we want to process characters and not int from the start, we can convert
the ints to characters right after the call to the chars() method, like so:

compare/fpij/IterateString.java
str.chars()
.map(ch -> Character.valueOf((char)ch))
.forEach(System.out::println);

We used the internal iterator on the Stream returned by the chars() method, but
we’re not limited to that method. Once we get a Stream we can use any methods
available on it, like map(), filter(), reduce(), etc. to process the characters in the
string. For example, we can filter out only digits from the string, like so,

compare/fpij/IterateString.java
str.chars()
.filter(ch -> Character.isDigit(ch))
.forEach(ch -> printChar(ch));

We can see the filtered digits in the next output.

0
0

Once again, instead of the lambda expressions we passed to the filter() method
and the forEach() method, we can replace them with method references to the
respective methods.

• Click HERE to purchase this book now. discuss

Iterating a String • 7

compare/fpij/IterateString.java
str.chars().filter(Character::isDigit).forEach(IterateString::printChar);

The method references helped here again to remove the mundane parameter
routing. In addition to that, in this example we see yet another variation of
method references compared to the previous two instances where we used
them. When we first saw method references, we created a method reference
for an instance method. Later we created it for a call on a static reference. Now
we’re creating a method reference for a static method—method references seem
to keep on giving.

The method reference for an instance method and a static method structurally
look the same: for example, String::toUppercase and Character::isDigit. To decide how
to route the parameter, the Java compiler will look up to see if the method is
an instance method or a static method. If it’s an instance method, then the
parameter of the synthesized method becomes the target of the call, like in
parameter.toUppercase(); (the exception to this rule is if the target is already
specified like in System.out::println). On the other hand, if the method is a static
method, then the parameter to the synthesized method is routed as an
argument to this method, like in Character.isDigit(parameter);. See Appendix 2,
Syntax Overview, on page ? for a listing of method references variations and
their syntax.

While this parameter routing is quite convenient, there is one caveat—method
collisions and the resulting ambiguity. If there’s both a matching instance
method and a static method, we will get a compilation error due to the ambi-
guity of the reference. For example, if we write Double::toString to convert an
instance of Double to a String, the compiler would get confused whether to use
the public String toString() instance method or the static method public static String
toString(double value), both from the Double class. If we run into this, no sweat,
simply switch back to using the appropriate lambda expression version to
move on.

Once we get used to the functional style, we can gradually switch between
either the lambda expressions or the more concise method references, based
on our comfort level.

We used a new method in Java 8 to easily iterate over characters. Next we’ll
explore the enhancements to the Comparator interface.

• 8

• Click HERE to purchase this book now. discuss

